
Khaled M Youssef

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2322812/publications.pdf Version: 2024-02-01

KHALED M YOUSSEE

#	Article	IF	CITATIONS
1	A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures. Materials Research Letters, 2015, 3, 95-99.	8.7	468
2	Tensile properties of in situ consolidated nanocrystalline Cu. Acta Materialia, 2005, 53, 1521-1533.	7.9	445
3	Ultrahigh strength and high ductility of bulk nanocrystalline copper. Applied Physics Letters, 2005, 87, 091904.	3.3	326
4	Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scripta Materialia, 2006, 54, 251-256.	5.2	285
5	Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition. Corrosion Science, 2004, 46, 51-64.	6.6	239
6	Ultratough nanocrystalline copper with a narrow grain size distribution. Applied Physics Letters, 2004, 85, 929-931.	3.3	167
7	Breakthroughs in Optimization of Mechanical Properties of Nanostructured Metals and Alloys. Advanced Engineering Materials, 2005, 7, 787-794.	3.5	140
8	Pulse current electrodeposition of nanocrystalline zinc. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 341, 174-181.	5.6	132
9	Effect of stacking fault energy on mechanical behavior of bulk nanocrystalline Cu and Cu alloys. Acta Materialia, 2011, 59, 5758-5764.	7.9	121
10	Deformation twinning in a nanocrystalline hcp Mg alloy. Scripta Materialia, 2011, 64, 213-216.	5.2	116
11	Mechanical behavior of nanocrystalline copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 463, 14-21.	5.6	103
12	Influence of Additives and Pulse Electrodeposition Parameters on Production of Nanocrystalline Zinc from Zinc Chloride Electrolytes. Journal of the Electrochemical Society, 2004, 151, C103.	2.9	95
13	Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 529, 230-236.	5.6	88
14	Technological characteristics and selected bioactive compounds of Opuntia dillenii cactus fruit juice following the impact of pulsed electric field pre-treatment. Food Chemistry, 2016, 210, 249-261.	8.2	57
15	Influence of pulse plating parameters on the synthesis and preferred orientation of nanocrystalline zinc from zinc sulfate electrolytes. Electrochimica Acta, 2008, 54, 677-683.	5.2	53
16	Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy. Acta Materialia, 2012, 60, 3340-3349.	7.9	53
17	Graphene-Reinforced Bulk Metal Matrix Composites: Synthesis, Microstructure, and Properties. Reviews on Advanced Materials Science, 2020, 59, 67-114.	3.3	52
18	Nanostructured materials by mechanical alloying: new results on property enhancement. Journal of Materials Science, 2010, 45, 4725-4732.	3.7	36

KHALED M YOUSSEF

#	Article	IF	CITATIONS
19	Flavonol profile of cactus fruits (Opuntia ficus-indica) enriched cereal-based extrudates: Authenticity and impact of extrusion. Food Research International, 2015, 78, 442-447.	6.2	34
20	Studying Parkinson's disease using Caenorhabditis elegans models in microfluidic devices. Integrative Biology (United Kingdom), 2019, 11, 186-207.	1.3	31
21	High strength, ductility, and electrical conductivity of in-situ consolidated nanocrystalline Cu-1%Nb. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 350-355.	5.6	29
22	Nano-indentation: A tool to investigate crack propagation related phase transitions in PV silicon. Solar Energy Materials and Solar Cells, 2012, 96, 166-172.	6.2	26
23	Enhancement of Thermoelectric Properties of Layered Chalcogenide Materials. Reviews on Advanced Materials Science, 2020, 59, 371-378.	3.3	26
24	Consolidation of a Cu–2.5vol.% Al2O3 powder using high energy mechanical milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 375-380.	5.6	24
25	Structural evolution of Cu(1â^'X)YX alloys prepared by mechanical alloying: Their thermal stability and mechanical properties. Journal of Alloys and Compounds, 2015, 627, 108-116.	5.5	22
26	The activation of deformation mechanisms for improved tensile properties in nanocrystalline aluminum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139069.	5.6	22
27	High hardness in a nanocrystalline Mg97Y2Zn1 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7494-7499.	5.6	18
28	Studies on thermal stability, mechanical and electrical properties of nano crystalline Cu99.5Zr0.5 alloy. Journal of Alloys and Compounds, 2013, 558, 44-49.	5.5	18
29	Rational synthesis of ternary PtIrNi nanocrystals with enhanced poisoning tolerance for electrochemical ethanol oxidation. Electrochemistry Communications, 2019, 101, 61-67.	4.7	17
30	Phenotypic chemical and mutant screening of zebrafish larvae using an on-demand response to electric stimulation. Integrative Biology (United Kingdom), 2019, 11, 373-383.	1.3	16
31	The effects of structural integrity of graphene on the thermoelectric properties of the n-type bismuth-telluride alloy. Journal of Alloys and Compounds, 2021, 876, 160198.	5.5	15
32	Enrichment of rice-based extrudates with Cactus Opuntia dillenii seed powder: a novel source of fiber and antioxidants. Journal of Food Science and Technology, 2018, 55, 523-531.	2.8	14
33	Mechanical behavior of bulk nanocrystalline copper alloys produced by high energy ball milling. Journal of Materials Science, 2011, 46, 6316-6322.	3.7	12
34	Mechanical Properties of Nanocrystalline Materials Produced by <i>In Situ </i> Consolidation Ball Milling. Materials Science Forum, 2008, 579, 15-28.	0.3	10
35	Microfluidic electric parallel egg-laying assay and application to in-vivo toxicity screening of microplastics using C. elegans. Science of the Total Environment, 2021, 783, 147055.	8.0	10
36	Experimental and modeling analysis of p-type Bi0.4Sb1.6Te3 and graphene nanocomposites. Journal of Materials Research and Technology, 2022, 16, 1702-1712.	5.8	9

KHALED M YOUSSEF

#	Article	lF	CITATIONS
37	Effect of oxygen and associated residual stresses on the mechanical properties of high growth rate Czochralski silicon. Journal of Applied Physics, 2013, 113, .	2.5	8
38	Parallel-Channel Electrotaxis and Neuron Screening of Caenorhabditis elegans. Micromachines, 2020, 11, 756.	2.9	8
39	Silicon PV Wafers: Mechanical Strength and Correlations with Defects and Stress. Solid State Phenomena, 2011, 178-179, 79-87.	0.3	7
40	Oxygen Precipitation Related Stress-Modified Crack Propagation in High Growth Rate Czochralski Silicon Wafers. Journal of the Electrochemical Society, 2011, 159, H125-H129.	2.9	7
41	Semi-mobile C. elegans electrotaxis assay for movement screening and neural monitoring of Parkinson's disease models. Sensors and Actuators B: Chemical, 2020, 316, 128064.	7.8	6
42	Microfluidic devices for behavioral screening of multiple Zebrafish Larvae: Design investigation process. Biotechnology Journal, 2021, , 2100076.	3.5	6
43	Bulk Nanostructured Cu-2.5vol.%Al ₂ O ₃ Alloy Synthesized Using High Energy Mechanical Milling. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 639-642.	0.1	5
44	Nanostructure fabrication on germanium and silicon by nanocoining imprint technique. Precision Engineering, 2013, 37, 871-879.	3.4	5
45	Miniaturized Sensors and Actuators for Biological Studies on Small Model Organisms of Disease. Energy, Environment, and Sustainability, 2018, , 199-225.	1.0	5
46	In-situ growth of single-crystal plasmonic aluminum–lithium-graphene nanosheets with a hexagonal platelet-like morphology using ball-milling. Carbon, 2021, 178, 657-665.	10.3	5
47	Electric egg-laying: a new approach for regulating <i>C. elegans</i> egg-laying behaviour in a microchannel using electric field. Lab on A Chip, 2021, 21, 821-834.	6.0	5
48	Investigating the thermal stability of nanocrystalline aluminum-lithium alloy by combining different mechanisms: Reinforcing with graphene and alloying with Sr. Journal of Alloys and Compounds, 2022, 914, 165348.	5.5	5
49	Proximity gettering of Cu at a (110)/(001) grain boundary interface formed by direct silicon bonding. Applied Physics Letters, 2009, 94, 221909.	3.3	4
50	Understanding creep in nanocrystalline materials. Transactions of the Indian Institute of Metals, 2010, 63, 373-378.	1.5	4
51	Impact of Prolonged Exposure to Sour Service on the Mechanical Properties and Corrosion Mechanism of NACE Carbon Steel Material Used in Wet Sour Gas Multiphase Pipeline. Sustainability, 2022, 14, 8015.	3.2	4
52	Thermal Conductivity of Exfoliated p-Type Bismuth Antimony Telluride. Journal of Electronic Materials, 2014, 43, 320-328.	2.2	3
53	Artifact-free bulk nanocrystalline Al-Li alloys with multiple deformation mechanisms and improved tensile properties. Materials Today Communications, 2020, 25, 101607.	1.9	3
54	Crack Propagation in Large Diameter PV Silicon. ECS Transactions, 2010, 33, 25-32.	0.5	2

KHALED M YOUSSEF

#	Article	IF	CITATIONS
55	Understanding the effect of impurities and grain boundaries on mechanical behavior of Si via nanoindentation of (110)/(100) direct Si bonded wafers. Journal of Materials Research, 2012, 27, 349-355.	2.6	2
56	Recombination via nano-precipitates … a new mechanism for efficiency loss in solar silicon?. , 2014, , .		2
57	Influence of 1%Nb Solute Addition on the Thermal Stability of In Situ Consolidated Nanocrystalline Cu. Advanced Engineering Materials, 2019, 21, 1800859.	3.5	2
58	High-speed label-free confocal microscopy of Caenorhabditis elegans with near infrared spectrally encoded confocal microscopy. Biomedical Optics Express, 2021, 12, 3607.	2.9	2
59	Low-cost optofluidic add-on enables rapid selective plane illumination microscopy of C. elegans with a conventional wide-field microscope. Journal of Biomedical Optics, 2021, 26, .	2.6	2
60	Amorphization during Fracture of Thin Photovoltaic Silicon Wafers. ECS Transactions, 2010, 25, 49-55.	0.5	1
61	Bulk Nanostructured Metals and Alloys: Processing, Structure, and Thermal Stability. Journal of Nanomaterials, 2012, 2012, 1-2.	2.7	1
62	Fracture Strength of Photovoltaic Silicon Wafers Evaluated Using a Controlled Flaw Method. Advanced Engineering Materials, 2013, 15, 756-760.	3.5	1
63	Tunable metal contacts at layered black-arsenic/metal interface forming during metal deposition for device fabrication. Communications Materials, 2022, 3, .	6.9	1
64	Evaluating Amorphization Around Micro-Cracks in PV Silicon. Materials Research Society Symposia Proceedings, 2009, 1210, 1.	0.1	0
65	In-Situ Electrical Measurements of Thin Photovoltaic Silicon Wafers during Nanoindentation. ECS Transactions, 2010, 25, 41-48.	0.5	0
66	The Effect of the Milling Vial Shape on the In-Situ Consolidation of a Nanocrystalline Al-Li-GNPs Nanocomposite Synthesized by Room Temperature Ball-Milling. Frontiers in Materials, 2022, 9, .	2.4	0