Sheng Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2322797/publications.pdf

Version: 2024-02-01

	257450	223800
2,530	24	46
citations	h-index	g-index
50	50	3310
docs citations	times ranked	citing authors
	citations 50	2,530 24 citations h-index 50 50

#	Article	IF	Citations
1	Band Structure Engineering of Carbon Nitride: In Search of a Polymer Photocatalyst with High Photooxidation Property. ACS Catalysis, 2013, 3, 912-919.	11.2	450
2	Photoelectrochemical CO ₂ Reduction into Syngas with the Metal/Oxide Interface. Journal of the American Chemical Society, 2018, 140, 7869-7877.	13.7	191
3	Roadmap on solar water splitting: current status and future prospects. Nano Futures, 2017, 1, 022001.	2.2	159
4	Facile green synthesis of crystalline polyimide photocatalyst for hydrogen generation from water. Journal of Materials Chemistry, 2012, 22, 15519.	6.7	134
5	Developing a polymeric semiconductor photocatalyst with visible light response. Chemical Communications, 2010, 46, 7325.	4.1	132
6	Tunable Syngas Production from CO ₂ and H ₂ O in an Aqueous Photoelectrochemical Cell. Angewandte Chemie - International Edition, 2016, 55, 14262-14266.	13.8	105
7	Sulfur-Doped Polyimide Photocatalyst with Enhanced Photocatalytic Activity under Visible Light Irradiation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4321-4328.	8.0	103
8	Melem: A metal-free unit for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2014, 39, 13519-13526.	7.1	98
9	Highly efficient binary copperâ°iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1330-1338.	7.1	93
10	Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting. Nature Communications, 2018, 9, 3856.	12.8	87
11	Bandgap modulation of polyimide photocatalyst for optimum H2 production activity under visible light irradiation. International Journal of Hydrogen Energy, 2013, 38, 10768-10772.	7.1	78
12	A GaN:Sn nanoarchitecture integrated on a silicon platform for converting CO ₂ to HCOOH by photoelectrocatalysis. Energy and Environmental Science, 2019, 12, 2842-2848.	30.8	75
13	Solar Water Oxidation by an InGaN Nanowire Photoanode with a Bandgap of 1.7 eV. ACS Energy Letters, 2018, 3, 307-314.	17.4	73
14	Architecture of Cu2O@TiO2 core–shell heterojunction and photodegradation for 4-nitrophenol under simulated sunlight irradiation. Materials Chemistry and Physics, 2011, 129, 1184-1188.	4.0	66
15	Photocatalytic Conversion of Plastic Waste: From Photodegradation to Photosynthesis. Advanced Energy Materials, 2022, 12, .	19.5	64
16	The effect of the Au loading on the liquid-phase aerobic oxidation of ethanol over Au/TiO2 catalysts prepared by pulsed laser ablation. Journal of Catalysis, 2015, 330, 497-506.	6.2	56
17	Enhancement of the production of chemicals and liquid fuels from grass biowaste via NaOH-Fenton pretreatment coupled with fast pyrolysis. Energy Conversion and Management, 2022, 251, 114954.	9.2	46
18	Direct Catalytic Methanol-to-Ethanol Photo-conversion via Methyl Carbene. CheM, 2019, 5, 858-867.	11.7	43

#	Article	IF	Citations
19	Novel visible light driven Mg–Zn–In ternary layered materials for photocatalytic degradation of methylene blue. Catalysis Today, 2013, 212, 81-88.	4.4	39
20	Polyimide-based photocatalysts: rational design for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 14441-14462.	10.3	38
21	Molecule-induced gradient electronic potential distribution on a polymeric photocatalyst surface and improved photocatalytic performance. Journal of Materials Chemistry A, 2013, 1, 5142.	10.3	35
22	The mineral transformation and molten behaviors of biomass waste ashes in gasification-melting process. Fuel Processing Technology, 2022, 226, 107095.	7.2	32
23	Developing high-efficiency π conjugated polymer semiconductor for photocatalytic degradation of dyes under visible light irradiation. RSC Advances, 2014, 4, 57153-57158.	3.6	28
24	Designing a smart fluorescence chemosensor within the tailored channel of mesoporous material for sensitively monitoring toxic heavy metal ions Pb(II). Sensors and Actuators B: Chemical, 2010, 150, 25-35.	7.8	27
25	Hyperbranched polymeric N-oxide: a novel kind of metal-free photocatalyst. Chemical Communications, 2012, 48, 3533.	4.1	24
26	Photocatalytic Methylation of Nonactivated sp ³ and sp ² C–H Bonds Using Methanol on GaN. ACS Catalysis, 2020, 10, 6248-6253.	11.2	21
27	Decoupling Strategy for Enhanced Syngas Generation from Photoelectrochemical CO2 Reduction. IScience, 2020, 23, 101390.	4.1	19
28	Simultaneous sensitization and hole activation in carbon nitride polymer sensitized TiO2. RSC Advances, 2012, 2, 5585.	3.6	18
29	An efficient way to synthesize biomass-based molybdenum carbide catalyst via pyrolysis carbonization and its application for lignin catalytic pyrolysis. Bioresource Technology, 2022, 346, 126640.	9.6	18
30	Synthesis and Characterization of Visible Light Driven Mesoporous Nano-Photocatalyst MoO ₃ /TiO ₂ . Journal of Nanoscience and Nanotechnology, 2012, 12, 1931-1937.	0.9	17
31	Low-temperature synthesis of mesoporous TiO2 photocatalyst with self-cleaning strategy to remove organic templates. Applied Surface Science, 2012, 258, 9664-9667.	6.1	17
32	Hemoglobin immobilized within mesoporous TiO2–SiO2 material with high loading and enhanced catalytic activity. New Journal of Chemistry, 2011, 35, 2832.	2.8	15
33	Tin-grafted TiO2 with enhanced activity for photocatalytic hydrogen generation from aqueous methanol solutions. International Journal of Hydrogen Energy, 2014, 39, 18784-18792.	7.1	15
34	Efficient photoelectrochemical conversion of CO2 to syngas by photocathode engineering. Green Energy and Environment, 2022, 7, 545-553.	8.7	13
35	The impact of flue gas impurities and concentrations on the photoelectrochemical CO2 reduction. Journal of CO2 Utilization, 2022, 60, 101993.	6.8	13
36	Tunable Syngas Production from CO ₂ and H ₂ O in an Aqueous Photoelectrochemical Cell. Angewandte Chemie, 2016, 128, 14474-14478.	2.0	12

#	Article	IF	Citations
37	An efficient visible light controlled protein delivery system. Chemical Communications, 2011, 47, 11243.	4.1	11
38	Synthesis of thiol-functionalized TiO2 nanocomposite and photocatalytic degradation for PAH under visible light irradiation. Chinese Chemical Letters, 2009, 20, 1366-1370.	9.0	10
39	Artificial Photosynthesis on III-Nitride Nanowire Arrays. Semiconductors and Semimetals, 2017, 97, 223-255.	0.7	10
40	A High Efficiency Si Photoanode Protected by Few‣ayer MoSe ₂ . Solar Rrl, 2018, 2, 1800113.	5.8	10
41	Molecular Beam Epitaxy of III-Nitride Nanowires: Emerging Applications From Deep-Ultraviolet Light Emitters and Micro-LEDs to Artificial Photosynthesis. IEEE Nanotechnology Magazine, 2019, 13, 6-16.	1.3	10
42	Pyrolysis of single large biomass particle: Simulation and experiments. Chinese Journal of Chemical Engineering, 2021, 29, 375-382.	3.5	9
43	Emerging Applications of Illâ€Nitride Nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900885.	1.8	8
44	Photodeposition of a conformal metal oxide nanocoating. Chemical Communications, 2019, 55, 6305-6308.	4.1	5
45	Tailoring the nano-channel of ZrO2/SBA-15 mesoporous materials for efficiently trapping and degradation volatile nitrosamines. Solid State Sciences, 2011, 13, 2105-2112.	3.2	2
46	Synthesis of Mn and Se-Doping TiO ₂ Mesoporous Materials and their Antibacterial Efficacy under Visible Light Irradiation. Advanced Materials Research, 2011, 287-290, 1852-1855.	0.3	1
47	Immobilization of hemoglobin within channel of mesoporous TiO2-SiO2 composite. Rare Metals, 2011, 30, 144-146.	7.1	0
48	Developing an Iron-Carbon Nitride Complex as Photocatalyst with Response to Visible Light. Advanced Materials Research, 2011, 287-290, 679-682.	0.3	0
49	High efficiency GaN nanowire/Si photocathode for photoelectrochemical water splitting., 2017,,.		0
50	Hierarchical InGaN Nanowires for High-Efficiency Solar Water Splitting. Microscopy and Microanalysis, 2018, 24, 1670-1671.	0.4	0