
Christian Dubos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/232481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010, 15, 573-581.	8.8	2,987
2	Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science, 2015, 20, 176-185.	8.8	1,336
3	MYBL2 is a new regulator of flavonoid biosynthesis in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 55, 940-953.	5.7	474
4	Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 2015, 20, 33-40.	8.8	435
5	Identification and characterization of <scp>MYB</scp> â€b <scp>HLH</scp> â€ <scp>WD</scp> 40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (<i><scp>F</scp>ragariaÂ</i> — <i>Âananassa</i>) fruits. New Phytologist, 2013, 197, 454-467.	7.3	388
6	Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of <scp>MYB</scp> –b <scp>HLH</scp> – <scp>WDR</scp> complexes and their targets in <scp>A</scp> rabidopsis seed. New Phytologist, 2014, 202, 132-144.	7.3	338
7	AtMYB61, an R2R3-MYB Transcription Factor Controlling Stomatal Aperture in Arabidopsis thaliana. Current Biology, 2005, 15, 1201-1206.	3.9	259
8	Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Frontiers in Plant Science, 2015, 06, 290.	3.6	189
9	Arabidopsis seed secrets unravelled after a decade of genetic and omicsâ€driven research. Plant Journal, 2010, 61, 971-981.	5.7	161
10	The Transcriptional Control of Iron Homeostasis in Plants: A Tale of bHLH Transcription Factors?. Frontiers in Plant Science, 2019, 10, 6.	3.6	146
11	Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. Journal of Experimental Botany, 2005, 56, 1651-1663.	4.8	137
12	Comparison of lignin deposition in three ectopic lignification mutants. New Phytologist, 2005, 168, 123-140.	7.3	134
13	Characterisation of PtMYB1, an R2R3-MYB from pine xylem. Plant Molecular Biology, 2003, 53, 597-608.	3.9	132
14	<i>At</i> MYB61, an R2R3â€MYB transcription factor, functions as a pleiotropic regulator via a small gene network. New Phytologist, 2012, 195, 774-786.	7.3	132
15	Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. Journal of Experimental Botany, 2012, 63, 3749-3764.	4.8	131
16	Transcriptional Regulation of <i>Arabidopsis LEAFY COTYLEDON2</i> Involves <i>RLE</i> , a <i>cis</i> -Element That Regulates Trimethylation of Histone H3 at Lysine-27. Plant Cell, 2011, 23, 4065-4078.	6.6	120
17	Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of <i><scp>TT</scp>8</i> expression, in <scp>A</scp> rabidopsis. New Phytologist, 2013, 198, 59-70.	7.3	111
18	The Transcription Factor bHLH121 Interacts with bHLH105 (ILR3) and Its Closest Homologs to Regulate Iron Homeostasis in Arabidopsis. Plant Cell, 2020, 32, 508-524.	6.6	111

CHRISTIAN DUBOS

#	Article	IF	CITATIONS
19	Facilitated Fe Nutrition by Phenolic Compounds Excreted by the Arabidopsis ABCG37/PDR9 Transporter Requires the IRT1/FRO2 High-Affinity Root Fe 2+ Transport System. Molecular Plant, 2016, 9, 485-488.	8.3	105
20	A role for glycine in the gating of plant NMDA-like receptors. Plant Journal, 2003, 35, 800-810.	5.7	103
21	Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3. New Phytologist, 2019, 223, 1433-1446.	7.3	92
22	Identification of water-deficit responsive genes in maritime pine (Pinus pinaster Ait.) roots. Plant Molecular Biology, 2003, 51, 249-262.	3.9	90
23	The Coumarins: Secondary Metabolites Playing a Primary Role in Plant Nutrition and Health. Trends in Plant Science, 2021, 26, 248-259.	8.8	80
24	Transcriptional integration of plant responses to iron availability. Journal of Experimental Botany, 2021, 72, 2056-2070.	4.8	76
25	Functional, Structural and Biochemical Features of Plant Serinyl-Glutathione Transferases. Frontiers in Plant Science, 2019, 10, 608.	3.6	71
26	A genetic map of Maritime pine based on AFLP, RAPD and protein markers. Theoretical and Applied Genetics, 2000, 100, 39-48.	3.6	67
27	Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast. PLoS ONE, 2015, 10, e0141044.	2.5	60
28	Drought differentially affects expression of a PRâ€10 protein, in needles of maritime pine (Pinus pinaster) Tj ETQ	q0 0 0 rgB 4.8	T /Overlock 1
29	Identification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings. Tree Physiology, 2003, 23, 169-179.	3.1	58
30	Separation and characterization of needle and xylem maritime pine proteins. Electrophoresis, 1999, 20, 1098-1108.	2.4	57
31	Coumarin accumulation and trafficking in <i>Arabidopsis thaliana</i> : a complex and dynamic process. New Phytologist, 2021, 229, 2062-2079.	7.3	54
32	Postâ€ŧranslational modification of an R2R3â€MYB transcription factor by a MAP Kinase during xylem development. New Phytologist, 2009, 183, 1001-1013.	7.3	43
33	A new system for fast and quantitative analysis of heterologous gene expression in plants. New Phytologist, 2012, 193, 504-512.	7.3	43
34	TRANSPARENT TESTA 16 and 15 act through different mechanisms to control proanthocyanidin accumulation in Arabidopsis testa. Journal of Experimental Botany, 2017, 68, 2859-2870.	4.8	30
35	Kanamycin reveals the role played by glutamate receptors in shaping plant resource allocation. Plant Journal, 2005, 43, 348-355.	5.7	29
36	TransDetect Identifies a New Regulatory Module Controlling Phosphate Accumulation. Plant Physiology, 2017, 175, 916-926.	4.8	28

CHRISTIAN DUBOS

#	Article	IF	CITATIONS
37	New insights toward the transcriptional engineering of proanthocyanidin biosynthesis. Plant Signaling and Behavior, 2014, 9, e28736.	2.4	25
38	Iron–sulfur protein NFU2 is required for branched-chain amino acid synthesis in Arabidopsis roots. Journal of Experimental Botany, 2019, 70, 1875-1889.	4.8	25
39	Identification of client iron–sulfur proteins of the chloroplastic NFU2 transfer protein in Arabidopsis thaliana. Journal of Experimental Botany, 2020, 71, 4171-4187.	4.8	25
40	The plastidial Arabidopsis thaliana NFU1 protein binds and delivers [4Fe-4S] clusters to specific client proteins. Journal of Biological Chemistry, 2020, 295, 1727-1742.	3.4	20
41	Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes. BMC Genomics, 2014, 15, 317.	2.8	19
42	Further insights into the role of bHLH121 in the regulation of iron homeostasis in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2020, 15, 1795582.	2.4	19
43	Iron around the clock. Plant Science, 2014, 224, 112-119.	3.6	18
44	Sulphur availability modulates Arabidopsis thaliana responses to iron deficiency. PLoS ONE, 2020, 15, e0237998.	2.5	16
45	The Physcomitrella patens System for Transient Gene Expression Assays. Methods in Molecular Biology, 2016, 1482, 151-161.	0.9	11
46	The Arabidopsis thaliana Glutamate-like Receptor Family (AtGLR). , 2006, , 187-204.		11
47	Transcriptional Regulation of Iron Distribution in Seeds: A Perspective. Frontiers in Plant Science, 2020, 11, 725.	3.6	6
48	2000Âyears of agriculture in the Atacama desert lead to changes in the distribution and concentration of iron in maize. Scientific Reports, 2021, 11, 17322.	3.3	6
49	A Global Proteomic Approach Sheds New Light on Potential Iron-Sulfur Client Proteins of the Chloroplastic Maturation Factor NFU3. International Journal of Molecular Sciences, 2020, 21, 8121.	4.1	5
50	B3 Transcription Factors Determine Iron Distribution and FERRITIN Gene Expression in Embryo but Do Not Control Total Seed Iron Content. Frontiers in Plant Science, 2022, 13, .	3.6	5
51	Seed Development. , 2010, , 341-359.		4
52	Spatio-Temporal Imaging of Promoter Activity in Intact Plant Tissues. Methods in Molecular Biology, 2016, 1482, 103-110.	0.9	3
53	Fast and Efficient Cloning of Cis-Regulatory Sequences for High-Throughput Yeast One-Hybrid Analyses of Transcription Factors. Methods in Molecular Biology, 2016, 1482, 139-149.	0.9	2
54	Effect of Elevated Carbon Dioxide Exposure on Nutrition-Health Properties of Micro-Tom Tomatoes. Molecules, 2022, 27, 3592.	3.8	2

4

#	Article	IF	CITATIONS
55	The Arabidopsis thaliana Glutamate-like Receptor Family (AtGLR). , 0, , 187-204.		Ο