Joseph Incandela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2322653/publications.pdf

Version: 2024-02-01

334 papers 10,618 citations

³⁸⁷²⁰
50
h-index

85 g-index

346 all docs 346 does citations

346 times ranked

8257 citing authors

#	Article	IF	Citations
1	Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2015, 75, 212.	1.4	541
2	Event generator tunes obtained from underlying event and multiparton scattering measurements. European Physical Journal C, 2016, 76, 155.	1.4	499
3	Combined measurements of Higgs boson couplings in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$. European Physical Journal C, 2019, 79, 421.	1.4	355
4	Observation of the diphoton decay of the Higgs boson and measurement of its properties. European Physical Journal C, 2014, 74, 3076.	1.4	342
5	Observation of a new boson with mass near 125 GeV in pp collisions at $\$ sqrt{s}=7 $\$ and 8 TeV. Journal of High Energy Physics, 2013, 2013, 1.	1.6	320
6	Extraction and validation of a new set of CMS pythia8 tunes from underlying-event measurements. European Physical Journal C, 2020, 80, 4.	1.4	198
7			

#	Article	IF	CITATIONS
19	Search for high-mass resonances in dilepton final states in proton-proton collisions at $\$$ sqrt $\{s\}=13$ \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	86
20	Performance of the CMS Level-1 trigger in proton-proton collisions at $\hat{a} \cdot \hat{s} < i > s < /i > = 13$ TeV. Journal of Instrumentation, 2020, 15, P10017-P10017.	0.5	84
21	Measurement of prompt and nonprompt charmonium suppression in \$\$ext {PbPb}\$\$ collisions at 5.02\$\$,ext {Te}ext {V}\$\$. European Physical Journal C, 2018, 78, 509.	1.4	83
22	Suppression and azimuthal anisotropy of prompt and nonprompt $f(s) = 1/\Gamma $ production in PbPb collisions at $f(s) = 1/\Gamma $ production Physical Journal C, 2017, 77, 252.	1.4	82
23	Search for narrow and broad dijet resonances in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV and constraints on dark matter mediators and other new particles. Journal of High Energy Physics, 2018, 2018, 1.	1.6	82
24	Search for production of four top quarks in final states with same-sign or multiple leptons in proton–proton collisions at \$\$sqrt{s}=13\$\$ \$\$,ext {TeV}\$\$. European Physical Journal C, 2020, 80, 75.	1.4	78
25	Measurement of Diffractive Dijet Production at the Fermilab Tevatron. Physical Review Letters, 1997, 79, 2636-2641.	2.9	75
26	Search for additional neutral MSSM Higgs bosons in the $\ddot{\parallel}$, $\ddot{\parallel}$, final state in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	73
27	Searches for physics beyond the standard model with the \$\$M_{mathrm {T2}}\$\$ variable in hadronic final states with and without disappearing tracks in proton–proton collisions at \$\$sqrt{s}=13,ext {V} \$\$. European Physical Journal C, 2020, 80, 3.	1.4	70
28	Measurement of the $f(t) = \frac{1}{2} $ Measurement of the $f(t) = \frac{1}{2} $ Measurement of the $f(t) = \frac{1}{2} $ Measurement of the strong coupling constant using dilepton events in pp collisions at. European Physical Journal C, 2019, 79, 368.	1.4	68
29	Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	66
30	Search for new physics in same-sign dilepton events in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2016, 76, 439.	1.4	64
31	Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	63
32	Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at $\$$ sqrt $\{s\}$ =8,ext $\{TeV\}$ $\$$ s = 8 TeV. European Physical Journal C, 2016, 76, 13.	1.4	62
33	Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at s = $13 $ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	62
34	Measurement of the inelastic proton-proton cross section at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	62
35	Search for resonant and nonresonant new phenomena in high-mass dilepton final states at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	62
36	Measurement of the weak mixing angle using the forward–backward asymmetry of Drell–Yan events in \$\$mathrm {p}mathrm {p}\$\$ p p collisions at 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 701.	1.4	58

#	Article	IF	Citations
37	Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2017, 77, 578.	1.4	57
38	Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	57
39	Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	57
40	Measurement of the double-differential inclusive jet cross section in proton–proton collisions at $\$$ sqrt{s} = 13,ext {TeV} $\$$ s = 13 TeV. European Physical Journal C, 2016, 76, 451.	1.4	55
41	Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at s = $8 $ \$ sqrt s = $8 $ \$ TeV and cross section ratios to 2.76 and 7 TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	54
42	Search for charged Higgs bosons in the H± â†' \ddot{l} , \ddot{A} ± \dot{l} ½ \ddot{l} , decay channel in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	54
43	Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum. Journal of High Energy Physics, 2019, 2019, 1.	1.6	54
44	Evidence for Higgs boson decay to a pair of muons. Journal of High Energy Physics, 2021, 2021, 1.	1.6	54
45	Global search for new physics with2.0  fbâ^'1at CDF. Physical Review D, 2009, 79, .	1.6	53
46	Measurement of prompt and nonprompt $\frac{J}{{psi }}$ production in $\frac{p}{mathrm {p}}$ = 5.02,ext {TeV} \$\$ s. European Physical Journal C, 2017, 77, 269.	1.4	53
47	Measurement of double-differential cross sections for top quark pair production in pp collisions at $\$$ sqrt{s} = 8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV and impact on parton distribution functions. European Physical Journal C, 2017, 77, 459.	1.4	52
48	Measurements of the $\mbox{mathrm } \{p\}$ mathrm $\{p\}$ ightarrow mathrm $\{Z\}$ mathrm $\{Z\}$ p p → Z Z production cross section and the $\mbox{mathrm} \{Z\}$ ightarrow 4ell $\mbox{lel } 2 a†' 4 â," branching fraction, and constraints on anomalous triple gauge couplings at. European Physical Journal C, 2018, 78, 165.$	1.4	52
49	Search for the associated production of the Higgs boson with a top-quark pair. Journal of High Energy Physics, 2014, 2014, 1.	1.6	51
50	Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at $\$$ qrt $\{s\}=13$,ext $\{Te\}$ ext $\{V\}$ $\$$. European Physical Journal C, 2019, 79, 564.	1.4	50
51	Measurement of pseudorapidity distributions of charged particles in proton–proton collisions at \$\$sqrt{s} = 8\$\$ s = 8 ÂTeV by the CMS and TOTEM experiments. European Physical Journal C, 2014, 74, 1.	1.4	49
52	Observation of Y(1S) pair production in proton-proton collisions at $s = 8 $ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	48
53	Search for vector-like quarks in events with two oppositely charged leptons and jets in protonâ \in proton collisions at \$\$sqrt{s} = 13,ext {Te}ext {V} \$\$ s = 13 Te. European Physical Journal C, 2019, 79, 364.	1.4	48
54	Search for third-generation scalar leptoquarks decaying to a top quark and a $\$$ au $\$$ i, lepton at $\$$ sqrt $\{s\}=13$,ext $\{Te\}$ ext $\{V\}$ $\$$ s = 13 Te. European Physical Journal C, 2018, 78, 707.	1.4	46

#	Article	IF	CITATIONS
55	Search for standard model production of four top quarks with same-sign and multilepton final states in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2018, 78, 140.	1.4	44
56	Identification techniques for highly boosted W bosons that decay into hadrons. Journal of High Energy Physics, 2014, 2014, 1.	1.6	43
57	Search for natural and split supersymmetry in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV in final states with jets and missing transverse momentum. Journal of High Energy Physics, 2018, 2018, 1.	1.6	43
58	Search for vector-like T and B quark pairs in final states with leptons at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	42
59	Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at $s=13 $ \$\$ sqrt $s=13 $ \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	42
60	Measurement of the t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ production cross section in the eÎ $\frac{1}{4}$ channel in proton-proton collisions at s = 7 \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	1.6	41
61	Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	41
62	Measurement of properties of \$\$ {mathrm{B}}_{mathrm{s}}^0 \$\$â†' ν+νâ^' decays and search for B0â†' ν+ with the CMS experiment. Journal of High Energy Physics, 2020, 2020, 1.	μâ^' 1.6	41
63	Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	41
64	Model-independent and quasi-model-independent search for new physics at CDF. Physical Review D, 2008, 78, .	1.6	40
65	Measurement of the $\mbox{mathrm{t}}$ overline{mathrm{t}} \$\$ t t \hat{A}^- production cross section using events in the \$\$mathrm {e}mu \$\$ e \hat{I} 4 final state in pp collisions at \$\$sqrt{s}=13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2017, 77, 172.	1.4	40
66	Search for new physics in dijet angular distributions using proton–proton collisions at \$\$\$qrt{s}=13hbox {TeV}\$\$ and constraints on dark matter and other models. European Physical Journal C, 2018, 78, 789.	1.4	40
67	Measurement of the top quark mass in the all-jets final state at $\$$ sqrt $\{s\}=13$,ext $\{TeV\}$ $\$$ s = 13 TeV and combination with the lepton+jets channel. European Physical Journal C, 2019, 79, 313.	1.4	40
68	Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at $s=13 $ TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	40
69	Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at $\frac{13,ext}{Te}$ = 13,ext {Te}ext {V} \$\$. European Physical Journal C, 2021, 81, 378.	1.4	40
70	Measurement of the ZZ production cross section and search for anomalous couplings in 2â, "2â, "′ final states in pp collisions at \$ sqrt{s}=7 \$ TeV. Journal of High Energy Physics, 2013, 2013, 1.	1.6	39
71	Measurement of differential cross sections for $\{z\}$ Z boson production in association with jets in proton-proton collisions at $\{z\}$ = 13,ext $\{z\}$ z = 13 TeV. European Physical Journal C, 2018, 78, 965.	1.4	39
72	Search for dark matter produced in association with heavy-flavor quark pairs in proton-proton collisions at $\$$ sqrt $\{s\}$ = 13,ext $\{TeV\}$ $\$$ s = 13 TeV. European Physical Journal C, 2017, 77, 845.	1.4	38

#	Article	IF	Citations
73	Search for heavy resonances that decay into a vector boson and a Higgs boson in hadronic final states at $\$$ sqrt $\{s\} = 13$ \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 636.	1.4	38
74	Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying \ddot{l} , leptons at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	38
75	Measurement of the WZ production cross section in pp collisions at $\$$ sqrt $\{s\} = 7$ \$ s = 7 and 8 $\$$,ext $\{TeV\}$ \$ TeV and search for anomalous triple gauge couplings at $\$$ sqrt $\{s\} = 8$,ext $\{TeV\}$ \$\$ s = 8 TeV. European Physical Journal C, 2017, 77, 236.	1.4	37
76	Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	37
77	Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	37
78	Search for resonant and nonresonant Higgs boson pair production in the b b $\hat{A}^ \hat{a}$, " $\hat{1}$ / $2\hat{a}$," $\hat{1}$ / $2\hat{a}$, " $\hat{1}$ / $2\hat{a}$	1.6	36
79	Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at \$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	36
80	Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	35
81	Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	35
82	Measurement of exclusive $\mbox{mathrm {Upsilon }$$ photoproduction from protons in $$mathrm {p}$$Pb collisions at $$sqrt{smash [b]{s_{_{mathrm {NN}}}}} = 5.02,ext {TeV} $$. European Physical Journal C, 2019, 79, 277.$	1.4	35
83	Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2021, 81, 488.	1.4	35
84	Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two $\ddot{\parallel}$, leptons in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	34
85	Measurement of the top quark mass with lepton+jets final states using $\$$ mathrm p \$\\$mathrm p \$\\$mathrm p \$\$\\$mathrm p \$\$ collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2018, 78, 891.	1.4	34
86	Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	34
87	Search for single production of vector-like quarks decaying to a top quark and a \$\$mathrm {W} \$\$ W boson in proton–proton collisions at \$\$sqrt{s} = 13 ,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2019, 79, 90.	1.4	34
88	Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two $\ddot{\text{l}}$, leptons and two jets in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	33
89	Measurement of exclusive $\{{\{uprho _{}^{}\}}_{}^{}\}\{\{left({770}ight) }{\}_{}^{}}\}$	1.4	33
90	Search for dark matter produced in association with a leptonically decaying $f(Z)$ \$\$ boson in protonâ $f(Z)$ \$\$ boson in protonâ $f(Z)$ \$\$ European Physical Journal C, 2021, 81, 13.	1.4	33

#	Article	IF	Citations
91	Search for top squark pair production using dilepton final states in $\{p\}$ ext $\{p\}$ scollision data collected at $\{p\}$ state $\{p\}$ states in $\{p\}$ states in $\{p\}$ and $\{p\}$ states in $\{p\}$	1.4	33
92	Measurement of $\frac{t}{ar{hbox \{t}}}$ normalised multi-differential cross sections in $\frac{p}{ext \{p\}}$ \$\$ collisions at \$\$sqrt{s}=13,{ext {TeV}} \$\$, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions. European Physical Journal C, 2020, 80, 1.	1.4	33
93	Measurements of the $\$$ mathrm{Z}\$\$ Z $\$$ mathrm{Z}\$\$ Z production cross sections in the $\$2$ mathrm{I} 2u $\$$ 2 l 2 ν channel in protonâ \in "proton collisions at $\$$ sqrt{s} = 7\$\$ s = 7 and $\$$ 8~. European Physical Journal C, 2015, 75, 511.	1.4	32
94	Searches for pair production of third-generation squarks in $\$$ sqrt $\{s\}=13$ \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV pp collisions. European Physical Journal C, 2017, 77, 327.	1.4	32
95	Shape, transverse size, and charged-hadron multiplicity of jets in pp collisions at $q=7,TeV$. Journal of High Energy Physics, 2012, 2012, 1.	1.6	31
96	Search for top squark pair production in pp collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV using single lepton events. Journal of High Energy Physics, 2017, 2017, 1.	1.6	31
97	Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	31
98	A multi-dimensional search for new heavy resonances decaying to boosted $\$ w \{\}{\}\\$\$ \$\$ext{ W \{\}\}\\$\$ \$\$ext{ W \{\}\}\\$\$ \$\$ext{ Z \{\}\}\\$\$, or \$\$ext{ Z \{\}\}\\$\$ \$\$ext{ Z \{\}\}\\$\$ boson pairs in the dijet final state at 13Â\$\$ext {Te}ext {V}\$\$. European Physical Journal C, 2020, 80, 237.	1.4	31
99	Measurements of the associated production of a Z boson and b jets in pp collisions at $\$\{qrt\{s\}\} = 8$, ext $TeV\}$ \$\$ s = 8 TeV. European Physical Journal C, 2017, 77, 751.	1.4	30
100	A search for new phenomena in pp collisions at $\$$ sqrt $\{s\} = 13$,ext $\{TeV\}$ $\$$ s = 13 TeV in final states with missing transverse momentum and at least one jet using the $\$$ alpha $_{\text{mathrm }}$ $\{T\}$	1.4	29
101	Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	29
102	Search for lepton flavour violating decays of the Higgs boson to 14 , and el, in proton-proton collisions at \$\$ $q=13$ \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	29
103	Observation of proton-tagged, central (semi)exclusive production of high-mass lepton pairs in pp collisions at 13 TeV with the CMS-TOTEM precision proton spectrometer. Journal of High Energy Physics, 2018, 2018, 1.	1.6	29
104	Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$ s = 13 Te. European Physical Journal C, 2019, 79, 280.	1.4	29
105	Measurements of \$\$ mathrm{t}overline{mathrm{t}} \$\$ differential cross sections in proton-proton collisions at \$\$ $\frac{1}{2} = 13 $ \$ TeV using events containing two leptons. Journal of High Energy Physics, 2019, 2019, 1.	1.6	28
106	Search for $\$$ mathrm{t}overline{mathrm{t}}mathrm{H} $\$$ production in the $\$$ mathrm{H}o mathrm{b}overline{mathrm{b}} $\$$ decay channel with leptonic $\$$ mathrm{t}overline{mathrm{t}} $\$$ decays in proton-proton collisions at $\$$ sqrt{s}=13 $\$$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	28
107	Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	28
108	Measurements of differential Z boson production cross sections in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	28

#	Article	IF	Citations
109	Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	27
110	Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton–proton collisions at \$\$sqrt{s} \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 291.	1.4	27
111	Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at $\hat{a} \le i\rangle = 13$ TeV. Journal of Instrumentation, 2020, 15, P02027-P02027.	0.5	27
112	Search for new neutral Higgs bosons through the $\$ mathrm{H}o mathrm{ZA}o {ell}^{+}{ell}^{-}mathrm{b}overline{mathrm{b}} \$\$ process in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	27
113	Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	27
114	Search for a charged Higgs boson decaying to charm and bottom quarks in proton-proton collisions at $\$$ sqrt $\{s\}=8$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	26
115	Search for nonresonant Higgs boson pair production in final states with two bottom quarks and two photons in proton-proton collisions at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	26
116	Search for a charged Higgs boson decaying into top and bottom quarks in events with electrons or muons in proton-proton collisions at $$$ sqrt{mathrm{s}} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	26
117	Measurement of energy flow at large pseudorapidities in pp collisions at sqrt = 0. and 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	1.6	25
118	Search for high-mass resonances in final states with a lepton and missing transverse momentum at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	25
119	Search for physics beyond the standard model in multilepton final states in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	25
120	Search for a heavy Higgs boson decaying to a pair of W bosons in proton-proton collisions at $\$\$$ sqrt $\{s\}$ $\$\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	25
121	Search for new particles decaying to a jet and an emerging jet. Journal of High Energy Physics, 2019, 2019, 1.	1.6	24
122	Measurements of $f^{p}} {\mathbf{p}} {\mathbf{p}$	1.4	24
123	Search for heavy resonances decaying to tau lepton pairs in proton-proton collisions at $s=13 $ \$\$ sqrt $\{s\}=13 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	23
124	Measurement of the top quark mass using single top quark events in proton-proton collisions at $s=8$ or $s=8$ and $s=8$ such that $s=8$ are $s=8$ and $s=8$ are $s=8$	1.4	23
125	Measurement of the triple-differential dijet cross section in proton-proton collisions at $s=0.00$ square frev $s=0.00$ square frev $s=0.00$ frequency $s=0.00$ freq	1.4	23
126	Searches for pair production of charginos and top squarks in final states with two oppositely charged leptons in proton-proton collisions at $$$ sqrt ${s}=13$ $$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	23

#	Article	IF	Citations
127	Search for the flavor-changing neutral current interactions of the top quark and the Higgs boson which decays into a pair of b quarks at $$$ sqrt ${s}=13 $ FeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	23
128	Search for resonant $\$ mathrm{t}overline{mathrm{t}} \$\$ production in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	23
129	Search for a light pseudoscalar Higgs boson in the boosted μμÏ,,, final state in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	23
130	Search for physics beyond the standard model in events with jets and two same-sign or at least three charged leptons in proton-proton collisions at $\$$ sqrt $\{s\}=13,\{ext \{TeV\}\} \$$. European Physical Journal C, 2020, 80, 752.	1.4	23
131	Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	23
132	Search for t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	22
133	Search for massive resonances decaying into WW, WZ or ZZ bosons in proton-proton collisions at s = $13 $ \$\$ sqrt{s}= $13 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	22
134	Search for direct production of supersymmetric partners of the top quark in the all-jets final state in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	22
135	Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying $\ddot{\parallel}$, leptons and two jets in proton-proton collisions at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	22
136	Search for direct pair production of supersymmetric partners to the \$\${uptau }_{}^{}\$\$ lepton in proton–proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2020, 80, 189.	1.4	22
137	Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton–proton collisions at \$\$sqrt{s}=13\$\$ \$\$,ext {Te}ext {V}\$\$. European Physical Journal C, 2020, 80, 370.	1.4	22
138	Search for associated production of a Z boson with a single top quark and for tZ flavour-changing interactions in pp collisions at $s = 8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	21
139	Search for supersymmetry in events with a Ï,, lepton pair and missing transverse momentum in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	21
140	Search for beyond the standard model Higgs bosons decaying into a $\$\$$ mathrm $\{b\}$ overline $\{mathrm\{b\}\}$ $\$\$$ pair in pp collisions at $\$\$$ sqrt $\{s\}=13$ $\$\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	21
141	A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution. Computing and Software for Big Science, 2020, 4, 10.	1.3	21
142	Search for direct top squark pair production in events with one lepton, jets, and missing transverse momentum at 13 TeV with the CMS experiment. Journal of High Energy Physics, 2020, 2020, 1.	1.6	21
143	Diffractive Dijet Production ats=630and 1800 GeV at the Fermilab Tevatron. Physical Review Letters, 2002, 88, 151802.	2.9	20
144	Search for $\$$ mathrm{t}overline{mathrm{t}}mathrm{H} $\$$ production in the all-jet final state in proton-proton collisions at $\$$ sqrt{s}=13 $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	20

#	Article	IF	CITATIONS
145	Search for dark matter in events with energetic, hadronically decaying top quarks and missing transverse momentum at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	20
146	Search for rare decays of $\$$ mathrm {Z}\$\$ Z and Higgs bosons to $\$$ {mathrm {J}/psi } \$\$ J / $\ddot{\Gamma}$ and a photon in proton-proton collisions at $\$$ sqrt{s}\$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2019, 79, 94.	1.4	20
147	Measurement of top quark pair production in association with a Z boson in proton-proton collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	20
148	Measurement of the cross section for electroweak production of a Z boson, a photon and two jets in proton-proton collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV and constraints on anomalous quartic couplings. Journal of High Energy Physics, 2020, 2020, 1.	1.6	20
149	A search for the standard model Higgs boson decaying to charm quarks. Journal of High Energy Physics, 2020, 2020, 1.	1.6	20
150	Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	1.6	19
151	Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into \ddot{l} , leptons in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	1.6	19
152	Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	19
153	Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton–proton collisions at \$\$sqrt{s} = 13,{ext {TeV}} \$\$. European Physical Journal C, 2021, 81, 723.	1.4	19
154	Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions at s N N = 2.76 $\$ sqrt{s_{mathrm{N}}}=2.76 $\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	1.6	18
155	Measurement of normalized differential $\$ mathrm{t}overline{mathrm{t}} \$\$ cross sections in the dilepton channel from pp collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	18
156	Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	18
157	Search for resonant pair production of Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	18
158	Measurement of differential cross sections for inclusive isolated-photon and photon+jet production in proton-proton collisions at $\$\$qrt\{s\} = 13,ext\{TeV\}$ $\$\$ s = 13$ TeV. European Physical Journal C, 2019, 79, 20.	1.4	18
159	Measurement of the differential Drell-Yan cross section in proton-proton collisions at \$\$ sqrt{mathrm{s}} \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	18
160	MUSiC: a model-unspecific search for new physics in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2021, 81, 629.	1.4	18
161	Combined searches for the production of supersymmetric top quark partners in proton–proton collisions at \$\$sqrt{s} = 13,ext {Te}ext {V} \$\$. European Physical Journal C, 2021, 81, 970.	1.4	18
162	Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton–proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2022, 82, 290.	1.4	18

#	Article	IF	CITATIONS
163	Probing color coherence effects in pp collisions at $\$$ sqrt $\{s\}=7$,ext $\{TeV\}$ $\$$ s = 7 TeV. European Physical Journal C, 2014, 74, 2901.	1.4	17
164	Search for new physics in the monophoton final state in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	17
165	Measurement of electroweak-induced production of \hat{W}^3 with two jets in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV and constraints on anomalous quartic gauge couplings. Journal of High Energy Physics, 2017, 2017, 1.	1.6	17
166	Measurements of jet charge with dijet events in pp collisions at $s = 8 $ \$\$ sqrt $s=8 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	17
167	Constraints on the double-parton scattering cross section from same-sign W boson pair production in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	17
168	Charged-particle nuclear modification factors in XeXe collisions at $\$$ sqrt $\{s_{NN}\}$ = 5.44 $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	17
169	Search for $Z\hat{I}^3$ resonances using leptonic and hadronic final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	17
170	Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	17
171	Search for the decay of a Higgs boson in the \hat{a} , " \hat{a} ," \hat{a} channel in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	17
172	Measurement of charged particle spectra in minimum-bias events from proton–proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2018, 78, 697.	1.4	17
173	Electroweak production of two jets in association with a Z boson in protonâ \in proton collisions at \$\$sqrt{s}= \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 1.	1.4	17
174	Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	17
175	Measurement of the production cross section of a WÂboson in association with two b jets in pp collisions at $\$$ sqrt $\{s\} = 8\{$, mathrm $\{\{TeV\}\}\}$ $\$$ s = 8 TeV. European Physical Journal C, 2017, 77, 92.	1.4	16
176	Measurement of associated Z + charm production in protonâ€"proton collisions at \$\$\$qrt{s} = 8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 287.	1.4	16
177	Search for single production of vector-like quarks decaying to a b quark and a Higgs boson. Journal of High Energy Physics, 2018, 2018, 1.	1.6	16
178	Search for new physics in top quark production in dilepton final states in proton-proton collisions at $\$$ sqrt $\{s\} = 13$,ext $\{TeV\}$ $\$$ s. European Physical Journal C, 2019, 79, 886.	1.4	16
179	Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at $\$$ sqrt $\{s\}=13$ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	15
180	Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	15

#	Article	IF	CITATIONS
181	Measurement of the t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ production cross section using events with one lepton and at least one jet in pp collisions at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	15
182	Search for new physics with dijet angular distributions in proton-proton collisions at $s=13 $ \$\$ $sqrt\{s\}=13 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	15
183	Search for a singly produced third-generation scalar leptoquark decaying to a $\ddot{\text{I}}$, lepton and a bottom quark in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	15
184	Measurement of b hadron lifetimes in pp collisions at $\$\$qrt\{s\} = 8\$\$ s = 8\$\$,ext \{Te\}ext \{V\}\$\$ TeV$. European Physical Journal C, 2018, 78, 457.	1.4	15
185	Search for new physics in final states with a single photon and missing transverse momentum in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	15
186	Search for lepton flavour violating decays of a neutral heavy Higgs boson to $\hat{l}\frac{1}{4}\hat{l}$, and $e\hat{l}$, in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	15
187	Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	15
188	Search for anomalous triple gauge couplings in WW and WZ production in lepton + jet events in proton-proton collisions at $$$ sqrt $\{s\}$ $$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	15
189	Search for associated production of dark matter with a Higgs boson decaying to b b \hat{A}^- \$\$ mathrm{b}overline{mathrm{b}} \$\$ or $\hat{I}^3\hat{I}^3$ at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	14
190	Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at $s = 8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	14
191	Search for electroweak production of a vector-like quark decaying to a top quark and a Higgs boson using boosted topologies in fully hadronic final states. Journal of High Energy Physics, 2017, 2017, 1.	1.6	14
192	Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at $s=13 $ \$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	14
193	Search for black holes and sphalerons in high-multiplicity final states in proton-proton collisions at $$$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	14
194	Studies of \$\${mathrm {B}} ^{*}_{{mathrm {s}}2}(5840)^0 \$\$ B s 2 \hat{a} — (5840) 0 and \$\${mathrm {B}}		

#	Article	IF	CITATIONS
199	Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	14
200	Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in $\mbox{ $mathrm {PbPb}$$ collisions at $$sqrt{smash [b]{s_{_{mathrm {NN}}}}} = 2.76$$ and 5.02$$,ext {TeV}$$. European Physical Journal C, 2020, 80, 534.}$	1.4	14
201	Search for dark matter particles produced in association with a Higgs boson in proton-proton collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	14
202	Search for dark photons in Higgs boson production via vector boson fusion in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	14
203	Search for long-lived particles decaying to leptons with large impact parameter in proton–proton collisions at \$\$sqrt{s} = 13,ext {Te}ext {V} \$\$. European Physical Journal C, 2022, 82, 153.	1.4	14
204	Search for the associated production of a Higgs boson with a single top quark in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	1.6	13
205	Search for single production of vector-like quarks decaying to a Z boson and a top or a bottom quark in proton-proton collisions at $s=13$ \$\$ $sqrt\{s\}=13$ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	13
206	Search for top squarks decaying via four-body or chargino-mediated modes in single-lepton final states in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	13
207	Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	13
208	Measurements of differential cross sections of top quark pair production as a function of kinematic event variables in proton-proton collisions at $$$ sqrt ${s}=13 $ \$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	13
209	Jet properties in PbPb and pp collisions at $\$$ sqrt $\{s_{mathrm}N\}$; mathrm $\{N\}\}$ =5.02 $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	13
210	Search for top quark partners with charge $5/3$ in the same-sign dilepton and single-lepton final states in proton-proton collisions at \$\$ $qt=8$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	13
211	Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	13
212	Search for contact interactions and large extra dimensions in the dilepton mass spectra from proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	13
213	Search for dark photons in decays of Higgs bosons produced in association with Z bosons in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	13
214	Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	13
215	Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	1.6	13
216	Comparing transverse momentum balance of b jet pairs in pp and PbPb collisions at \$\$ sqrt{s_{mathrm{NN}}}=5.02 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	12

#	Article	IF	CITATIONS
217	Measurement of the groomed jet mass in PbPb and pp collisions at $\$$ sqrt $\{s_{NN}\}$ =5.02 $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	12
218	Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	12
219	Search for dark matter produced in association with a Higgs boson decaying to $\hat{I}^3\hat{I}^3$ or $\hat{I}_{,,}$ + $\hat{I}_{,,}$ $\hat{a}^{,\prime}$ at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	12
220	Measurement of the energy density as a function of pseudorapidity in proton–proton collisions at \$\$sqrt{s} =13,ext {TeV} \$\$. European Physical Journal C, 2019, 79, 1.	1.4	12
221	Search for heavy resonances decaying into two Higgs bosons or into a Higgs boson and a W or Z boson in proton-proton collisions at 13TeV . Journal of High Energy Physics, $2019, 2019, 1.$	1.6	12
222	Measurement of the average very forward energy as a function of the track multiplicity at central pseudorapidities in proton-proton collisions at $\frac{1}{s}=13$,ext TeV \$5. European Physical Journal C, 2019, 79, 893.	1.4	12
223	Investigation into the event-activity dependence of \ddot{l} (nS) relative production in proton-proton collisions at \$\$ sqrt{s} \$\$ = 7 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	12
224	Search for new physics in top quark production with additional leptons in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV using effective field theory. Journal of High Energy Physics, 2021, 2021, 1.	1.6	12
225	Development and validation of HERWIGÂ7 tunes from CMS underlying-event measurements. European Physical Journal C, 2021, 81, 312.	1.4	12
226	Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	1.6	12
227	Search for electroweak production of charginos in final states with two \ddot{l} , leptons in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	11
228	Measurement of the semileptonic t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ + \hat{I}^3 production cross section in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	11
229	Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos and b quarks at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	11
230	Search for a heavy resonance decaying to a pair of vector bosons in the lepton plus merged jet final state at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	11
231	Search for supersymmetry in events with a photon, jets, \$\$mathrm {b}\$\$-jets, and missing transverse momentum in proton–proton collisions at 13\$\$,ext {Te}ext {V}\$\$. European Physical Journal C, 2019, 79, 444.	1.4	11
232	Search for nonresonant Higgs boson pair production in the $\$$ mathrm{b}overline{mathrm{b}} mathrm{b}overline{mathrm{b}} \$\$ final state at $\$$ sqrt{s} $\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	11
233	Study of the underlying event in top quark pair production in $\$$ mathrm $\{p\}$ mathrm $\{p\}$ \$ p p collisions at 13 $\$$ -ext $\{V\}$ \$ Te. European Physical Journal C, 2019, 79, 123.	1.4	11
234	Search for the production of four top quarks in the single-lepton and opposite-sign dilepton final states in proton-proton collisions at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	11

#	Article	IF	Citations
235	Bose-Einstein correlations of charged hadrons in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	11
236	Measurement of electroweak production of a $\mathrm{Smathrm}\{W\}$ \$\$ boson in association with two jets in protonâ \in "proton collisions at $\mathrm{Sqrt}\{s\}=13$,ext $\mathrm{Te}\}$ ext V \$\$. European Physical Journal C, 2020, 80, 43.	1.4	11
237	First measurement of large area jet transverse momentum spectra in heavy-ion collisions. Journal of High Energy Physics, 2021, 2021, 1.	1.6	11
238	Search for a heavy Higgs boson decaying into two lighter Higgs bosons in the ττbb final state at 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	11
239	Measurements of the pp \hat{a}^{\dagger} $\hat{W}^{\hat{1}\hat{3}\hat{1}\hat{3}}$ and pp \hat{a}^{\dagger} $\hat{Z}^{\hat{3}\hat{1}\hat{3}}$ cross sections and limits on anomalous quartic gauge couplings at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	S 1.6	10
240	Measurement of the inclusive energy spectrum in the very forward direction in proton-proton collisions at $s=13 $ sqrt $\{s\}=13 $ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	10
241	Search for a light pseudoscalar Higgs boson produced in association with bottom quarks in pp collisions at $\$$ sqrt $\{s\}=8$ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	10
242	Study of dijet events with a large rapidity gap between the two leading jets in pp collisions at \$\$sqrt{s}=7\$\$ \$\$,ext {TeV}\$\$. European Physical Journal C, 2018, 78, 242.	1.4	10
243	Measurement of the \$\$mathrm {Z}/gamma ^{*} ightarrow au au \$\$ Z / \hat{I}^3 â^— â†' Ï,, Ï,, cross section in pp collisions at \$\$sqrt{s} = 13 hbox { TeV}\$\$ s = 13 TeV and validation of \$\$. European Physical Journal C, 2018, 78, 708.	1.4	10
244	Search for a heavy resonance decaying into a Z boson and a vector boson in the $\$ u overline{u}mathrm{q}overline{mathrm{q}} \$\$ final state. Journal of High Energy Physics, 2018, 2018, 1.	1.6	10
245	Search for resonances decaying to a pair of Higgs bosons in the b\$\$ overline{mathrm{b}} \$\$q\$\$ overline{mathrm{q}} \$\$ $\hat{0}_{0}$ final state in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	10
246	Measurement of quark- and gluon-like jet fractions using jet charge in PbPb and pp collisions at 5.02 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	10
247	Evidence for $\$$ ext $\{W\}$ production from double-parton interactions in protona \in proton collisions at $\$$ qrt $\{s\}$ = 13 ,ext $\{TeV\}$ \$\$. European Physical Journal C, 2020, 80, 1.	1.4	10
248	Search for resonances in the mass spectrum of muon pairs produced in association with b quark jets in proton-proton collisions at $\$$ sqrt $\{s\}=8$ $\$$ and 13 TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	9
249	Search for lepton-flavor violating decays of heavy resonances and quantum black holes to e 1 /4 final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	9
250	Azimuthal correlations for inclusive 2-jet, 3-jet, and 4-jet events in pp collisions at $\$$ sqrt $\{s\}$ = 13~hbox $\{TeV\}$ \$\$ s = 13 TeV. European Physical Journal C, 2018, 78, 1.	1.4	9
251	Search for a heavy resonance decaying to a top quark and a vector-like top quark in the lepton + jets final state in pp collisions at $\$$ sqrt $\{s\} = 13$,ext $\{TeV\}$ $\$$ s = 13 TeV. European Physical Journal C, 2019, 79, 1.	1.4	9
252	Search for a low-mass \ddot{l} , \hat{a} , \hat{l} , + resonance in association with a bottom quark in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	9

#	Article	IF	Citations
253	Angular analysis of the decay B+ \hat{a} †' K \hat{a} ^-(892)+ \hat{i} ½+ \hat{i} ½ \hat{a} °' in proton-proton collisions at \$\$ sqrt{mathrm{s}} \$\$ = TeV. Journal of High Energy Physics, 2021, 2021, 1.	: 8 1.6	9
254	Search for a heavy vector resonance decaying to a $f(z) = 13$, with the solution $f(z) = 13$, where $f(z) =$	1.4	9
255	Searches for Wâ \in 2 bosons decaying to a top quark and a bottom quark in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	8
256	Pseudorapidity distributions of charged hadrons in proton-lead collisions at s N N = $5.02 \$\$$ sqrt $\{s_{NN}\}=5.02 \$\$$ and 8.16 TeV . Journal of High Energy Physics, 2018 , 2018 , 1 .	1.6	8
257	Search for a heavy resonance decaying into a Z boson and a Z or W boson in $2\hat{a}$, "2q final states at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	8
258	Search for supersymmetry in final states with photons and missing transverse momentum in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	8
259	Azimuthal separation in nearly back-to-back jet topologies in inclusive 2- and 3-jet events in $f(x) = 13$, ext $f(x) = 13$,	1.4	8
260	Dependence of inclusive jet production on the anti-kT distance parameter in pp collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	8
261	Search for chargino-neutralino production in events with Higgs and W bosons using 137 fba 1 of proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	8
262	Study of quark and gluon jet substructure in Z+jet and dijet events from pp collisions. Journal of High Energy Physics, 2022, 2022, 1.	1.6	8
263	Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	8
264	Search for direct pair production of scalar top quarks in the single- and dilepton channels in proton-proton collisions at $s=8$ \$\$ sqrt{ s }=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	1.6	7
265	Search for high-mass $Z\hat{1}^3$ resonances in e+eâ^ $\hat{1}^3$ and $\hat{1}^4$ + $\hat{1}^4$ â^ $\hat{1}^3$ final states in proton-proton collisions at s = 8 \$ sqrt{s}=8 \$\$ and 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	\$ _{1.6}	7
266	Search for the associated production of the Higgs boson and a vector boson in proton-proton collisions at $\$$ sqrt{s} $\$$ = 13 TeV via Higgs boson decays to $\ddot{\ }$, leptons. Journal of High Energy Physics, 2019, 2019, 1.	1.6	7
267	Study of central exclusive "Equation missing" No EquationSource Format="TEX", only image production in proton-proton collisions at \$\$sqrt{s} = 5.02\$\$ and 13TeV. European Physical Journal C, 2020, 80, 718.	1.4	7
268	Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	7
269	Measurements of the pp \hat{a}^{\dagger} W $\hat{A}\pm\hat{l}^3\hat{l}^3$ and pp \hat{a}^{\dagger} Z $\hat{l}^3\hat{l}^3$ cross sections at \$\$ sqrt{mathrm{s}} \$\$ = 13 TeV and limit anomalous quartic gauge couplings. Journal of High Energy Physics, 2021, 2021, 1.	s on	7
270	Search for supersymmetry in events with at least three electrons or muons, jets, and missing transverse momentum in proton-proton collisions at $s=13 $ \$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	6

#	Article	IF	CITATIONS
271	Search for supersymmetry in events with a photon, a lepton, and missing transverse momentum in proton-proton collisions at $\$$ sqrt $\{s\}$ = 13 $\$$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	6
272	Measurements of triple-differential cross sections for inclusive isolated-photon+jet events in $\mbox{\$mathrm}_{p}\$ collisions at $\mbox{\$sqrt}_{s} = 8$,ext $\mbox{TeV}\$ \$. European Physical Journal C, 2019, 79, 969.	1.4	6
273	Search for decays of the 125 GeV Higgs boson into a Z boson and a ϕor ϕ meson. Journal of High Energy Physics, 2020, 2020, 1.	1.6	6
274	Determination of the strong coupling constant $\hat{l}\pm S(mZ)$ from measurements of inclusive $W\hat{A}\pm$ and Z boson production cross sections in proton-proton collisions at \$\$ sqrt{mathrm{s}} \$\$ = 7 and 8 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	6
275	Search for the associated production of the Higgs boson with a top-quark pair. , 2014, 2014, 1.		6
276	Measurement of double-parton scattering in inclusive production of four jets with low transverse momentum in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	1.6	6
277	Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at $$$ sqrt{s} $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	1.6	6
278	Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	1.6	6
279	Search for a heavy resonance decaying to a top quark and a vector-like top quark at $s=13 $ \$\$ sqrt $\{s\}=13 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	5
280	Measurement of the inclusive $\$ mathrm{t}overline{mathrm{t}} \$\$ cross section in pp collisions at \$\$ sqrt{s}=5.02 \$\$ TeV using final states with at least one charged lepton. Journal of High Energy Physics, 2018, 2018, 1.	1.6	5
281	Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $s=13 $ \$ sqrt{ $s}=13 $ \$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	5
282	Search for a $W\hat{a}\in^2$ boson decaying to a vector-like quark and a top or bottom quark in the all-jets final state. Journal of High Energy Physics, 2019, 2019, 1.	1.6	5
283	Search for the pair production of light top squarks in the $e\hat{A}\pm\hat{1}/4\hat{a}$ final state in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	5
284	Measurement of the cross section for $\$ mathrm{t}overline{mathrm{t}} \$\$ production with additional jets and b jets in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	5
285	Measurement of differential cross sections for Z bosons produced in association with charm jets in pp collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	5
286	In-medium modification of dijets in PbPb collisions at $\$$ sqrt $\{s_{NN}\}$ $\$$ = 5.02 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	5
287	Measurement of energy flow at large pseudorapidities in pp collisions at (sqrt $\{s\}$ = 0. $\{9\}$) and 7 TeV. , 2011, 2011, 1.		5
288	Measurement of single-diffractive dijet production in proton–proton collisions at \$\$sqrt{s} = 8,ext {Te}ext {V} \$\$ with the CMS and TOTEM experiments. European Physical Journal C, 2020, 80, 1164.	1.4	5

#	Article	IF	Citations
289	Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	1.6	5
290	Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	5
291	Search for long-lived particles decaying into muon pairs in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV collected with a dedicated high-rate data stream. Journal of High Energy Physics, 2022, 2022, .	1.6	5
292	Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	1.6	5
293	Search for electroweak production of charginos and neutralinos in proton-proton collisions at $\$\$$ sqrt $\$\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	1.6	5
294	Search for single production of a vector-like T quark decaying to a top quark and a Z boson in the final state with jets and missing transverse momentum at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	1.6	5
295	Characterisation of irradiated thin silicon sensors for the CMS phase II pixel upgrade. European Physical Journal C, 2017, 77, 1.	1.4	4
296	Search for CP violation in t t \hat{A}^- \$\$ toverline{t} \$\$ production and decay in proton-proton collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	4
297	Measurement of differential cross sections in the kinematic angular variable \ddot{i}^* for inclusive Z boson production in pp collisions at \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	4
298	Search for ZZ resonances in the $2\hat{a}$, " $2\hat{l}$ ½ final state in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	4
299	Event shape variables measured using multijet final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	4
300	Search for resonant production of second-generation sleptons with same-sign dimuon events in protonâ \in "proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2019, 79, 305.	1.4	4
301	The production of isolated photons in PbPb and pp collisions at $\$$ sqrt $\{s_{NN}\}$ \$\\$ = 5.02 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	4
302	Search for supersymmetry in proton-proton collisions at $\$\$ \cdot \$ = 13$ TeV in events with high-momentum Z bosons and missing transverse momentum. Journal of High Energy Physics, 2020, 2020, 1.	1.6	4
303	Measurement of b jet shapes in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 5.02 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	4
304	Search for supersymmetry using Higgs boson to diphoton decays at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	4
305	Search for higgsinos decaying to two Higgs bosons and missing transverse momentum in proton-proton collisions at $\$\$$ sqrt $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	1.6	4
306	Radiation tolerant IP Cores for the control and readout of Front-End electronics in High Energy Physics experiments. , 2011 , , .		3

#	Article	IF	Citations
307	Search for top quark partners with charge 5/3 in proton-proton collisions at $s = 13 $ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	1.6	3
308	Inclusive search for supersymmetry in pp collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV using razor variables and boosted object identification in zero and one lepton final states. Journal of High Energy Physics, 2019, 2019, 1.	1.6	3
309	Search for excited leptons in \hat{a} , \hat{a} , \hat{a} final states in proton-proton collisions at \$\$ sqrt{mathrm{s}}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	3
310	Calibration of the CMS hadron calorimeters using proton-proton collision data at \hat{a} -ss = 13 TeV. Journal of Instrumentation, 2020, 15, P05002-P05002.	0.5	3
311	Search for the lepton flavor violating decay \ddot{l} , \hat{a}^{2} , \hat{a}^{4} in proton-proton collisions at \$\$ sqrt{mathrm{s}} \$\$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	3
312	Study of Drell-Yan dimuon production in proton-lead collisions at $\$$ sqrt $\{s_{NN}\}$ $\$$ = 8.16 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	3
313	Study of the $\$ {mathrm{B}}^{+}o mathrm{J}/uppsi overline{Lambda}mathrm{p} \$\$ decay in proton-proton collisions at \$\$ sqrt{s} \$\$ = 8 TeV. Journal of High Energy Physics, 2019, 2019, 1.	1.6	3
314	Measurements of the (mathrm $\{p\}$ mathrm $\{p\}$ ightarrow mathrm $\{Z\}$ mathrm $\{Z\}$) production cross section and the (mathrm $\{Z\}$ ightarrow 4ell) branching fraction, and constraints on anomalous triple gauge couplings at (sqrt $\{s\} = 13$,ext $\{TeV\}$)., 2018, 78, 1.		3
315	Search for long-lived particles produced in association with a Z boson in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	1.6	3
316	Measurement of the inclusive and differential t\$\$ overline{t} $$$\hat{i}^3$$ cross sections in the single-lepton channel and EFT interpretation at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	3
317	Search for new phenomena with multiple charged leptons in proton–proton collisions at \$\$sqrt{s}= 13\$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 1.	1.4	2
318	Search for an excited lepton that decays via a contact interaction to a lepton and two jets in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	2
319	Measurement of the top quark pair production cross section in dilepton final states containing one \ddot{l} , lepton in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	2
320	Measurements of the differential cross sections of the production of Z + jets and \hat{l}^3 + jets and of Z boson emission collinear with a jet in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	2
321	Measurement of the Z boson differential production cross section using its invisible decay mode (Z →) Tj ETQq1 Physics, 2021, 2021, 1.	1 0.78431 1.6	l 4 rgBT /Ove 2
322	Measurements of angular distance and momentum ratio distributions in three-jet and $\{Z\}$ + two-jet final states in $\{p\}$ ext $\{p\}$ ext $\{p\}$ sollisions. European Physical Journal C, 2021, 81, 852.	1.4	2
323	Observation of tW production in the single-lepton channel in pp collisions at $\$\$ $ sqrt $\{\$\}$ $\$\$ = 13$ TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	2
324	Measurement of prompt open-charm production cross sections in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	1.6	2

#	Article	IF	CITATIONS
325	Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at $\$$ sqrt $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	1.6	2
326	Measurement of the inclusive $\$ mathrm{t}overline{mathrm{t}} \$\$ production cross section in proton-proton collisions at \$\$ sqrt{s} \$\$ = 5.02 TeV. Journal of High Energy Physics, 2022, 2022, 1.	1.6	2
327	Search for heavy resonances decaying to a pair of Lorentz-boosted Higgs bosons in final states with leptons and a bottom quark pair at $\$$ sqrt $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	1.6	2
328	Measurement of the inclusive and differential t\$\$ overline{t} \$\$ \hat{I}^3 cross sections in the dilepton channel and effective field theory interpretation in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	1.6	2
329	Search for top squark pair production in a final state with two tau leptons in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	1.6	1
330	Measurement of b hadron lifetimes in pp collisions at (sqrt $\{s\} = 8$) (,ext $\{Te\}$ ext $\{V\}$)., 2018, 78, 1.		1
331	Study of dijet events with large rapidity separation in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 2.76 TeV. Journal of High Energy Physics, 2022, 2022, 1.	1.6	1
332	Search for a heavy resonance decaying to a top quark and a W boson at $\$\$ $ sqrt $\{s\}$ $\$\$ = 13$ TeV in the fully hadronic final state. Journal of High Energy Physics, 2021, 2021, 1.	1.6	1
333	Observation of B\$\$^0\$\$ \$\$ightarrow \$\$ \$\$uppsi \$\$(2S)K\$\$^0_mathrm {S}uppi ^+uppi ^-\$\$ and B\$\$^0_mathrm {S}\$\$ \$\$ightarrow \$\$ \$\$uppsi \$\$(2S)K\$\$^0_mathrm {S}\$\$ decays. European Physical Journal C, 2022, 82, .	1.4	1
334	Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at $\$$ sqrt $\{s\}=8$ \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	0