Bin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2323225/publications.pdf

Version: 2024-02-01

117625 91884 5,376 141 34 69 h-index citations g-index papers 141 141 141 5328 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fluorineâ€Free Synthesis of Highâ€Purity Ti ₃ C ₂ T _{<i>x</i>} (T=OH, O) via Alkali Treatment. Angewandte Chemie - International Edition, 2018, 57, 6115-6119.	13.8	809
2	The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Materialia, 2013, 68, 321-324.	5.2	533
3	Fluorineâ€Free Synthesis of Highâ€Purity Ti ₃ C ₂ T _{<i>x</i>} (T=OH, O) via Alkali Treatment. Angewandte Chemie, 2018, 130, 6223-6227.	2.0	459
4	Inâ€Situ Electrochemically Activated Surface Vanadium Valence in V ₂ C MXene to Achieve High Capacity and Superior Rate Performance for Znâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2008033.	14.9	156
5	Equal-channel angular pressing of magnesium alloy AZ91 and its effects on microstructure and mechanical properties. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 113-116.	5.6	142
6	Green Synthesis of Large-Scale Highly Ordered Core@Shell Nanoporous Au@Ag Nanorod Arrays as Sensitive and Reproducible 3D SERS Substrates. ACS Applied Materials & Englishers, 2014, 6, 15667-15675.	8.0	120
7	Largeâ€area Ag nanorod array substrates for SERS: AAO templateâ€assisted fabrication, functionalization, and application in detection PCBs. Journal of Raman Spectroscopy, 2013, 44, 240-246.	2.5	119
8	Experimental and DFT characterization of $\hat{l}\cdot \hat{a} \in \mathbb{Z}$ nano-phase and its interfaces in Al Zn Mg Cu alloys. Acta Materialia, 2019, 164, 207-219.	7.9	113
9	Precipitation in an Al-Zn-Mg-Cu alloy during isothermal aging: Atomic-scale HAADF-STEM investigation. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 691, 60-70.	5.6	112
10	Quantum Dots of 1T Phase Transitional Metal Dichalcogenides Generated <i>via</i> Electrochemical Li Intercalation. ACS Nano, 2018, 12, 308-316.	14.6	110
11	Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion. Materials Science & Science & Properties, Microstructure and Processing, 2006, 423, 247-252.	5.6	97
12	Microstructural characterization of boron-rich boron carbide. Acta Materialia, 2017, 136, 202-214.	7.9	91
13	Ductility improvement by twinning and twin–slip interaction in a Mg-Y alloy. Materials & Design, 2014, 56, 966-974.	5.1	84
14	Pt-Decorated highly porous flower-like Ni particles with high mass activity for ammonia electro-oxidation. Journal of Materials Chemistry A, 2016, 4, 11060-11068.	10.3	83
15	Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy. Intermetallics, 2017, 85, 90-97.	3.9	82
16	MOF-derived NiCoZnP nanoclusters anchored on hierarchical N-doped carbon nanosheets array as bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal, 2021, 422, 130533.	12.7	79
17	Sulfonic-Group-Grafted Ti ₃ C ₂ T _{<i>x</i>} MXene: A Silver Bullet to Settle the Instability of Polyaniline toward High-Performance Zn-Ion Batteries. ACS Nano, 2021, 15, 9065-9075.	14.6	78
18	Patterning Graphene Surfaces with Ironâ€Oxideâ€Embedded Mesoporous Polypyrrole and Derived Nâ€Doped Carbon of Tunable Pore Size. Small, 2018, 14, 1702755.	10.0	73

#	Article	IF	Citations
19	An antenna/spacer/reflector based Au/BiVO4/WO3/Au nanopatterned photoanode for plasmon-enhanced photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2018, 237, 763-771.	20.2	70
20	Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale, 2016, 8, 8650-8657.	5 . 6	64
21	Ag-Nanoparticles@Bacterial Nanocellulose as a 3D Flexible and Robust Surface-Enhanced Raman Scattering Substrate. ACS Applied Materials & Scattering Substrate. ACS Applied Materials & Scattering Substrate. ACS Applied Materials & Scattering Substrate.	8.0	64
22	Precipitation in Mg-Gd-Y-Zr Alloy: Atomic-scale insights into structures and transformations. Materials Characterization, 2016, 117, 76-83.	4.4	61
23	Shape-controlled synthesis of Pt-Ir nanocubes with preferential (100) orientation and their unusual enhanced electrocatalytic activities. Science China Materials, 2014, 57, 13-25.	6.3	58
24	Microstructure evolution and mechanical properties of an Mg–Gd alloy subjected to surface mechanical attrition treatment. Materials Science & Droperties, Microstructure and Processing, 2015, 630, 146-154.	5.6	58
25	Nano-scale precipitation and phase growth in Mg-Gd binary alloy: An atomic-scale investigation using HAADF-STEM. Materials and Design, 2018, 137, 316-324.	7.0	56
26	Microstructure and mechanical properties of ultrafine grained Mg97Y2Zn1 alloy processed by equal channel angular pressing. Journal of Alloys and Compounds, 2007, 440, 94-100.	5. 5	53
27	Ostwald Ripening Driven Exfoliation to Ultrathin Layered Double Hydroxides Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 44518-44526.	8.0	53
28	Effects of yttrium and zinc addition on the microstructure and mechanical properties of Mg–Y–Zn alloys. Journal of Materials Science, 2010, 45, 2510-2517.	3.7	52
29	AZ91 Magnesium Alloy/Porous Hydroxyapatite Composite for Potential Application in Bone Repair. Journal of Materials Science and Technology, 2016, 32, 858-864.	10.7	49
30	A biomimetic nanoleaf electrocatalyst for robust oxygen evolution reaction. Applied Catalysis B: Environmental, 2019, 259, 118017.	20.2	46
31	Effects of Ca concentration on degradation behavior of Zn-x Ca alloys in Hank's solution. Materials Letters, 2018, 218, 193-196.	2.6	45
32	Flexible MXene films for batteries and beyond., 2022, 4, 598-620.		42
33	Study of the thermal conversions of organic carbon of Huadian oil shale during pyrolysis. Energy Conversion and Management, 2016, 127, 284-292.	9.2	39
34	In Situ FTIR Analysis of the Evolution of Functional Groups of Oil Shale During Pyrolysis. Energy & Energy Fuels, 2016, 30, 5611-5616.	5.1	39
35	Large-scale growth of sharp gold nano-cones for single-molecule SERS detection. RSC Advances, 2016, 6, 2882-2887.	3.6	36
36	Effects of nanoprecipitates and LPSO structure on deformation and fracture behaviour of high-strength Mg-Gd-Y-Zn-Mn alloys. Materials Characterization, 2020, 165, 110396.	4.4	36

#	Article	IF	Citations
37	Kinetics Features Conducive to Cache-Type Nonvolatile Phase-Change Memory. Chemistry of Materials, 2019, 31, 8794-8800.	6.7	35
38	Stress corrosion cracking behavior of cold-drawn 316 austenitic stainless steels in simulated PWR environment. Corrosion Science, 2016, 112, 576-584.	6.6	33
39	Improving the Electrocatalytic Activity of Pt Monolayer Catalysts for Electrooxidation of Methanol, Ethanol and Ammonia by Tailoring the Surface Morphology of the Supporting Core. ChemElectroChem, 2016, 3, 537-551.	3.4	32
40	Interactions between long-period stacking ordered phase and β′ precipitate in Mg–Gd–Y–Zn–Zr alloy: Atomic-scale insights from HAADF-STEM. Materials Letters, 2016, 176, 223-227.	2.6	32
41	Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection. Nano Research, 2014, 7, 1177-1187.	10.4	29
42	Novel structures observed in Mg–Gd–Y–Zr during isothermal ageing by atomic-scale HAADF-STEM. Materials Letters, 2015, 152, 287-289.	2.6	29
43	Recipe for ultrafast and persistent phase-change memory materials. NPG Asia Materials, 2020, 12, .	7.9	29
44	Unravelling the Structure of $\hat{l}^3\hat{a}\in \hat{l}^3$ in Mg-Gd-Zn: An Atomic-scale HAADF-STEM Investigation. Materials Characterization, 2016, 120, 345-348.	4.4	26
45	Microstructures evolution and phase transformation behaviors of Ni-rich TiNi shape memory alloys after equal channel angular extrusion. Journal of Alloys and Compounds, 2011, 509, 3006-3012.	5.5	25
46	Hot Compression Deformation Behavior and Processing Maps of Mg-Gd-Y-Zr Alloy. Journal of Materials Engineering and Performance, 2013, 22, 2458-2466.	2.5	25
47	Precipitation in Mg-Sm binary alloy during isothermal ageing: atomic-scale insights from scanning transmission electron microscopy. Materials Science & Description of Science & Structural Materials: Properties, Microstructure and Processing, 2016, 669, 304-311.	5.6	25
48	Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 6061 aluminum alloy. Journal of Materials Research, 2014, 29, 3002-3010.	2.6	24
49	Studies of the Co-pyrolysis of Oil Shale and Wheat Straw. Energy & Studies of the Co-pyrolysis of Oil Shale and Wheat Straw. Energy & Studies of the Co-pyrolysis of Oil Shale and Wheat Straw. Energy & Studies of the Co-pyrolysis of Oil Shale and Wheat Straw. Energy & Studies of the Co-pyrolysis of Oil Shale and Wheat Straw. Energy & Studies of the Co-pyrolysis of Oil Shale and Wheat Straw. Energy & Studies of Oil Shale and Wheat Straw.	5.1	24
50	Effects of equal channel angular extrusion and aging treatment on R phase transformation behaviors and Ti3Ni4 precipitates of Ni-rich TiNi alloys. Journal of Alloys and Compounds, 2011, 509, 6296-6301.	5.5	22
51	Hierarchical Nanoporous Copper Fabricated by Oneâ€Step Dealloying Toward Ultrasensitive Surfaceâ€Enhanced Raman Sensing. Advanced Materials Interfaces, 2018, 5, 1800332.	3.7	22
52	Study of age hardening in a Mg–2.2 wt%Nd alloy by in situ synchrotron X-ray diffraction and mechanical tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 319-328.	5.6	21
53	Degradation of precipitation hardening in 7075 alloy subject to thermal exposure: A Cs-corrected STEM study. Journal of Alloys and Compounds, 2018, 741, 656-660.	5.5	21
54	Corrosion behavior of 2198 Al–Cu–Li alloy in different aging stages in 3.5 wt% NaCl aqueous solution. Journal of Materials Research, 2018, 33, 1011-1022.	2.6	19

#	Article	IF	CITATIONS
55	Template-assisted fabrication of Ag-nanoparticles@ZnO-nanorods array as recyclable 3D surface enhanced Raman scattering substrate for rapid detection of trace pesticides. Nanotechnology, 2021, 32, 145302.	2.6	19
56	Hot Deformation Behavior and Processing Maps of 2099 Al-Li Alloy. Journal of Materials Engineering and Performance, 2014, 23, 1929-1935.	2.5	18
57	Precipitation of T ₁ phase in 2198 Al–Li alloy studied by atomic-resolution HAADF-STEM. Journal of Materials Research, 2019, 34, 3535-3544.	2.6	18
58	Comparisons of Age Hardening and Precipitation Behavior in 7075 Alloy Under Single and Double-Stage Aging Treatments. Metals and Materials International, 2021, 27, 4204-4215.	3.4	18
59	Simulation analysis of Co-Pyrolysis of oil shale and wheat straw based on the combination of chain reaction kinetics and improved CPD models. Energy Conversion and Management, 2021, 243, 114405.	9.2	17
60	Characterization and energy calculation of the S/Al interface of Al–Cu–Mg alloys: Experimental and first-principles calculations. Vacuum, 2022, 202, 111131.	3.5	17
61	Atomic Scale Investigation on Precipitates and Defects of Mg–RE Alloys: A Review. Advanced Engineering Materials, 2019, 21, 1800734.	3.5	16
62	Microstructural evolution and mechanical properties of Mg95.5Y3Zn1.5 alloy processed by extrusion and ECAP. Metals and Materials International, 2014, 20, 285-290.	3.4	15
63	Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering. Nanotechnology, 2017, 28, 055301.	2.6	15
64	Characterization of Gd-rich precipitates in a fully lamellar TiAl alloy. Scripta Materialia, 2017, 137, 50-54.	5.2	14
65	Segregation of solute atoms in Mg–Ce binary alloy: atomic-scale novel structures observed by HAADF-STEM. Philosophical Magazine, 2017, 97, 1498-1508.	1.6	14
66	Tuning Localized Surface Plasmon Resonance of Nanoporous Gold with a Silica Shell for Surface Enhanced Raman Scattering. Nanomaterials, 2019, 9, 251.	4.1	14
67	An Anion-Induced Hydrothermal Oriented-Explosive Strategy for the Synthesis of Porous Upconversion Nanocrystals. Theranostics, 2015, 5, 456-468.	10.0	13
68	On the S-phase precipitates in 2024 aluminum alloy: An atomic-scale investigation using high-angle annular dark-field scanning transmission electron microscopy. Journal of Materials Research, 2020, 35, 1582-1589.	2.6	13
69	A study on Sc- and Zr-modified Al–Mg alloys processed by selective laser melting. Materials Science & Science & Science & Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142516.	5.6	13
70	Characterization of microstructure in high strength Mg96Y3Zn1 alloy processed by extrusion and equal channel angular pressing. Journal of Rare Earths, 2011, 29, 902-906.	4.8	12
71	The Effect of Thermal Exposure on the Microstructures and Mechanical Properties of 2198 Al–Li Alloy. Advanced Engineering Materials, 2016, 18, 1225-1233.	3.5	12
72	Size and distance dependent fluorescence enhancement of nanoporous gold. Optics Express, 2017, 25, 9901.	3.4	12

#	Article	IF	CITATIONS
73	Thermodynamic re-assessment of the Mg–Gd binary system coupling the microstructure evolution during ageing process. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 68, 101712.	1.6	12
74	Effect of Solid Solution Treatment on Microstructure and Mechanical Properties of Mg97Y2Zn1 Alloy. Journal of Materials Engineering and Performance, 2013, 22, 523-527.	2.5	11
75	Deformation mechanism and dynamic precipitation in a Mg-7Al-2Sn alloy processed by surface mechanical attrition treatment. Journal of Materials Science and Technology, 2019, 35, 1473-1478.	10.7	11
76	On the strengthening precipitate structures in Mg-Gd-Ag alloy: An atomic-resolution investigation using Cs-corrected STEM. Materials Letters, 2019, 238, 66-69.	2.6	11
77	Nanoarray heterojunction and its efficient solar cells without negative impact of photogenerated electric field. Communications Physics, 2021, 4, .	5. 3	11
78	Efficient electrocatalytic reduction of nitrate to nitrogen gas by a cubic Cu ₂ O film with predominant (111) orientation. Chemical Communications, 2022, 58, 3613-3616.	4.1	11
79	Microstructural Investigation of Friction-Stir-Welded 7005 Aluminum Alloy. Journal of Materials Engineering and Performance, 2015, 24, 4297-4306.	2.5	10
80	Synthesis, structure and nonlinear optical properties of solution-processed Bi ₂ TeO ₅ nanocrystals. Journal of Materials Chemistry C, 2018, 6, 10435-10440.	5.5	10
81	Atomic-scale investigation into precipitated phase thickening in Al-Si-Mg-Cu alloy. Journal of Alloys and Compounds, 2018, 766, 973-978.	5 . 5	10
82	Nano-Sized Cuboid-Shaped Phase in Mg–Nd–Y Alloy and its Behavior During Isothermal Aging. Microscopy and Microanalysis, 2016, 22, 1244-1250.	0.4	9
83	Low and room temperatures tensile properties of a nanoprecipitate-strengthened (FeCoCr)40Ni40Al10Cu10 high-entropy alloy. Materials Characterization, 2018, 145, 177-184.	4.4	9
84	Study of the Co-pyrolysis characteristics of oil shale with wheat straw based on the hierarchical collection. Energy, 2022, 239, 122144.	8.8	9
85	Enhanced Gas Sensing Performance of rGO Wrapped Crystal Facet-Controlled Co ₃ O ₄ Nanocomposite Heterostructures. Journal of Physical Chemistry C, 2022, 126, 4879-4888.	3.1	9
86	Effect of zirconium addition on microstructure and mechanical properties of Mg97Y2Zn1 alloy. Transactions of Nonferrous Metals Society of China, 2012, 22, 773-778.	4.2	8
87	Corrosion behavior of 2099 Al–Li alloy in NaCl aqueous solution. Journal of Materials Research, 2014, 29, 1344-1353.	2.6	8
88	Liquid–solid transition in mesophase separated olefin multiblock copolymers during crystallization. RSC Advances, 2015, 5, 40607-40619.	3.6	8
89	Unexpected capture of Guinier-Preston zone and γ″ phase in as-cast Mg-Gd-Y-Zn-Ni-Mn alloy: Atomic-scale insights. Materials Characterization, 2019, 153, 103-107.	4.4	8
90	Atomic-scale observation of β′ and LPSO phase in Mg–Y–Ni alloy by HAADF-STEM. Journal of Materials Research, 2019, 34, 3545-3553.	2.6	8

#	Article	IF	CITATIONS
91	Atomic-scale characterization of interfaces between 2A70 aluminum alloy matrix and Cu-enriched layer after electropolishing. Materials Characterization, 2019, 150, 150-154.	4.4	8
92	Effect of double aging on mechanical properties and microstructure of EV31A alloy. Transactions of Nonferrous Metals Society of China, 2021, 31, 2606-2614.	4.2	8
93	Highly Mesoporous Cobalt-Hybridized 2D Cu ₃ P Nanosheet Arrays as Boosting Janus Electrocatalysts for Water Splitting. Inorganic Chemistry, 2021, 60, 18325-18336.	4.0	8
94	Na <i>>_y</i> >WO _{3â€"<i>x</i>} Nanosheet Array via <i>In Situ</i> Na Intercalation for Surface-Enhanced Raman Scattering Detection of Methylene Blue. ACS Applied Nano Materials, 2022, 5, 7841-7849.	5.0	8
95	Elevated Temperature Mechanical Behavior of Mg-Y-Zn Alloys. Materials Science Forum, 2007, 546-549, 237-240.	0.3	7
96	Recrystallization and microstructural evolution during hot extrusion of Mg97Y2Zn1 alloy. Metals and Materials International, 2014, 20, 489-497.	3.4	7
97	Surface-enhanced Raman scattering from plasmonic Ag-nanocube@Au-nanospheres core@satellites. Journal of Raman Spectroscopy, 2017, 48, 217-223.	2.5	7
98	Precipitation in Mg–Nd–Y–Zr–Ca Alloy during Isothermal Aging: A Comprehensive Atomicâ€Scaled Study by Means of HAADFâ€STEM. Advanced Engineering Materials, 2017, 19, 1600244.	3.5	7
99	Effect of aging on the corrosion behavior of 6005 Al alloys in 3.5 wt% NaCl aqueous solution. Journal of Materials Research, 2018, 33, 1830-1838.	2.6	7
100	Atomic-scale observation on the precipitates in various aging stages of Mg–Gd–Y–Cu alloy. Journal of Alloys and Compounds, 2021, 887, 161423.	5.5	7
101	In-Situ Monitoring the SERS Spectra of para-Aminothiophenol Adsorbed on Plasmon-Tunable Au@Ag Core–Shell Nanostars. Nanomaterials, 2022, 12, 1156.	4.1	7
102	Hydrothermal Targetedâ€Explosion Synthesis of Hollow/Porous Upconversion Nano―and Microcrystals with Potential for Luminescent Displays and Biological Imaging. ChemNanoMat, 2015, 1, 128-134.	2.8	6
103	Atomicâ€scale characterization of the equilibrium <i>β</i> phase in Mgâ€Nd‥ alloy by means of HAADFâ€STEN Scanning, 2016, 38, 743-746.	1. ₅	6
104	Segregation of rare earth atoms in Mg-Gd-Y-Zr alloy after a 6-year natural ageing at room temperature: Atomic-scale direct imaging. Materials Letters, 2016, 174, 86-90.	2.6	6
105	Mechanical Properties and Deformation Mechanisms of Mg-Gd-Y-Zr Alloy at Cryogenic and Elevated Temperatures. Journal of Materials Engineering and Performance, 2017, 26, 590-600.	2.5	6
106	Influence of interactions between β′ precipitates and long period stacking ordered structures on corrosion behaviors of Mg–10Gd–5Y–2Zn–0.5Zr (wt%) alloy. Journal of Materials Research, 2018, 33, 745-757.	2.6	6
107	Cluster on interface of LPSO phase and matrix in Mg-Gd-Y-Ni alloy: Atomic scale insight from HAADF-STEM. Materials Letters, 2019, 235, 71-75.	2.6	6
108	Copper-assisted growth of high-purity carbon nanofiber networks with controllably tunable wettabilities. Journal of Materials Chemistry A, 2021, 9, 22039-22047.	10.3	6

#	Article	IF	CITATIONS
109	Coarsening mechanism of T1 precipitation and calculation of T1/Al interface properties in 2198 Al–Cu–Li alloys: Experimental and DFT studies. Vacuum, 2022, 204, 111333.	3.5	6
110	The interface between long-period stacking-ordered (LPSO) structure and \hat{l}^2 phase in Mg-Gd-Al alloys. Journal of Alloys and Compounds, 2022, 923, 166267.	5.5	6
111	Mechanical properties of Mg-6Gd-1Y-0.5Zr alloy processed by low temperature thermo-mechanical treatment. Transactions of Nonferrous Metals Society of China, 2012, 22, 2351-2356.	4.2	4
112	Application of back-propagation neural network for controlling the front end bending phenomenon in plate rolling. International Journal of Materials and Product Technology, 2013, 46, 166.	0.2	4
113	Changes of components and chemical structure of bitumen-derived liquids during retorting Indonesian oil sands. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 1867-1874.	2.3	4
114	Ordered stacking faults within nanosized silicon precipitates in aluminum alloy. Materials Letters, 2017, 190, 225-228.	2.6	4
115	Orientations and interfaces between $\hat{l}\pm\hat{a}$ \in 2-Al13Cr4Si4 and the matrix in Al-Si-Cr-Mg alloy. Materials Characterization, 2020, 160, 110096.	4.4	4
116	Study on the precipitates in various aging stages and composite strengthening effect of precipitates and long-period stacking ordered structure of Mg–Gd–Y–Ni alloy. Journal of Materials Research, 2020, 35, 172-184.	2.6	4
117	Mechanical Properties and Microstructure Evolution of Mg-Gd Alloy during Aging Treatment. Metals, 2022, 12, 39.	2.3	4
118	The growth of \hat{l}^2 phase in Mg-Gd-Y-Ni alloy by experimental and first-principles study. Journal of Magnesium and Alloys, 2021, , .	11.9	4
119	Single Roll Drive Equal Channel Angular Process –a Potential Severe Plastic Deformation (SPD) Process for Industrial Application. Materials Science Forum, 2006, 503-504, 557-560.	0.3	3
120	Atomic imaging of the coherent interface between orientedly-attached Mn3O4 nanoparticles. Materials Characterization, 2016, 117, 144-148.	4.4	3
121	The microstructure and property of lamellar interface in ternary Mg–Gd–Cu alloys: a combined experimental and first-principles study. Journal of Materials Science, 2021, 56, 9470-9483.	3.7	3
122	Effects of micro-arc oxidation coating on corrosion behavior of Mg-Y-Zn in simulated body fluid. Journal of Shanghai Jiaotong University (Science), 2012, 17, 668-672.	0.9	2
123	Optimization of Hot Extrusion Process Parameters of Mg97Y2Zn1 Alloy Based on the Processing Maps. Journal of Materials Engineering and Performance, 2013, 22, 2528-2533.	2.5	2
124	Unexpected Feâ€enriched compounds observed in Mg–Ce alloy: An atomicâ€scale STEM investigation. Scanning, 2016, 38, 783-791.	1.5	2
125	Nanoâ€Size Zirconiumâ€Enriched Cores in Mg–Gd–Y–Zr: An Atomicâ€Scale HAADF–STEM Study. Advanc Engineering Materials, 2016, 18, 1332-1336.	ced 3.5	2
126	Components and potential utilization of oil sands semicoke. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 2447-2453.	2.3	2

#	Article	IF	Citations
127	Electro-deposited calcium phosphate compounds on graphene sheets: Blossoming flowers. Materials Letters, 2016, 179, 122-125.	2.6	2
128	Unveiling the Interfaces between <i>β</i> à€² Precipitates in Mg–Gd–Y–Zr Alloy: Insights from Atomicâ€6c HAADFâ€6TEM. Advanced Engineering Materials, 2018, 20, 1700730.	:ale 3.5	2
129	Atomic-scale insights on the plate-shaped γ″ phase in Mg–Gd–Y–Ag–Zr alloy. Journal of Materials Research, 2020, 35, 1837-1845.	2.6	2
130	Obtaining $\langle i \rangle \hat{I}^3 \langle i \rangle \hat{a} \in \mathcal{I}^3$ phase by addition of Mn in Mg-Gd-Y-Zn-Ni-Mn alloy: atomic-scale insights by scanning transmission electron microscopy. Philosophical Magazine Letters, 2021, 101, 107-114.	1.2	2
131	Alignment and strengthening effect of $\langle i \rangle \hat{i}^2 \langle i \rangle \langle \sup \rangle \hat{a} \in \mathbb{C}^2 \langle \sup \rangle$ precipitates in Mg-Gd-Y-Zr during ageing process studied by HAADF-STEM and GPA. Philosophical Magazine Letters, 2022, 102, 71-80.	1.2	2
132	Biodegradable Behaviors in Simulated Body Fluid of Mg-Gd-Y-Zr Alloy with Micro-Arc Oxide Coating. Materials Science Forum, 0, 747-748, 295-300.	0.3	1
133	In-situ observation of microcrack evolution in a dual-phase steel during tensile straining. Materials Science and Technology, 2020, 36, 674-680.	1.6	1
134	Evolution of microstructure and strain field by precipitation during early ageing of Al–Si–Mg–Cu alloy. Philosophical Magazine Letters, 2021, 101, 143-153.	1.2	1
135	Microstructure Evolution and the Influence of Hydrofluoric Acid Treatment on the Surfaces of Commercial Pure Ti after ECAE. Materials Science Forum, 2010, 667-669, 1195-1200.	0.3	0
136	Microstructure and Mechanical Properties of Mg ₉₆ Y ₃ Zn ₁ Alloy Processed by Equal Channel Angular Pressing. Materials Science Forum, 0, 682, 49-54.	0.3	0
137	Dynamic Precipitation Behaviors and Mechanical Properties of Mg-12Gd-3Y-0.5Zr Alloy Processed by Secondary Extrusion. Materials Science Forum, 0, 747-748, 192-197.	0.3	0
138	Isochronal Aging Hardening of the Mg-8Gd-3Y-0.5Zr Alloy after Cold Rolling. Materials Science Forum, 0, 747-748, 333-339.	0.3	0
139	Nucleation interface of Al-Sb alloys on single crystal Al 2 O 3 substrate. Transactions of Nonferrous Metals Society of China, 2017, 27, 2104-2111.	4.2	0
140	Polycrystalline and Singleâ€Crystalline Edge Layer of Mgâ€"Gdâ€"TM (TM=Ni, Ag) Alloys Prepared by Ion Thinner. Advanced Engineering Materials, 2021, 23, 2001222.	3.5	0
141	Achievement of highâ€purity carbon nanofibres via peeling process. Micro and Nano Letters, 2020, 15, 1038-1040.	1.3	0