Yanan Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2325574/publications.pdf

Version: 2024-02-01

331670 434195 4,022 31 21 31 citations h-index g-index papers 31 31 31 6828 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, 2013, 1, 5628.	10.3	2,254
2	A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites $CH \cdot Sub \cdot 3 \cdot Sub \cdot NH \cdot Sub \cdot 3 \cdot Sub \cdot PbX \cdot Sub \cdot 3 \cdot Sub \cdot (X = I, Br and Cl)$. Journal of Materials Chemistry A, 2015, 3, 9298-9307.	10.3	253
3	Mechanical properties of organic–inorganic halide perovskites, CH ₃ NH ₃ PbX ₃ (X = I, Br and Cl), by nanoindentation. Journal of Materials Chemistry A, 2015, 3, 18450-18455.	10.3	197
4	Pressureâ€Dependent Polymorphism and Bandâ€Gap Tuning of Methylammonium Lead Iodide Perovskite. Angewandte Chemie - International Edition, 2016, 55, 6540-6544.	13.8	157
5	Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Science Advances, 2019, 5, eaav9445.	10.3	130
6	Cesium Copper Iodide Tailored Nanoplates and Nanorods for Blue, Yellow, and White Emission. Chemistry of Materials, 2019, 31, 9003-9011.	6.7	111
7	Crystalline Fe 2 O 3 /Fe 2 TiO 5 heterojunction nanorods with efficient charge separation and hole injection as photoanode for solar water oxidation. Nano Energy, 2016, 22, 310-318.	16.0	100
8	Pressure-Engineered Structural and Optical Properties of Two-Dimensional (C ₄ H ₉ NH ₃) _{>2} Pbl ₄ Perovskite Exfoliated nm-Thin Flakes. Journal of the American Chemical Society, 2019, 141, 1235-1241.	13.7	95
9	Highâ€Pressureâ€Induced Comminution and Recrystallization of CH ₃ NH ₃ PbBr ₃ Nanocrystals as Large Thin Nanoplates. Advanced Materials, 2018, 30, 1705017.	21.0	89
10	In Situ Growth of [hk1]â€Oriented Sb ₂ S ₃ for Solutionâ€Processed Planar Heterojunction Solar Cell with 6.4% Efficiency. Advanced Functional Materials, 2020, 30, 2002887.	14.9	85
11	Revealing the Role of TiO ₂ Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting. ACS Applied Materials & Solar Water Splitting.	8.0	81
12	Hydrogen-Bonding Evolution during the Polymorphic Transformations in CH ₃ NH ₃ PbBr ₃ : Experiment and Theory. Chemistry of Materials, 2017, 29, 5974-5981.	6.7	80
13	Controllable Solutionâ€Phase Epitaxial Growth of Q1D Sb ₂ (S,Se) ₃ /CdS Heterojunction Solar Cell with 9.2% Efficiency. Advanced Materials, 2021, 33, e2104346.	21.0	47
14	Precise Control of CsPbBr ₃ Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights. Chemistry of Materials, 2021, 33, 2387-2397.	6.7	40
15	Performance Enhanced Light-Emitting Diodes Fabricated from Nanocrystalline CsPbBr ₃ with In Situ Zn ²⁺ Addition. ACS Applied Electronic Materials, 2020, 2, 4002-4011.	4.3	33
16	Understanding charge transport in non-doped pristine and surface passivated hematite (Fe ₂ O ₃) nanorods under front and backside illumination in the context of light induced water splitting. Physical Chemistry Chemical Physics, 2016, 18, 30370-30378.	2.8	32
17	Robust solid oxide cells for alternate power generation and carbon conversion. RSC Advances, 2011, 1, 715.	3.6	28
18	Crystal Chemistry and Antibacterial Properties of Cupriferous Hydroxyapatite. Materials, 2019, 12, 1814.	2.9	27

#	Article	IF	CITATIONS
19	Investigating the structure–function relationship in triple cation perovskite nanocrystals for light-emitting diode applications. Journal of Materials Chemistry C, 2020, 8, 11805-11821.	5.5	27
20	Anisotropic oxide ion conduction in melilite intermediate temperature electrolytes. Journal of Materials Chemistry A, 2015, 3, 3091-3096.	10.3	25
21	Pressureâ€Dependent Polymorphism and Bandâ€Gap Tuning of Methylammonium Lead Iodide Perovskite. Angewandte Chemie, 2016, 128, 6650-6654.	2.0	24
22	Room temperature synthesis of low-dimensional rubidium copper halide colloidal nanocrystals with near unity photoluminescence quantum yield. Nanoscale, 2021, 13, 59-65.	5.6	20
23	Elucidation of the structural and optical properties of metal cation (Na ⁺ , K ⁺ ,) Tj ETQq1 Inanocrystals. Journal of Materials Chemistry A, 2022, 10, 3562-3578.	0.78431 10.3	4 rgBT /Ov∈ 18
24	The Crystal Chemistry of Ca _{10â€"<i>>y</i>>} (SiO ₄) ₃ (SO ₄) ₃ 6 <i>Ellestadite. Inorganic Chemistry, 2011, 50, 12641-12650.</i>	x k ø>–2	⊲ió y
25	The synergistic effect of cation mixing in mesoporous Bi _x Fe _{1â^'x} VO ₄ heterojunction photoanodes for solar water splitting. Journal of Materials Chemistry A, 2019, 7, 14816-14824.	10.3	15
26	Toward Efficient and Stable Perovskite Photovoltaics with Fluorinated Phosphonate Salt Surface Passivation. ACS Applied Energy Materials, 2021, 4, 2716-2723.	5.1	8
27	Pressure-Induced Phase Transitions and Bandgap-Tuning Effect of Methylammonium Lead Iodide Perovskite. MRS Advances, 2018, 3, 1825-1830.	0.9	7
28	Structure and surface properties of size-tuneable CsPbBr ₃ nanocrystals. Nanoscale, 2021, 13, 15770-15780.	5.6	7
29	Nanostructured Iron Vanadate Photoanodes with Enhanced Visible Absorption and Charge Separation. ACS Applied Energy Materials, 2022, 5, 3409-3416.	5.1	7
30	Crystal Chemistry of Vanadium-Bearing Ellestadite Waste Forms. Inorganic Chemistry, 2018, 57, 9122-9132.	4.0	6
31	Composition-tuned MAPbBr3 nanoparticles with addition of Cs+ cations for improved photoluminescence. RSC Advances, 2021, 11, 24137-24143.	3.6	3