Nigel J Cairns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2326552/publications.pdf

Version: 2024-02-01

373 50,406 papers citations

104 h-index

210 g-index

402 all docs 402 docs citations 402 times ranked 39083 citing authors

#	Article	IF	CITATIONS
1	Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathologica, 2022, 143, 33-53.	7.7	19
2	Quantifying regional α â€synuclein, amyloid β, and tau accumulation in lewy body dementia. Annals of Clinical and Translational Neurology, 2022, 9, 106-121.	3.7	21
3	Prion-like α-synuclein pathology in the brain of infants with Krabbe disease. Brain, 2022, 145, 1257-1263.	7.6	9
4	Divergent Cortical Tau Positron Emission Tomography Patterns Among Patients With Preclinical Alzheimer Disease. JAMA Neurology, 2022, 79, 592.	9.0	29
5	Manifestations of Alzheimer's disease genetic risk in the blood are evident in a multiomic analysis in healthy adults aged 18 to 90. Scientific Reports, 2022, 12, 6117.	3.3	12
6	Autosomal dominant and sporadic late onset Alzheimer's disease share a common <i>in vivo</i> pathophysiology. Brain, 2022, 145, 3594-3607.	7.6	20
7	An IL1RL1 genetic variant lowers soluble ST2 levels and the risk effects of APOE-Îμ4 in female patients with Alzheimer's disease. Nature Aging, 2022, 2, 616-634.	11.6	11
8	Is Levodopa Response a Valid Indicator of Parkinson's Disease?. Movement Disorders, 2021, 36, 948-954.	3.9	26
9	Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102.	9.0	144
10	Early Selective Vulnerability of the CA2 Hippocampal Subfield in Primary Age-Related Tauopathy. Journal of Neuropathology and Experimental Neurology, 2021, 80, 102-111.	1.7	35
11	The Second NINDS/NIBIB Consensus Meeting to Define Neuropathological Criteria for the Diagnosis of Chronic Traumatic Encephalopathy. Journal of Neuropathology and Experimental Neurology, 2021, 80, 210-219.	1.7	111
12	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	21,4	198
13	Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease. JAMA Neurology, 2021, 78, 396.	9.0	146
14	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	1.3	10
15	KL-VS heterozygosity is associated with lower amyloid-dependent tau accumulation and memory impairment in Alzheimer's disease. Nature Communications, 2021, 12, 3825.	12.8	29
16	Comparing amyloid- \hat{l}^2 plaque burden with antemortem PiB PET in autosomal dominant and late-onset Alzheimer disease. Acta Neuropathologica, 2021, 142, 689-706.	7.7	15
17	Hippocampal neurobiology and function in an aged mouse model of TDP-43 proteinopathy in an APP/PSEN1 background. Neuroscience Letters, 2021, 758, 136010.	2.1	O
18	Accelerated functional brain aging in pre-clinical familial Alzheimer's disease. Nature Communications, 2021, 12, 5346.	12.8	43

#	Article	IF	Citations
19	Staging tau pathology with tau PET in Alzheimer's disease: a longitudinal study. Translational Psychiatry, 2021, 11, 483.	4.8	23
20	A deep learning framework identifies dimensional representations of Alzheimer's Disease from brain structure. Nature Communications, 2021, 12, 7065.	12.8	38
21	Comparative Performance and Neuropathologic Validation of the AD8 Dementia Screening Instrument. Alzheimer Disease and Associated Disorders, 2020, 34, 112-117.	1.3	9
22	Higher CSF sTREM2 attenuates ApoE4-related risk for cognitive decline and neurodegeneration. Molecular Neurodegeneration, 2020, 15, 57.	10.8	33
23	Functional genomic analyses uncover APOE-mediated regulationÂofÂbrain and cerebrospinal fluid beta-amyloid levels in Parkinson disease. Acta Neuropathologica Communications, 2020, 8, 196.	5.2	8
24	Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 12184.	3.3	4
25	Tauopathy in autosomal dominant and lateâ€onset Alzheimer disease. Alzheimer's and Dementia, 2020, 16, e041683.	0.8	0
26	Ante―and postmortem tau in autosomal dominant and lateâ€onset Alzheimer's disease. Annals of Clinical and Translational Neurology, 2020, 7, 2475-2480.	3.7	10
27	Spread of pathological tau proteins through communicating neurons in human Alzheimer's disease. Nature Communications, 2020, 11, 2612.	12.8	283
28	Women can bear a bigger burden: ante- and post-mortem evidence for reserve in the face of tau. Brain Communications, 2020, 2, fcaa025.	3.3	37
29	Parkinson disease clinical subtypes: key features & clinical milestones. Annals of Clinical and Translational Neurology, 2020, 7, 1272-1283.	3.7	27
30	The Utility of the National Alzheimer's Coordinating Center's Database for the Rapid Assessment of Evolving Neuropathologic Conditions. Alzheimer Disease and Associated Disorders, 2020, 34, 105-111.	1.3	19
31	Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathologica Communications, 2020, 8, 5.	5.2	27
32	Neuropathological findings in a South Korean patient with Perry syndrome. , 2020, 39, 80-85.		3
33	Genetic risk for Alzheimer's disease influences neuropathology via multiple biological pathways. Brain Communications, 2020, 2, fcaa167.	3.3	9
34	A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies. Stem Cell Reports, 2019, 13, 939-955.	4.8	62
35	TREM2 brain transcript-specific studies in AD and TREM2 mutation carriers. Molecular Neurodegeneration, 2019, 14, 18.	10.8	58
36	Clinical, pathophysiological and genetic features of motor symptoms in autosomal dominant Alzheimer's disease. Brain, 2019, 142, 1429-1440.	7.6	36

#	Article	IF	CITATIONS
37	Quantification of white matter cellularity and damage in preclinical and early symptomatic Alzheimer's disease. Neurolmage: Clinical, 2019, 22, 101767.	2.7	41
38	Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.	4.4	29
39	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	7.7	90
40	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
41	Tau PET in autosomal dominant Alzheimer's disease: relationship with cognition, dementia and other biomarkers. Brain, 2019, 142, 1063-1076.	7.6	122
42	ICâ€Pâ€046: CEREBRAL AMYLOID ANGIOPATHY IS MORE SEVERE IN AUTOSOMAL DOMINANT AD CASES WITH CEREBRAL MICROHEMORRHAGES: RESULTS FROM THE DIAN STUDY. Alzheimer's and Dementia, 2019, 15, P48.	0.8	0
43	Cortical degeneration in chronic traumatic encephalopathy and Alzheimer's disease neuropathologic change. Neurological Sciences, 2019, 40, 529-533.	1.9	10
44	Parkinson's disease and multiple system atrophy have distinct α-synuclein seed characteristics. Journal of Biological Chemistry, 2019, 294, 1045-1058.	3.4	141
45	A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology of Aging, 2019, 75, 223.e1-223.e10.	3.1	13
46	Understanding disease progression and improving Alzheimer's disease clinical trials: Recent highlights from the Alzheimer's Disease Neuroimaging Initiative. Alzheimer's and Dementia, 2019, 15, 106-152.	0.8	302
47	Distinct cytokine profiles in human brains resilient to Alzheimer's pathology. Neurobiology of Disease, 2019, 121, 327-337.	4.4	79
48	Preferential degradation of cognitive networks differentiates Alzheimer's disease from ageing. Brain, 2018, 141, 1486-1500.	7.6	79
49	Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study. Lancet Neurology, The, 2018, 17, 241-250.	10.2	383
50	In vivo [¹⁸ F]-AV-1451 tau-PET imaging in sporadic Creutzfeldt-Jakob disease. Neurology, 2018, 90, e896-e906.	1.1	27
51	TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nature Neuroscience, 2018, 21, 228-239.	14.8	404
52	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
53	TDP-43 interacts with mitochondrial proteins critical for mitophagy and mitochondrial dynamics. Neuroscience Letters, 2018, 678, 8-15.	2.1	105
54	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	10.2	195

#	Article	IF	CITATIONS
55	ICâ€Pâ€195: QUANTIFICATION OF WHITE MATTER CELLULARITY IN PRECLINICAL AND EARLY SYMPTOMATIC ALZHEIMER DISEASE USING NEUROâ€IMMNUE IMAGING. Alzheimer's and Dementia, 2018, 14, P161.	0.8	O
56	ICâ€Pâ€062: EVALUATING NEUROâ€IMMUNE IMAGING AS A BIOMARKER OF TISSUE CELLULARITY IN POSTMORTI HUMAN BRAIN. Alzheimer's and Dementia, 2018, 14, P57.	EM 0.8	0
57	ICâ€02â€01: THE RELATIONSHIP BETWEEN TAU PET AND AGE ACROSS THE LIFESPAN. Alzheimer's and Dementia, 2018, 14, P1.	0.8	0
58	Utility of perfusion PET measures to assess neuronal injury in Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2018, 10, 669-677.	2.4	14
59	Integrative system biology analyses of CRISPR-edited iPSC-derived neurons and human brains reveal deficiencies of presynaptic signaling in FTLD and PSP. Translational Psychiatry, 2018, 8, 265.	4.8	47
60	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	7.6	39
61	Relative neuron loss in hippocampal sclerosis of aging and Alzheimer's disease. Annals of Neurology, 2018, 84, 741-753.	5.3	17
62	Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease. Neurology, 2018, 91, e1295-e1306.	1.1	193
63	Widespread distribution of tauopathy in preclinical Alzheimer's disease. Neurobiology of Aging, 2018, 72, 177-185.	3.1	42
64	Amyotrophic lateral sclerosis and non-tau frontotemporal lobar degeneration. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, 369-381.	1.8	16
65	The Revised National Alzheimer's Coordinating Center's Neuropathology Form—Available Data and New Analyses. Journal of Neuropathology and Experimental Neurology, 2018, 77, 717-726.	1.7	116
66	Amyloid-β Plaques in Clinical Alzheimer's Disease Brain Incorporate Stable Isotope Tracer In Vivo and Exhibit Nanoscale Heterogeneity. Frontiers in Neurology, 2018, 9, 169.	2.4	24
67	Soluble amyloid-beta buffering by plaques in Alzheimer disease dementia versus high-pathology controls. PLoS ONE, 2018, 13, e0200251.	2.5	9
68	Genetic variants associated with Alzheimer's disease confer different cerebral cortex cell-type population structure. Genome Medicine, 2018, 10, 43.	8.2	62
69	White matter hyperintensities and the mediating role of cerebral amyloid angiopathy in dominantly-inherited Alzheimer's disease. PLoS ONE, 2018, 13, e0195838.	2.5	51
70	Outcomes after diagnosis of mild cognitive impairment in a large autopsy series. Annals of Neurology, 2017, 81, 549-559.	5.3	83
71	Differentiating cognitive impairment due to corticobasal degeneration and Alzheimer disease. Neurology, 2017, 88, 1273-1281.	1.1	34
72	Transethnic genomeâ€wide scan identifies novel Alzheimer's disease loci. Alzheimer's and Dementia, 2017, 13, 727-738.	0.8	166

#	Article	IF	CITATIONS
73	TDP-43 expression influences amyloid \hat{l}^2 plaque deposition and tau aggregation. Neurobiology of Disease, 2017, 103, 154-162.	4.4	47
74	Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Science Translational Medicine, 2017, 9, .	12.4	78
75	Habitual exercise levels are associated with cerebral amyloid load in presymptomatic autosomal dominant Alzheimer's disease. Alzheimer's and Dementia, 2017, 13, 1197-1206.	0.8	45
76	Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials. Alzheimer's and Dementia, 2017, 13, e1-e85.	0.8	213
77	Risk of incident clinical diagnosis of Alzheimer's disease–type dementiaÂattributable to pathologyâ€confirmed vascular disease. Alzheimer's and Dementia, 2017, 13, 613-623.	0.8	30
78	The Alzheimer's Disease Neuroimaging Initiative 3: Continued innovation for clinical trial improvement. Alzheimer's and Dementia, 2017, 13, 561-571.	0.8	266
79	In vivo detection of microstructural correlates of brain pathology in preclinical and early Alzheimer Disease with magnetic resonance imaging. Neurolmage, 2017, 148, 296-304.	4.2	52
80	Synthesis of Thiopheneâ€Based Optical Ligands That Selectively Detect Tau Pathology in Alzheimer's Disease. Chemistry - A European Journal, 2017, 23, 17127-17135.	3.3	32
81	Diversity of Amyloid-beta Proteoforms in the Alzheimer's Disease Brain. Scientific Reports, 2017, 7, 9520.	3.3	125
82	Genetic Comparison of Symptomatic and Asymptomatic Persons With Alzheimer Disease Neuropathology. Alzheimer Disease and Associated Disorders, 2017, 31, 232-238.	1.3	13
83	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
84	AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: Defining a summary measure. Neurolmage, 2017, 161, 171-178.	4.2	116
85	Pathology of the Superior Colliculus in Chronic Traumatic Encephalopathy. Optometry and Vision Science, 2017, 94, 33-42.	1.2	11
86	TREM2 Maintains Microglial Metabolic Fitness in Alzheimer's Disease. Cell, 2017, 170, 649-663.e13.	28.9	741
87	[ICâ€Pâ€057]: CLINICAL RISK RELATED TO CEREBRAL MICROHEMORRHAGES IN AUTOSOMAL DOMINANT ALZHEIMER's DISEASE: LONGITUDINAL RESULTS FROM THE DIAN STUDY. Alzheimer's and Dementia, 2017, 13, P47.	0.8	0
88	[P3–263]: MOTOR SYMPTOMS IN FAMILIAL ALZHEIMER's DISEASE: FREQUENCY, SEVERITY AND PREDICTIVE VALUE. Alzheimer's and Dementia, 2017, 13, P1043.	0.8	0
89	Clustering of tau-immunoreactive pathology in chronic traumatic encephalopathy. Journal of Neural Transmission, 2017, 124, 185-192.	2.8	12
90	Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies. Neurobiology of Aging, 2017, 49, 214.e13-214.e15.	3.1	12

#	Article	IF	CITATIONS
91	Widespread tau seeding activity at early Braak stages. Acta Neuropathologica, 2017, 133, 91-100.	7.7	122
92	[P2â€"372]: UTILITY OF PERFUSION PET MODELS AS MEASURES OF NEURODEGENERATION IN AN AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE POPULATION: REPORT FROM THE DIAN STUDY. Alzheimer's and Dementia, 2017, 13, P768.	0.8	O
93	[P2–436]: HIPPOCAMPAL SCLEROSIS AND COMORBIDITIES IN THE AGING BRAIN. Alzheimer's and Dementia, 2017, 13, P803.	0.8	0
94	[P4–057]: FUNCTIONAL CHANGES IN MEMORY ASSOCIATED WITH TDPâ€43 EXPRESSION IN AN APP/PSEN1 MOUSE MODEL. Alzheimer's and Dementia, 2017, 13, P1279.	0.8	0
95	[ICâ€Pâ€054]: EXAMINING LONGITUDINAL NEUROIMAGING PATTERNS IN AUTOSOMAL DOMINANT ALZHEIMER DISEASE: RESULTS FROM THE DOMINANTLY INHERITED ALZHEIMER NETWORK. Alzheimer's and Dementia, 2017, 13, P44.	0.8	O
96	[ICâ€Pâ€166]: UTILITY OF PERFUSION PET MODELS AS MEASURE OF NEURODEGENERATION IN AN AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE POPULATION: REPORT FROM THE DIAN STUDY. Alzheimer's and Dementia, 2017, 13, P125.	0.8	0
97	[O1–02–03]: EXAMINING LONGITUDINAL NEUROIMAGING PATTERNS IN AUTOSOMAL DOMINANT ALZHEIME DISEASE: FINDINGS FROM THE DOMINANTLY INHERITED ALZHEIMER NETWORK. Alzheimer's and Dementia, 2017, 13, P186.	R 0.8	O
98	[S3–01–02]: NEUROPATHOLOGIC HETEROGENEITY IN FAMILIAL AND LATEâ€ONSET ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P877.	0.8	0
99	[O1–02–04]: CLINICAL RISK RELATED TO CEREBRAL MICROHEMORRHAGES IN AUTOSOMAL DOMINANT ALZHEIMER's DISEASE: LONGITUDINAL RESULTS FROM THE DIAN STUDY. Alzheimer's and Dementia, 2017, 13, P186.	0.8	O
100	Soluble Amyloid-beta Aggregates from Human Alzheimer's Disease Brains. Scientific Reports, 2016, 6, 38187.	3.3	119
101	P1â€254: Principal Component Analysis of [18F]â€Avâ€1451 TAU Pet in Alzheimer'S Disease and Frontotemp Dementia. Alzheimer's and Dementia, 2016, 12, P507.	oral O.8	O
102	P1â€116: Classifying TAU Pet Positivity with [18F]â€AVâ€1451 in Preclinical Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P446.	0.8	0
103	ICâ€01â€03: Classifying TAU Pet Positivity With [18F]â€AVâ€1451 in Preclinical Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P2.	0.8	2
104	P3-089: Influence of Parkinson's Disease Candidate Genes On Lewy Body Pathology in Autopsy-Confirmed Alzheimer's Disease Cases. , 2016, 12, P854-P854.		0
105	P3â€234: Similarities and Differences in Patterns of [F18]â€AVâ€1451 and [F18]â€FDG in Frontotemporal Demer Alzheimer's and Dementia, 2016, 12, P915.	ntia 0.8	O
106	IC-P-204: Principal Component Analysis of [18F]-Av-1451 TAU PET in Alzheimer's Disease and Frontotemporal Dementia. , 2016, 12, P145-P146.		O
107	ICâ€Pâ€206: Similarities and Differences in Patterns of [F18]â€Avâ€1451 And [F18]â€FDG in Frontotemporal Dementia. Alzheimer's and Dementia, 2016, 12, P147.	0.8	O
108	O2â€03â€02: are White Matter Hyperintensities a Core Feature of Alzheimer's Disease or Just a Reflection of Amyloid Angiopathy? Evidence From the Dominantly Inherited Alzheimer Network (DIAN). Alzheimer's and Dementia, 2016, 12, P226.	0.8	1

#	Article	IF	CITATIONS
109	O3â€04â€03: Ageâ€Related Neuropathology Helps Distinguish Autosomal Dominant from Lateâ€Onset Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P291.	0.8	0
110	O4-11-01: TDP-43 EXPRESSION IN AN APP/PS1 BACKGROUND REDUCES PLAQUE DEPOSITION AND REGULATES CALCINEURIN EXPRESSION. , 2016, 12, P360-P360.		1
111	O5â€01â€06: TAU Pet Imaging with AVâ€1451 in Autosomal Dominant Alzheimer's Disease: Update from the Dominantly Inherited Alzheimer Network (DIAN). Alzheimer's and Dementia, 2016, 12, P378.	0.8	3
112	O5-02-01: Longitudinal Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease: The Dominantly Inherited Alzheimer Network., 2016, 12, P378-P379.		0
113	P1â€099: Purification and Quantitative Characterization of Amyloidâ€Beta Oligomers from Alzheimer's Disease Brain Lysates. Alzheimer's and Dementia, 2016, 12, P439.	0.8	0
114	P1â€100: Amyloidâ€Beta (Aβ) Isoforms and Ptms of Soluble Aβ Oligomers from Human Brain. Alzheimer's and Dementia, 2016, 12, P439.	0.8	0
115	Multisite assessment of NIAâ€AA guidelines for the neuropathologic evaluation of Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 164-169.	0.8	82
116	Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiology of Aging, 2016, 41, 200.e13-200.e20.	3.1	174
117	Phenotypic Similarities Between Late-Onset Autosomal Dominant and Sporadic Alzheimer Disease. JAMA Neurology, 2016, 73, 1125.	9.0	17
118	Evaluation of Tau Imaging in Staging Alzheimer Disease and Revealing Interactions Between \hat{I}^2 -Amyloid and Tauopathy. JAMA Neurology, 2016, 73, 1070.	9.0	246
119	Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease. Science Translational Medicine, 2016, 8, 338ra66.	12.4	560
120	ICâ€Pâ€179: TAU Imaging Relationships With Amyloid B Imaging, CSF TAU/AB ₄₂ , and Cognition in Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P130.	0.8	0
121	Neurological manifestations of autosomal dominant familial Alzheimer's disease: a comparison of the published literature with the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS). Lancet Neurology, The, 2016, 15, 1317-1325.	10.2	87
122	Human Central Nervous System (CNS) ApoE Isoforms Are Increased by Age, Differentially Altered by Amyloidosis, and Relative Amounts Reversed in the CNS Compared with Plasma. Journal of Biological Chemistry, 2016, 291, 27204-27218.	3.4	42
123	Fluselenamyl: A Novel Benzoselenazole Derivative for PET Detection of Amyloid Plaques (Aβ) in Alzheimer's Disease. Scientific Reports, 2016, 6, 35636.	3.3	36
124	The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging. Brain, 2016, 139, 2249-2260.	7.6	150
125	White matter hyperintensities are a core feature of Alzheimer's disease: Evidence from the dominantly inherited Alzheimer network. Annals of Neurology, 2016, 79, 929-939.	5.3	381
126	Diabetes is associated with cerebrovascular but not Alzheimer's disease neuropathology. Alzheimer's and Dementia, 2016, 12, 882-889.	0.8	180

#	Article	IF	CITATIONS
127	Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases. Neurobiology of Aging, 2016, 38, 214.e7-214.e10.	3.1	78
128	Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathologica, 2016, 131, 87-102.	7.7	380
129	The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathologica, 2016, 131, 75-86.	7.7	708
130	A novel Alzheimer disease locus located near the gene encoding tau protein. Molecular Psychiatry, 2016, 21, 108-117.	7.9	260
131	Neuropsychological Markers of Cognitive Decline in Persons With Alzheimer Disease Neuropathology. Journal of Neuropathology and Experimental Neurology, 2015, 74, 1086-1092.	1.7	28
132	Neuropathologic assessment of participants in two multiâ€eenter longitudinal observational studies: The ⟨scp⟩A⟨ scp⟩ zheimer ⟨scp⟩D⟨ scp⟩isease ⟨scp⟩N⟨ scp⟩euroimaging ⟨scp⟩ ⟨ scp⟩nitiative (⟨scp⟩ADN ⟨ scp⟩) and the ⟨scp⟩D⟨ scp⟩ominantly ⟨scp⟩ ⟨ scp⟩nherited ⟨scp⟩A⟨ scp⟩ zheimer ⟨scp⟩N⟨ scp⟩etwork (⟨scp⟩DIAN⟨ scp⟩). Neuropathology, 2015, 35, 390-400.	1.2	68
133	P2-108: Differentiating corticobasal degeneration and Alzheimer disease by longitudinal clinical and cognitive features., 2015, 11, P525-P525.		O
134	Clinically early-stage $CSP\hat{l}\pm$ mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss. Acta Neuropathologica Communications, 2015, 3, 73.	5.2	17
135	Clinical Features of Alzheimer Disease With and Without Lewy Bodies. JAMA Neurology, 2015, 72, 789.	9.0	82
136	Rarity of the Alzheimer Disease–Protective <i>APP</i> A673T Variant in the United States. JAMA Neurology, 2015, 72, 209.	9.0	41
137	Comparative quantitative study of †signature†pathological lesions in the hippocampus and adjacent gyri of 12 neurodegenerative disorders. Journal of Neural Transmission, 2015, 122, 1355-1367.	2.8	14
138	Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease. Annals of Clinical and Translational Neurology, 2015, 2, 949-959.	3.7	144
139	P1-206: Clinical features of Alzheimer disease with and without lewy bodies., 2015, 11, P428-P429.		O
140	O4-02-01: Age-related neuropathology helps distinguish autosomal dominant from late-onset Alzheimer disease., 2015, 11, P269-P269.		0
141	Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathologica, 2015, 129, 469-491.	7.7	218
142	2014 Update of the Alzheimer's Disease Neuroimaging Initiative: AÂreview of papers published since its inception. Alzheimer's and Dementia, 2015, 11, e1-120.	0.8	261
143	Impact of the Alzheimer's Disease Neuroimaging Initiative, 2004 to 2014. Alzheimer's and Dementia, 2015, 11, 865-884.	0.8	181
144	Brain collection, standardized neuropathologic assessment, and comorbidity in Alzheimer's Disease Neuroimaging Initiative 2 participants. Alzheimer's and Dementia, 2015, 11, 815-822.	0.8	46

#	Article	IF	CITATIONS
145	PART, a distinct tauopathy, different from classical sporadic Alzheimer disease. Acta Neuropathologica, 2015, 129, 757-762.	7.7	139
146	Whipple's Disease Masquerades as Dementia With Lewy Bodies. Alzheimer Disease and Associated Disorders, 2015, 29, 85-89.	1.3	7
147	Cerebral amyloidosis associated with cognitive decline in autosomal dominant Alzheimer disease. Neurology, 2015, 85, 790-798.	1.1	27
148	Partial volume correction in quantitative amyloid imaging. NeuroImage, 2015, 107, 55-64.	4.2	188
149	Pathological Correlates of White Matter Hyperintensities on Magnetic Resonance Imaging. Dementia and Geriatric Cognitive Disorders, 2015, 39, 92-104.	1.5	77
150	Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathologica, 2015, 129, 39-52.	7.7	111
151	Variably Protease-sensitive Prionopathy in an Apparent Cognitively Normal 93-Year-Old. Alzheimer Disease and Associated Disorders, 2015, 29, 173-176.	1.3	6
152	Neuropsychological changes in asymptomatic persons with Alzheimer disease neuropathology. Neurology, 2014, 83, 434-440.	1.1	61
153	Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Human Molecular Genetics, 2014, 23, 6139-6146.	2.9	178
154	Longitudinal Change in CSF Biomarkers in Autosomal-Dominant Alzheimer's Disease. Science Translational Medicine, 2014, 6, 226ra30.	12.4	320
155	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	9.0	166
156	Functional Connectivity in Autosomal Dominant and Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1111.	9.0	112
157	TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathologica, 2014, 127, 407-418.	7.7	123
158	Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature, 2014, 505, 550-554.	27.8	425
159	A quantitative study of α-synuclein pathology in fifteen cases of dementia associated with Parkinson disease. Journal of Neural Transmission, 2014, 121, 171-181.	2.8	37
160	Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathologica, 2014, 128, 755-766.	7.7	1,060
161	Characterization of a Brain Permeant Fluorescent Molecule and Visualization of AÎ ² Parenchymal Plaques, Using Real-Time Multiphoton Imaging in Transgenic Mice. Organic Letters, 2014, 16, 3640-3643.	4.6	13
162	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302

#	Article	IF	CITATIONS
163	Genetic Heterogeneity in Alzheimer Disease and Implications for Treatment Strategies. Current Neurology and Neuroscience Reports, 2014, 14, 499.	4.2	70
164	Proteopathic tau seeding predicts tauopathy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 , E4376-85.	7.1	474
165	IC-P-138: POSTERIOR CEREBRAL ATROPHY ASSOCIATED WITH THE PSEN1 I229F MUTATION. , 2014, 10, P78-P79		0
166	P4-146: POSTERIOR CEREBRAL ATROPHY ASSOCIATED WITH THE PSEN1 I229F MUTATION. , 2014, 10, P842-P84	12.	0
167	Amyotrophic lateral sclerosis and frontotemporal lobar degeneration. , 2014, , 209-248.		3
168	Regional variability of imaging biomarkers in autosomal dominant Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4502-9.	7.1	309
169	Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta Neuropathologica Communications, 2013, 1, 65.	5.2	138
170	Preclinical Alzheimer's disease and its outcome: a longitudinal cohort study. Lancet Neurology, The, 2013, 12, 957-965.	10.2	471
171	The Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception. Alzheimer's and Dementia, 2013, 9, e111-94.	0.8	535
172	The advantages of frontotemporal degeneration drug development (partÂ2Âof frontotemporal) Tj ETQq0 0 0 rgB	T Overloo	ck 10 Tf 50 38
173	Frontotemporal degeneration, the next therapeutic frontier: Molecules and animal models for frontotemporal degeneration drug development. Alzheimer's and Dementia, 2013, 9, 176-188.	0.8	58
174	The Structural Basis for Optimal Performance of Oligothiopheneâ€Based Fluorescent Amyloid Ligands: Conformational Flexibility is Essential for Spectral Assignment of a Diversity of Protein Aggregates. Chemistry - A European Journal, 2013, 19, 10179-10192.	3.3	95
175	Spatial patterns of the tau pathology in progressive supranuclear palsy. Neurological Sciences, 2013, 34, 337-344.	1.9	26
176	Specific changes of sulfatide levels in individuals with preâ€clinical Alzheimer's disease: an early event in disease pathogenesis. Journal of Neurochemistry, 2013, 127, 733-738.	3.9	84
177	The pattern of atrophy in familial Alzheimer disease. Neurology, 2013, 81, 1425-1433.	1.1	67
178	Principal component analysis of PiB distribution in Parkinson and Alzheimer diseases. Neurology, 2013, 81, 520-527.	1.1	36
179	Comparison of symptomatic and asymptomatic persons with Alzheimer disease neuropathology. Neurology, 2013, 80, 2121-2129.	1.1	49
180	Amyloidâ€beta oligomerization in Alzheimer dementia versus highâ€pathology controls. Annals of Neurology, 2013, 73, 104-119.	5. 3	244

#	Article	IF	CITATIONS
181	C9orf72 Hexanucleotide Repeat Expansions in Clinical Alzheimer Disease. JAMA Neurology, 2013, 70, 736.	9.0	92
182	Unravelling the mysteries of frontotemporal dementia. Missouri Medicine, 2013, 110, 411-6.	0.3	0
183	Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nature Genetics, 2012, 44, 200-205.	21.4	428
184	Developing an international network for Alzheimer's research: the Dominantly Inherited Alzheimer Network. Clinical Investigation, 2012, 2, 975-984.	0.0	180
185	Pathologic Accumulation of \hat{l}_{\pm} -Synuclein and $\hat{Al^2}$ in Parkinson Disease Patients With Dementia. Archives of Neurology, 2012, 69, 1326.	4.5	173
186	Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature. Journal of Neuropathology and Experimental Neurology, 2012, 71, 362-381.	1.7	1,599
187	Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease. New England Journal of Medicine, 2012, 367, 795-804.	27.0	3,005
188	Mechanisms of disease in frontotemporal lobar degeneration: gain of function versus loss of function effects. Acta Neuropathologica, 2012, 124, 373-382.	7.7	89
189	Different molecular pathologies result in similar spatial patterns of cellular inclusions in neurodegenerative disease: a comparative study of eight disorders. Journal of Neural Transmission, 2012, 119, 1551-1560.	2.8	19
190	The levels of water-soluble and triton-soluble $\hat{Al^2}$ are increased in Alzheimer's disease brain. Brain Research, 2012, 1450, 138-147.	2.2	47
191	The Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception. Alzheimer's and Dementia, 2012, 8, S1-68.	0.8	432
192	National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimer's and Dementia, 2012, 8, 1-13.	0.8	1,968
193	O2â€06â€01: Disrupted functional connectivity in autosomal dominant Alzheimer's disease: Preliminary findings from the DIAN study. Alzheimer's and Dementia, 2012, 8, P244.	0.8	1
194	Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology, 2012, 79, 221-228.	1.1	144
195	National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach. Acta Neuropathologica, 2012, 123, 1-11.	7.7	2,002
196	Dopamine D1, D2, D3 Receptors, Vesicular Monoamine Transporter Type-2 (VMAT2) and Dopamine Transporter (DAT) Densities in Aged Human Brain. PLoS ONE, 2012, 7, e49483.	2.5	62
197	Gigaxonin mutation analysis in patients with NIFID. Neurobiology of Aging, 2011, 32, 1528-1529.	3.1	5
198	O2-07-01: Neuropathology of preclinical and incipient Alzheimer's dementia., 2011, 7, S303-S303.		0

#	Article	IF	CITATIONS
199	Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.	21.4	1,676
200	The spectrum and severity of FUS-immunoreactive inclusions in the frontal and temporal lobes of ten cases of neuronal intermediate filament inclusion disease. Acta Neuropathologica, 2011, 121, 219-228.	7.7	23
201	Distinct pathological subtypes of FTLD-FUS. Acta Neuropathologica, 2011, 121, 207-218.	7.7	139
202	Spatial patterns of TDP-43 neuronal cytoplasmic inclusions (NCI) in fifteen cases of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). Neurological Sciences, 2011, 32, 653-659.	1.9	3
203	Spatial patterns of FUS-immunoreactive neuronal cytoplasmic inclusions (NCI) in neuronal intermediate filament inclusion disease (NIFID). Journal of Neural Transmission, 2011, 118, 1651-1657.	2.8	7
204	FUS Immunogold Labeling TEM Analysis of the Neuronal Cytoplasmic Inclusions of Neuronal Intermediate Filament Inclusion Disease: A Frontotemporal Lobar Degeneration with FUS Proteinopathy. Journal of Molecular Neuroscience, 2011, 45, 409-421.	2.3	22
205	Novel Types of Frontotemporal Lobar Degeneration: Beyond Tau and TDP-43. Journal of Molecular Neuroscience, 2011, 45, 402-408.	2.3	33
206	Visininâ€like proteinâ€1: Diagnostic and prognostic biomarker in Alzheimer disease. Annals of Neurology, 2011, 70, 274-285.	5.3	132
207	Genetic and Clinical Features of Progranulin-Associated Frontotemporal Lobar Degeneration. Archives of Neurology, 2011, 68, 488.	4.5	108
208	A morphometric study of the spatial patterns of TDP-43 immunoreactive neuronal inclusions in frontotemporal lobar degeneration (FTLD) with progranulin (GRN) mutation. Histology and Histopathology, 2011, 26, 185-90.	0.7	6
209	Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathologica, 2010, 119, 1-4.	7.7	854
210	Neuropathological heterogeneity in frontotemporal lobar degeneration with TDP-43 proteinopathy: a quantitative study of 94 cases using principal components analysis. Journal of Neural Transmission, 2010, 117, 227-239.	2.8	48
211	Variably proteaseâ€sensitive prionopathy: A new sporadic disease of the prion protein. Annals of Neurology, 2010, 68, 162-172.	5.3	203
212	Amyloid imaging of Lewy bodyâ€associated disorders. Movement Disorders, 2010, 25, 2516-2523.	3.9	135
213	Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genetics, 2010, 42, 234-239.	21.4	479
214	The Challenge and Public Health Implications of Alzheimer Overdiagnosis in the Oldest Oldâ€"Reply. Archives of Neurology, 2010, 67, 899.	4.5	0
215	FUS: A new actor on the frontotemporal lobar degeneration stage. Neurology, 2010, 74, 354-356.	1.1	19
216	YKL-40: A Novel Prognostic Fluid Biomarker for Preclinical Alzheimer's Disease. Biological Psychiatry, 2010, 68, 903-912.	1.3	382

#	Article	IF	CITATIONS
217	The Alzheimer's Disease Neuroimaging Initiative: Progress report and future plans. Alzheimer's and Dementia, 2010, 6, 202.	0.8	443
218	Autopsy consent, brain collection, and standardized neuropathologic assessment of ADNI participants: The essential role of the Neuropathology Core. Alzheimer's and Dementia, 2010, 6, 274-279.	0.8	31
219	VCP Mutations Causing Frontotemporal Lobar Degeneration Disrupt Localization of TDP-43 and Induce Cell Death. Journal of Biological Chemistry, 2009, 284, 12384-12398.	3.4	104
220	Absence of Pittsburgh Compound B Detection of Cerebral Amyloid \hat{l}^2 in a Patient With Clinical, Cognitive, and Cerebrospinal Fluid Markers of Alzheimer Disease. Archives of Neurology, 2009, 66, 1557-62.	4.5	188
221	Size frequency distribution of the β-amyloid (aβ) deposits in dementia with Lewy bodies with associated Alzheimer's disease pathology. Neurological Sciences, 2009, 30, 471-477.	1.9	11
222	Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathologica, 2009, 117, 15-18.	7.7	377
223	TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy. Acta Neuropathologica, 2009, 118, 633-645.	7.7	139
224	Ubiquitin associated protein 1 is a risk factor for frontotemporal lobar degeneration. Neurobiology of Aging, 2009, 30, 656-665.	3.1	33
225	TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18809-18814.	7.1	616
226	Fine structural analysis of the neuronal inclusions of frontotemporal lobar degeneration with TDP-43 proteinopathy. Journal of Neural Transmission, 2008, 115, 1661-1671.	2.8	48
227	Molecular characterization of novel progranulin (<i>GRN</i>) mutations in frontotemporal dementia. Human Mutation, 2008, 29, 512-521.	2.5	71
228	<i>TDPâ€43</i> A315T mutation in familial motor neuron disease. Annals of Neurology, 2008, 63, 535-538.	5.3	572
229	What determines the molecular composition of abnormal protein aggregates in neurodegenerative disease?. Neuropathology, 2008, 28, 351-365.	1.2	50
230	Neuronal Intermediate Filament Inclusion Disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 89, 443-448.	1.8	3
231	Evidence that common variation in NEDD9 is associated with susceptibility to late-onset Alzheimer's and Parkinson's disease. Human Molecular Genetics, 2008, 17, 759-767.	2.9	39
232	TAR DNA-Binding Protein 43 Immunohistochemistry Reveals Extensive Neuritic Pathology in FTLD-U: A Midwest-Southwest Consortium for FTLD Study. Journal of Neuropathology and Experimental Neurology, 2008, 67, 271-279.	1.7	53
233	Interaction of Neuritic Plaques and Education Predicts Dementia. Alzheimer Disease and Associated Disorders, 2008, 22, 188-193.	1.3	28
234	An alternative in vitro model of neurodegeneration in FTLDâ€U with PGRN mutation. FASEB Journal, 2008, 22, 58.7.	0.5	0

#	Article	IF	CITATIONS
235	Clinical and Psychometric Distinction of Frontotemporal and Alzheimer Dementias. Archives of Neurology, 2007, 64, 535.	4.5	66
236	TDP-43 immunohistochemistry reveals extensive neuritic pathology in FTLD-U: a Midwest-Southwest Consortium for FTLD study. Journal of Neuropathology and Experimental Neurology, 2007, 66, 425.	1.7	0
237	Neuropathologic Heterogeneity in HDDD1: A Familial Frontotemporal Lobar Degeneration With Ubiquitin-positive Inclusions and Progranulin Mutation. Alzheimer Disease and Associated Disorders, 2007, 21, 1-7.	1.3	53
238	TDP-43 in the Ubiquitin Pathology of Frontotemporal Dementia With VCP Gene Mutations. Journal of Neuropathology and Experimental Neurology, 2007, 66, 152-157.	1.7	295
239	Spatial topography of the neurofibrillary tangles in cortical and subcortical regions in progressive supranuclear palsy. Parkinsonism and Related Disorders, 2007, 13, 50-54.	2.2	10
240	TDP-43 in Familial and Sporadic Frontotemporal Lobar Degeneration with Ubiquitin Inclusions. American Journal of Pathology, 2007, 171, 227-240.	3.8	446
241	TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. Journal of Neuropathology and Experimental Neurology, 2007, 66, 425.	1.7	1
242	Pathological TDPâ€43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with <i>SOD1</i> mutations. Annals of Neurology, 2007, 61, 427-434.	5.3	840
243	Identification and validation of novel CSF biomarkers for early stages of Alzheimer's disease. Proteomics - Clinical Applications, 2007, 1, 1373-1384.	1.6	66
244	A quantitative study of the pathological changes in white matter in multiple system atrophy. Neuropathology, 2007, 27, 221-227.	1.2	26
245	Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathologica, 2007, 114, 5-22.	7.7	978
246	TDPâ€43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. FASEB Journal, 2007, 21, A25.	0.5	0
247	Mutation analysis of patients with neuronal intermediate filament inclusion disease (NIFID). Neurobiology of Aging, 2006, 27, 778.e1-778.e6.	3.1	23
248	Analysis of IFT74as a candidate gene for chromosome 9p-linked ALS-FTD. BMC Neurology, 2006, 6, 44.	1.8	70
249	HDDD2 is a familial frontotemporal lobar degeneration with ubiquitinâ€positive, tauâ€negative inclusions caused by a missense mutation in the signal peptide of progranulin. Annals of Neurology, 2006, 60, 314-322.	5.3	186
250	Letter to The Editor. Journal of Neuropathology and Experimental Neurology, 2006, 65, 97.	1.7	0
251	Novel Ubiquitin Neuropathology in Frontotemporal Dementia With <i>Valosin-Containing Protein</i> Gene Mutations. Journal of Neuropathology and Experimental Neurology, 2006, 65, 571-581.	1.7	206
252	Neuroanatomy and Neuropathology. , 2005, , 21-55.		2

#	Article	IF	CITATIONS
253	Overlap between neurodegenerative disorders. Neuropathology, 2005, 25, 111-124.	1.2	119
254	Spatial patterns of the pathological changes in the temporal lobe of patients with neuronal intermediate filament inclusion disease. Neuropathology, 2005, 25, 298-303.	1.2	0
255	Candidate gene association studies of genes involved in neuronal cholinergic transmission in Alzheimer's disease suggests choline acetyltransferase as a candidate deserving further study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 132B, 5-8.	1.7	37
256	Neuronal intranuclear inclusions are ultrastructurally and immunologically distinct from cytoplasmic inclusions of neuronal intermediate filament inclusion disease. Acta Neuropathologica, 2005, 110, 360-368.	7.7	25
257	Expression of Cellular Prion Protein in the Frontal and Occipital Lobe in Alzheimer's Disease, Diffuse Lewy Body Disease, and in Normal Brain: An Immunohistochemical Study. Journal of Histochemistry and Cytochemistry, 2005, 53, 929-940.	2.5	28
258	Candidate gene association study of solute carrier family 11a members 1 (SLC11A1) and 2 (SLC11A2) genes in Alzheimer's disease. Neuroscience Letters, 2005, 374, 124-128.	2.1	32
259	Sequence variants of IDE are associated with the extent of \hat{l}^2 -amyloid deposition in the Alzheimer's disease brain. Neurobiology of Aging, 2005, 26, 795-802.	3.1	47
260	Aberrant accentuation of neurofibrillary degeneration in the hippocampus of Alzheimer's disease with amyloid precursor protein 717 and presenilin-1 gene mutations. Journal of the Neurological Sciences, 2005, 234, 55-65.	0.6	11
261	Common variants of ACE contribute to variable age-at-onset of Alzheimer's disease. Human Genetics, 2004, 114, 478-483.	3.8	35
262	?-Internexin aggregates are abundant in neuronal intermediate filament inclusion disease (NIFID) but rare in other neurodegenerative diseases. Acta Neuropathologica, 2004, 108, 213-23.	7.7	50
263	The cytoskeleton in neurodegenerative diseases. Journal of Pathology, 2004, 204, 438-449.	4.5	156
264	Genetic variants of ABCA1 modify Alzheimer disease risk and quantitative traits related to ?-amyloid metabolism. Human Mutation, 2004, 23, 358-367.	2.5	120
265	Spatial patterns of \hat{l}_{\pm} -synuclein positive glial cytoplasmic inclusions in multiple system atrophy. Movement Disorders, 2004, 19, 109-112.	3.9	24
266	\hat{l}_{\pm} -Internexin Is Present in the Pathological Inclusions of Neuronal Intermediate Filament Inclusion Disease. American Journal of Pathology, 2004, 164, 2153-2161.	3.8	116
267	Amyloid precursor protein mRNA levels in Alzheimer's disease brain. Molecular Brain Research, 2004, 122, 1-9.	2.3	43
268	Shortfalls in the peptidyl-prolyl cis–trans isomerase protein Pin1 in neurons are associated with frontotemporal dementias. Neurobiology of Disease, 2004, 17, 237-249.	4.4	42
269	Candidate gene association studies of the $\hat{l}\pm4$ (CHRNA4) and \hat{l}^22 (CHRNB2) neuronal nicotinic acetylcholine receptor subunit genes in Alzheimer's disease. Neuroscience Letters, 2004, 358, 142-146.	2.1	40
270	Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Research, 2003, 967, 152-160.	2.2	264

#	Article	IF	CITATIONS
271	Olfactory bulb in multiple system atrophy. Movement Disorders, 2003, 18, 938-942.	3.9	44
272	Glyceraldehyde 3-phosphate dehydrogenase and endothelin-1 immunoreactivity is associated with cerebral white matter damage in dentatorubral-pallidoluysian atrophy. Neuropathology, 2003, 23, 36-43.	1.2	16
273	A quantitative study of the pathological changes in cortical neurons in sporadic Creutzfeldt-Jakob disease. Neuropathology, 2003, 23, 181-187.	1.2	5
274	Patients with a novel neurofilamentopathy: dementia with neurofilament inclusions. Neuroscience Letters, 2003, 341, 177-180.	2.1	81
275	Tumour necrosis factor-α gene polymorphisms and Alzheimer's disease. Neuroscience Letters, 2003, 350, 61-65.	2.1	61
276	An optimistic view for quantifying mRNA in post-mortem human brain. Molecular Brain Research, 2003, 116, 7-16.	2.3	48
277	β-Secretase (BACE) and GSK-3 mRNA levels in Alzheimer's disease. Molecular Brain Research, 2003, 116, 155-158.	2.3	53
278	Quantifying mRNA in postmortem human brain: influence of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA variance. Molecular Brain Research, 2003, 118, 60-71.	2.3	181
279	Haplotypes extending across ACE are associated with Alzheimer's disease. Human Molecular Genetics, 2003, 12, 859-867.	2.9	108
280	Sequence Identification and Characterization of Human Carnosinase and a Closely Related Non-specific Dipeptidase. Journal of Biological Chemistry, 2003, 278, 6521-6531.	3.4	295
281	Spatial patterns of the pathological changes in the cerebellar cortex in sporadic Creutzfeldt-Jakob disease (sCJD). Folia Neuropathologica, 2003, 41, 183-9.	1.2	6
282	Human brain nucleoside diphosphate kinase activity is decreased in Alzheimer's disease and Down syndrome. Biochemical and Biophysical Research Communications, 2002, 296, 970-975.	2.1	55
283	The quantification of gene expression in an animal model of brain ischaemia using TaqManâ,,¢ real-time RT-PCR. Molecular Brain Research, 2002, 106, 101-116.	2.3	77
284	Human brain cytosolic histamine-N-methyltransferase is decreased in Down syndrome and increased in Pick's disease. Neuroscience Letters, 2002, 321, 169-172.	2.1	18
285	Overexpressed protein disulfide isomerase in brains of patients with sporadic Creutzfeldt–Jakob disease. Neuroscience Letters, 2002, 334, 196-200.	2.1	87
286	Spinal cord mGlu1a receptorsPossible target for amyotrophic lateral sclerosis therapy. Pharmacology Biochemistry and Behavior, 2002, 73, 447-454.	2.9	16
287	No evidence for an association between <i>Saitohin</i> Q7R polymorphism and Alzheimer's disease. Annals of Neurology, 2002, 52, 690-691.	5.3	22
288	Are pathological lesions in neurodegenerative disorders the cause or the effect of the degeneration?. Neuropathology, 2002, 22, 133-146.	1.2	22

#	Article	IF	CITATIONS
289	Molecular Analysis of the Presenilin 1 (S182) Gene in "Sporadic―Cases of Alzheimer's Disease: Identification and Characterisation of Unusual Splice Variants. Journal of Neurochemistry, 2002, 66, 1774-1777.	3.9	27
290	Alteration of Caspases and Apoptosis-Related Proteins in Brains of Patients with Alzheimer's Disease. Biochemical and Biophysical Research Communications, 2001, 281, 84-93.	2.1	92
291	Distinguishable effects of Presenilin-1 and APP717 mutations on amyloid plaque deposition. Neurobiology of Aging, 2001, 22, 367-376.	3.1	19
292	Decreased brain levels of 2′,3′-cyclic nucleotide-3′-phosphodiesterase in Down syndrome and Alzheimerât disease. Neurobiology of Aging, 2001, 22, 547-553.	€™s 3.1	96
293	Decreased brain histamine-releasing factor protein in patients with Down syndrome and Alzheimer's disease. Neuroscience Letters, 2001, 300, 41-44.	2.1	54
294	Expression of apoptosis related proteins in brains of patients with Alzheimer's disease. Neuroscience Letters, 2001, 303, 79-82.	2.1	86
295	The reduction of NADH. Life Sciences, 2001, 68, 2741-2750.	4.3	129
296	Olfactory centres in Alzheimer's disease: olfactory bulb is involved in early Braak's stages. NeuroReport, 2001, 12, 285-288.	1.2	212
297	The BACE gene: genomic structure and candidate gene study in late-onset Alzheimer's disease. NeuroReport, 2001, 12, 631-634.	1.2	55
298	Superoxide Dismutase SOD1, Encoded on Chromosome 21, but Not SOD2 Is Overexpressed in Brains of Patients With Down Syndrome. Journal of Investigative Medicine, 2001, 49, 41-46.	1.6	70
299	Differences between GABA levels in Alzheimer's disease and Down syndrome with Alzheimer-like neuropathology. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 139-145.	3.0	95
300	What does the study of the spatial patterns of pathological lesions tell us about the pathogenesis of neurodegenerative disorders?. Neuropathology, 2001, 21, 1-12.	1.2	38
301	Spatial correlations between the vacuolation, prion protein deposits, and surviving neurons in the cerebral cortex in sporadic Creutzfeldt-Jakob disease. Neuropathology, 2001, 21, 266-271.	1.2	16
302	Alzheimer disease is not associated with polymorphisms in the angiotensinogen and renin genes. American Journal of Medical Genetics Part A, 2001, 105, 761-764.	2.4	16
303	Differential expression of molecular chaperones in brain of patients with Down syndrome. Electrophoresis, 2001, 22, 1233-1241.	2.4	44
304	Changes of voltage-dependent anion-selective channel proteins VDAC1 and VDAC2 brain levels in patients with Alzheimer's disease and Down Syndrome. Electrophoresis, 2001, 22, 172-179.	2.4	129
305	Deficient brain snRNP70K in patients with Down syndrome. Electrophoresis, 2001, 22, 43-48.	2.4	9
306	Evidence for the relation of herpes simplex virus type 1 to Down syndrome and Alzheimer's disease. Electrophoresis, 2001, 22, 445-448.	2.4	21

#	Article	IF	CITATIONS
307	Spatial pattern of prion protein deposits in patients with sporadic Creutzfeldt–Jakob disease. Neuropathology, 2001, 21, 19-24.	1.2	10
308	What does the study of the spatial patterns of pathological lesions tell us about the pathogenesis of neurodegenerative disorders? Neuropathology, 2001, 21, 1-12.	1.2	34
309	Evidence for Apoptosis in the Fetal Down Syndrome Brain. Journal of Child Neurology, 2001, 16, 438-442.	1.4	32
310	Spatial pattern of prion protein deposits in patients with sporadic Creutzfeldt-Jakob disease. Neuropathology, 2001, 21, 19-24.	1.2	12
311	Evidence for Apoptosis in the Fetal Down Syndrome Brain. Journal of Child Neurology, 2001, 16, 438.	1.4	3
312	Synaptophysin gene expression in schizophrenia. British Journal of Psychiatry, 2000, 176, 236-242.	2.8	96
313	Pick's disease is associated with mutations in thetau gene. Annals of Neurology, 2000, 48, 859-867.	5.3	131
314	Delusions associated with elevated muscarinic binding in dementia with Lewy bodies. Annals of Neurology, 2000, 48, 868-876.	5.3	171
315	Neuronal loss and neurofibrillary degeneration in the hippocampal cortex in lateâ€onset sporadic Alzheimer's disease. Psychiatry and Clinical Neurosciences, 2000, 54, 523-529.	1.8	56
316	Neuroendocrine-Specific Protein C, a Marker of Neuronal Differentiation, Is Reduced in Brain of Patients with Down Syndrome and Alzheimer's Disease. Biochemical and Biophysical Research Communications, 2000, 276, 329-334.	2.1	27
317	Apolipoprotein E ϵ4 Allele Has No Effect on Age at Onset or Duration of Disease in Cases of Frontotemporal Dementia with Pick- or Microvacuolar-Type Histology. Experimental Neurology, 2000, 163, 452-456.	4.1	45
318	Pick's disease is associated with mutations in the tau gene. Annals of Neurology, 2000, 48, 859-867.	5.3	7
319	The impact of different presenilin 1 andpresenilin 2 mutations on amyloid deposition, neurofibrillary changes and neuronal loss in the familial Alzheimer's disease brain. Brain, 1999, 122, 1709-1719.	7.6	116
320	The spatial patterns of Pick bodies, Pick cells and Alzheimer's disease pathology in Pick's disease. Neuropathology, 1999, 19, 64-70.	1.2	11
321	Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nature Genetics, 1999, 21, 71-72.	21.4	260
322	α-2 macroglobulin polymorphism and Alzheimer disease risk in the UK. Nature Genetics, 1999, 22, 16-17.	21.4	93
323	Two-dimensional map of human brain proteins. Electrophoresis, 1999, 20, 907-916.	2.4	147
324	Decreased levels of synaptosomal associated protein 25 in the brain of patients with Down Syndrome and Alzheimer's disease. Electrophoresis, 1999, 20, 928-934.	2.4	123

#	Article	IF	CITATIONS
325	Enrichment of human brain proteins by heparin chromatography. Electrophoresis, 1999, 20, 2970-2976.	2.4	74
326	Apoptosis-associated proteins p53 and APO-1/Fas (CD95) in brains of adult patients with Down syndrome. Neuroscience Letters, 1999, 260, 9-12.	2.1	71
327	Increased glyceraldehyde 3-phosphate dehydrogenase levels in the brain of patients with Down's syndrome. Neuroscience Letters, 1999, 260, 141-145.	2.1	36
328	Alpha-2-macroglobulin intronic polymorphism is not associated with autopsy-confirmed late-onset Alzheimer's disease. Neuroscience Letters, 1999, 273, 61-63.	2.1	22
329	Thyroid stimulating hormone — Receptor overexpression in brain of patients with Down Syndrome and Alzheimer's disease. Life Sciences, 1999, 64, 1037-1044.	4.3	24
330	Increased steady state mRNA levels of DNA-repair genes XRCC1, ERCC2 and ERCC3 in brain of patients with down syndrome. Life Sciences, 1999, 64, 1689-1699.	4.3	21
331	Increased phosphoglycerate kinase in the brains of patients with Down's syndrome but not with Alzheimer's disease. Clinical Science, 1999, 96, 279.	4.3	8
332	Increased phosphoglycerate kinase in the brains of patients with Down's syndrome but not with Alzheimer's disease. Clinical Science, 1999, 96, 279-285.	4.3	9
333	Decrease and Structural Modifications of Phosphatidylethanolamine Plasmalogen in the Brain with Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 1999, 58, 740-747.	1.7	190
334	Neuronal Nicotinic Receptors in Dementia with Lewy Bodies and Schizophrenia. Journal of Neurochemistry, 1999, 73, 1590-1597.	3.9	231
335	Decreased levels of synaptosomal associated protein 25 in the brain of patients with Down Syndrome and Alzheimer's disease. Electrophoresis, 1999, 20, 928-934.	2.4	5
336	Brain vasopressin levels in Down Syndrome and Alzheimer's Disease. Brain Research, 1998, 806, 55-59.	2.2	20
337	Expression of DNA excision-repair-cross-complementing proteins p80 and p89 in brain of patients with Down Syndrome and Alzheimer's disease. Neuroscience Letters, 1998, 251, 45-48.	2.1	40
338	Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies. Neuroscience Letters, 1998, 251, 205-208.	2.1	941
339	Decreased transcription factor junD in brains of patients with Down syndrome. Neuroscience Letters, 1998, 252, 159-162.	2.1	30
340	A Presenilin-1 Truncating Mutation Is Present in Two Cases with Autopsy-Confirmed Early-Onset Alzheimer Disease. American Journal of Human Genetics, 1998, 62, 70-76.	6.2	74
341	Lewy Bodies Contain Altered α-Synuclein in Brains of Many Familial Alzheimer's Disease Patients with Mutations in Presenilin and Amyloid Precursor Protein Genes. American Journal of Pathology, 1998, 153, 1365-1370.	3.8	484
342	Cerebellar pathology in sporadic and familial Alzheimer's disease including APP 717 (Valâ†'lle) mutation cases: A morphometric investigation. Journal of the Neurological Sciences, 1997, 149, 177-184.	0.6	33

#	Article	IF	CITATIONS
343	Upregulation of the Anti-apoptotic Protein Bcl-2 May Be an Early Event in Neurodegeneration: Studies on Parkinson's and Incidental Lewy Body Disease. Biochemical and Biophysical Research Communications, 1997, 240, 84-87.	2.1	88
344	Aberrant expression of bcl-2 gene family in Down's syndrome brains. Molecular Brain Research, 1997, 48, 53-59.	2.3	52
345	Apolipoprotein E e4 allele frequency in patients with multiple system atrophy. Neuroscience Letters, 1997, 221, 161-164.	2.1	34
346	Tau protein in the glial cytoplasmic inclusions of multiple system atrophy can be distinguished from abnormal tau in Alzheimer's disease. Neuroscience Letters, 1997, 230, 49-52.	2.1	97
347	Evidence against increased glycoxidation in patients with Alzheimer's disease. Neuroscience Letters, 1997, 232, 49-52.	2.1	14
348	Evidence against increased oxidative DNA-damage in Down syndrome. Neuroscience Letters, 1997, 235, 137-140.	2.1	55
349	Presenilin-1 intron 8 polymorphism is not associated with autopsy-confirmed late-onset Alzheimer's disease. Neuroscience Letters, 1997, 222, 68-69.	2.1	32
350	Similar deficits of central histaminergic system in patients with Down syndrome and Alzheimer disease. Neuroscience Letters, 1997, 222, 183-186.	2.1	73
351	Neurons and neurofibrillary tangles in the hippocampal cortex in familial and sporadic Alzheimer's disease. Neuropathology, 1997, 17, 301-306.	1.2	3
352	Neurons and extracellular neurofibrillary tangles in the hippocampal subdivisions in earlyâ€onset familial Alzheimer's disease: A case study. Psychiatry and Clinical Neurosciences, 1997, 51, 227-231.	1.8	8
353	An Assessment of Oxidative Damage to Proteins, Lipids, and DNA in Brain from Patients with Alzheimer's Disease. Journal of Neurochemistry, 1997, 68, 2061-2069.	3.9	470
354	Endogenous opioids in frontal cortex of patients with Down syndrome. Neuroscience Letters, 1996, 203, 111-114.	2.1	29
355	Lewy bodies are located preferentially in limbic areas in diffuse Lewy body disease. Neuroscience Letters, 1996, 212, 111-114.	2.1	68
356	Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer's disease. Neuroscience Letters, 1996, 214, 33-36.	2.1	62
357	Decreased cyclin dependent kinase in brain of patients with Down Syndrome. Neuroscience Letters, 1996, 216, 68-70.	2.1	21
358	Evidence against the involvement of reactive oxygen species in the pathogenesis of neuronal death in down's syndrome and Alzheimer's Disease. Life Sciences, 1996, 59, 537-544.	4.3	50
359	Polyamines in frontal cortex of patients with Down syndrome and Alzheimer disease. Neuroscience Letters, 1996, 206, 193-195.	2.1	42
360	Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer's disease. Neuroscience Letters, 1996, 214, 33-36.	2.1	2

#	Article	IF	Citations
361	Neurons, intracellular and extracellular neurofibrillary tangles in subdivisions of the hippocampal cortex in normal ageing and Alzheimer's disease. Neuroscience Letters, 1995, 200, 57-60.	2.1	91
362	Decreased phospholipase A2 activity in Alzheimer brains. Biological Psychiatry, 1995, 37, 13-17.	1.3	100
363	Tissue pH as an indicator of mRNA preservation in human post-mortem brain. Molecular Brain Research, 1995, 28, 311-318.	2.3	304
364	Neuropathological Correlates of Psychotic Phenomena in Confirmed Alzheimer's Disease. British Journal of Psychiatry, 1994, 165, 53-59.	2.8	155
365	Down's Syndrome: Upâ€Regulation of βâ€Amyloid Protein Precursor and Ï,, mRNAs and Their Defective Coordination. Journal of Neurochemistry, 1994, 62, 1062-1066.	3.9	103
366	NMR spectroscopy of human post mortem cerebrospinal fluid: Distinction of Alzheimer's disease from control using pattern recognition and statistics. NMR in Biomedicine, 1993, 6, 163-167.	2.8	52
367	\hat{l}^2 A4 protein deposition in familial Alzheimer's disease with the mutation in codon 717 of the \hat{l}^2 A4 amyloid precursor protein gene and sporadic Alzheimer's disease. Neuroscience Letters, 1993, 149, 137-140.	2.1	30
368	The Lewy-Body Variant of Alzheimer's Disease. British Journal of Psychiatry, 1993, 162, 385-392.	2.8	200
369	Neuropathological Correlates of Behavioural Disturbance in Confirmed Alzheimer's Disease. British Journal of Psychiatry, 1993, 163, 364-368.	2.8	59
370	Clinical and neuropathological correlates of depression in Alzheimer's disease. Psychological Medicine, 1992, 22, 877-884.	4.5	191
371	[3H](-)nicotine binding sites in fetal human brain. Brain Research, 1988, 475, 1-7.	2.2	74
372	Two-dimensional map of human brain proteins. , 0, , 327-336.		0
373	Patterns and implications of neurological examination findings in autosomal dominant Alzheimer disease. Alzheimer's and Dementia, 0, , .	0.8	2