
Michael K Udvardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2322590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 2005, 139, 5-17.	2.3	2,835
2	The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 2011, 480, 520-524.	13.7	1,166
3	Genome-Wide Reprogramming of Primary and Secondary Metabolism, Protein Synthesis, Cellular Growth Processes, and the Regulatory Infrastructure of Arabidopsis in Response to Nitrogen. Plant Physiology, 2004, 136, 2483-2499.	2.3	926
4	Transport and Metabolism in Legume-Rhizobia Symbioses. Annual Review of Plant Biology, 2013, 64, 781-805.	8.6	683
5	A gene expression atlas of the model legume <i>Medicago truncatula</i> . Plant Journal, 2008, 55, 504-513.	2.8	668
6	Real-time RT-PCR profiling of over 1400Arabidopsistranscription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant Journal, 2004, 38, 366-379.	2.8	590
7	Eleven Golden Rules of Quantitative RT-PCR. Plant Cell, 2008, 20, 1736-1737.	3.1	580
8	Repressor- and Activator-Type Ethylene Response Factors Functioning in Jasmonate Signaling and Disease Resistance Identified via a Genome-Wide Screen of Arabidopsis Transcription Factor Gene Expression. Plant Physiology, 2005, 139, 949-959.	2.3	540
9	Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, Cell and Environment, 2007, 30, 85-112.	2.8	533
10	Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. Applied and Environmental Microbiology, 2016, 82, 3698-3710.	1.4	443
11	Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. Plant Cell, 2020, 32, 15-41.	3.1	416
12	Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis. BMC Genomics, 2011, 12, 1-11.	1.2	353
13	Symbiotic Leghemoglobins Are Crucial for Nitrogen Fixation in Legume Root Nodules but Not for General Plant Growth and Development. Current Biology, 2005, 15, 531-535.	1.8	350
14	METABOLITE TRANSPORT ACROSS SYMBIOTIC MEMBRANES OF LEGUME NODULES. Annual Review of Plant Biology, 1997, 48, 493-523.	14.2	343
15	Genomeâ€wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in <i>Lotus japonicus</i> . New Phytologist, 2009, 182, 200-212.	3.5	318
16	A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2343-2348.	3.3	316
17	Phosphorus Stress in Common Bean: Root Transcript and Metabolic Responses. Plant Physiology, 2007, 144, 752-767.	2.3	300
18	Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation inLotus japonicus. Plant Journal, 2004, 39, 487-512.	2.8	292

#	Article	IF	CITATIONS
19	Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 2008, 132, 209-219.	2.6	290
20	Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biology, 2009, 9, 10.	1.6	277
21	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	3.5	263
22	Identification of 118 <i>Arabidopsis</i> Transcription Factor and 30 Ubiquitin-Ligase Genes Responding to Chitin, a Plant-Defense Elicitor. Molecular Plant-Microbe Interactions, 2007, 20, 900-911.	1.4	254
23	Purple Acid Phosphatases of Arabidopsis thaliana. Journal of Biological Chemistry, 2002, 277, 27772-27781.	1.6	249
24	Legume Transcription Factors: Global Regulators of Plant Development and Response to the Environment. Plant Physiology, 2007, 144, 538-549.	2.3	244
25	The Sulfate Transporter SST1 Is Crucial for Symbiotic Nitrogen Fixation in Lotus japonicus Root Nodules. Plant Cell, 2005, 17, 1625-1636.	3.1	227
26	A NAP-AAO3 Regulatory Module Promotes Chlorophyll Degradation via ABA Biosynthesis in <i>Arabidopsis</i> Leaves. Plant Cell, 2014, 26, 4862-4874.	3.1	221
27	Structure, function and regulation of ammonium transporters in plants. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1465, 152-170.	1.4	217
28	<i>Vapyrin</i> , a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of <i>Medicago truncatula</i> . Plant Journal, 2011, 65, 244-252.	2.8	211
29	Integrative functional genomics of salt acclimatization in the model legume <i>Lotus japonicus</i> . Plant Journal, 2008, 53, 973-987.	2.8	199
30	Lotus japonicus Metabolic Profiling. Development of Gas Chromatography-Mass Spectrometry Resources for the Study of Plant-Microbe Interactions. Plant Physiology, 2005, 137, 1302-1318.	2.3	196
31	Priming of plant innate immunity by rhizobacteria and βâ€aminobutyric acid: differences and similarities in regulation. New Phytologist, 2009, 183, 419-431.	3.5	192
32	Suppression of Arbuscule Degeneration in <i>Medicago truncatula phosphate transporter4</i> Mutants Is Dependent on the Ammonium Transporter 2 Family Protein AMT2;3. Plant Cell, 2015, 27, 1352-1366.	3.1	180
33	AtMyb41 Regulates Transcriptional and Metabolic Responses to Osmotic Stress in Arabidopsis Â. Plant Physiology, 2009, 149, 1761-1772.	2.3	176
34	The Medicago truncatula gene expression atlas web server. BMC Bioinformatics, 2009, 10, 441.	1.2	175
35	Translating Medicago truncatula genomics to crop legumes. Current Opinion in Plant Biology, 2009, 12, 193-201.	3.5	171
36	Global Changes in the Transcript and Metabolic Profiles during Symbiotic Nitrogen Fixation in Phosphorus-Stressed Common Bean Plants Â. Plant Physiology, 2009, 151, 1221-1238.	2.3	163

#	Article	IF	CITATIONS
37	A Regulatory Network-Based Approach Dissects Late Maturation Processes Related to the Acquisition of Desiccation Tolerance and Longevity of Medicago truncatula Seeds. Plant Physiology, 2013, 163, 757-774.	2.3	155
38	Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the <i>Medicago truncatula dnf7</i> mutant. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15232-15237.	3.3	154
39	Characterization of Arabidopsis AtAMT2, a High-Affinity Ammonium Transporter of the Plasma Membrane. Plant Physiology, 2002, 130, 1788-1796.	2.3	148
40	Recent insights into antioxidant defenses of legume root nodules. New Phytologist, 2010, 188, 960-976.	3.5	147
41	Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature, 2021, 590, 438-444.	13.7	144
42	A dicarboxylate transporter on the peribacteroid membrane of soybean nodules. FEBS Letters, 1988, 231, 36-40.	1.3	141
43	GmZIP1 Encodes a Symbiosis-specific Zinc Transporter in Soybean. Journal of Biological Chemistry, 2002, 277, 4738-4746.	1.6	140
44	Global reprogramming of transcription and metabolism in <scp><i>M</i></scp> <i>edicago truncatula</i> during progressive drought and after rewatering. Plant, Cell and Environment, 2014, 37, 2553-2576.	2.8	138
45	Systemic Signaling of the Plant Nitrogen Status Triggers Specific Transcriptome Responses Depending on the Nitrogen Source in <i>Medicago truncatula</i> À Â. Plant Physiology, 2008, 146, 2020-2035.	2.3	136
46	Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nature Biotechnology, 2018, 36, 249-257.	9.4	136
47	MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in <i>Medicago truncatula</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1766-1771.	3.3	135
48	Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants. PLoS ONE, 2009, 4, e6556.	1.1	134
49	Establishment of the <i><scp>L</scp>otus japonicus</i> Gene Expression Atlas (<scp>L</scp> j <scp>GEA</scp>) and its use to explore legume seed maturation. Plant Journal, 2013, 74, 351-362.	2.8	134
50	Novel Aspects of Symbiotic Nitrogen Fixation Uncovered by Transcript Profiling with cDNA Arrays. Molecular Plant-Microbe Interactions, 2002, 15, 411-420.	1.4	129
51	Comparative metabolomics of drought acclimation in model and forage legumes. Plant, Cell and Environment, 2012, 35, 136-149.	2.8	128
52	<i>Medicago truncatula </i> <scp>DNF</scp> 2 is a <scp>PI</scp> â€ <scp>PLC</scp> â€ <scp>XD</scp> â€containing protein required for bacteroid persistence and prevention of nodule early senescence and defenseâ€like reactions. New Phytologist, 2013, 197, 1250-1261.	3.5	128
53	System responses to longâ€ŧerm drought and reâ€watering of two contrasting alfalfa varieties. Plant Journal, 2011, 68, 871-889.	2.8	127
54	From Model to Crop: Functional Analysis of a <i>STAY-GREEN</i> Gene in the Model Legume <i>Medicago truncatula</i> and Effective Use of the Gene for Alfalfa Improvement Â. Plant Physiology, 2011, 157, 1483-1496.	2.3	124

#	Article	IF	CITATIONS
55	Lotus japonicus: legume research in the fast lane. Trends in Plant Science, 2005, 10, 222-228.	4.3	123
56	Comparative ionomics and metabolomics in extremophile and glycophytic <i>Lotus</i> species under salt stress challenge the metabolic preâ€adaptation hypothesis. Plant, Cell and Environment, 2011, 34, 605-617.	2.8	122
57	A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods, 2008, 4, 18.	1.9	120
58	PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool. BMC Bioinformatics, 2013, 14, 321.	1.2	119
59	Comparative Functional Genomics of Salt Stress in Related Model and Cultivated Plants Identifies and Overcomes Limitations to Translational Genomics. PLoS ONE, 2011, 6, e17094.	1.1	119
60	The H+-ATPase HA1 of <i>Medicago truncatula</i> Is Essential for Phosphate Transport and Plant Growth during Arbuscular Mycorrhizal Symbiosis Â. Plant Cell, 2014, 26, 1808-1817.	3.1	118
61	Identification and overexpression of <i>gibberellin 2â€oxidase</i> (<i><scp>GA</scp>2ox</i>) in switchgrass (<i><scp>P</scp>anicum virgatum</i> L.) for improved plant architecture and reduced biomass recalcitrance. Plant Biotechnology Journal, 2015, 13, 636-647.	4.1	117
62	Characterization ofArabidopsisAtAMT2, a novel ammonium transporter in plants. FEBS Letters, 2000, 467, 273-278.	1.3	113
63	An efficient reverse genetics platform in the model legume <i><scp>M</scp>edicago truncatula</i> . New Phytologist, 2014, 201, 1065-1076.	3.5	113
64	A <i>Medicago truncatula</i> Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation Â. Plant Physiology, 2012, 159, 1686-1699.	2.3	109
65	The C ₂ H ₂ Transcription Factor REGULATOR OF SYMBIOSOME DIFFERENTIATION Represses Transcription of the Secretory Pathway Gene <i>VAMP721a</i> and Promotes Symbiosome Development in <i>Medicago truncatula</i> . Plant Cell, 2013, 25, 3584-3601.	3.1	109
66	MtSWEET11, a Nodule-Specific Sucrose Transporter of <i>Medicago truncatula</i> . Plant Physiology, 2016, 171, 554-565.	2.3	101
67	Genome-Wide Identification of <i>Medicago</i> Peptides Involved in Macronutrient Responses and Nodulation. Plant Physiology, 2017, 175, 1669-1689.	2.3	101
68	Peace Talks and Trade Deals. Keys to Long-Term Harmony in Legume-Microbe Symbioses: Figure 1 Plant Physiology, 2005, 137, 1205-1210.	2.3	99
69	Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in <i>Lotus japonicus</i> under drought stress. New Phytologist, 2010, 188, 1001-1013.	3.5	98
70	Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds. Plant Journal, 2010, 61, 611-622.	2.8	95
71	The Integral Membrane Protein SEN1 is Required for Symbiotic Nitrogen Fixation in Lotus japonicus Nodules. Plant and Cell Physiology, 2012, 53, 225-236.	1.5	95
72	Rhizobial Infection Is Associated with the Development of Peripheral Vasculature in Nodules of <i>Medicago truncatula</i> Â Â Â. Plant Physiology, 2013, 162, 107-115.	2.3	92

#	Article	IF	CITATIONS
73	Legume Transcription Factor Genes: What Makes Legumes So Special? Â. Plant Physiology, 2009, 151, 991-1001.	2.3	87
74	Regulation of GmNRT2 expression and nitrate transport activity in roots of soybean (Glycine max). Planta, 1998, 206, 44-52.	1.6	86
75	The Galactolipid Digalactosyldiacylglycerol Accumulates in the Peribacteroid Membrane of Nitrogen-fixing Nodules of Soybean and Lotus. Journal of Biological Chemistry, 2004, 279, 34624-34630.	1.6	86
76	Electrogenic ATPase Activity on the Peribacteroid Membrane of Soybean (<i>Glycine max</i> L.) Root Nodules. Plant Physiology, 1989, 90, 982-987.	2.3	85
77	Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Molecular Biology, 2008, 67, 567-580.	2.0	85
78	<i>Medicago truncatula</i> Natural Resistance-Associated Macrophage Protein1 Is Required for Iron Uptake by Rhizobia-Infected Nodule Cells Â. Plant Physiology, 2015, 168, 258-272.	2.3	85
79	Characterization of an Ammonium Transport Protein from the Peribacteroid Membrane of Soybean Nodules. , 1998, 281, 1202-1206.		82
80	Natural Variation for Nutrient Use and Remobilization Efficiencies in Switchgrass. Bioenergy Research, 2009, 2, 257-266.	2.2	82
81	Molecular and cellular characterisation of LjAMT2;1, an ammonium transporter from the model legume Lotus japonicus. Plant Molecular Biology, 2003, 51, 99-108.	2.0	78
82	Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Functional Plant Biology, 2006, 33, 153.	1.1	77
83	Diversity of Nitrogen-Fixing Bacteria Associated with Switchgrass in the Native Tallgrass Prairie of Northern Oklahoma. Applied and Environmental Microbiology, 2014, 80, 5636-5643.	1.4	77
84	Characterization of Three Functional High-Affinity Ammonium Transporters in Lotus japonicus with Differential Transcriptional Regulation and Spatial Expression. Plant Physiology, 2004, 134, 1763-1774.	2.3	76
85	Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula. Molecular Genetics and Genomics, 2009, 281, 55-66.	1.0	76
86	Genomic Inventory and Transcriptional Analysis of <i>Medicago truncatula</i> Transporters. Plant Physiology, 2010, 152, 1716-1730.	2.3	73
87	Presymbiotic factors released by the arbuscular mycorrhizal fungus <i>Gigaspora margarita</i> induce starch accumulation in <i>Lotus japonicus</i> roots. New Phytologist, 2009, 183, 53-61.	3.5	72
88	A protein complex required for polar growth of rhizobial infection threads. Nature Communications, 2019, 10, 2848.	5.8	72
89	Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (<i>Panicum virgatum</i> L.). Plant Journal, 2013, 74, 160-173.	2.8	70
90	Extreme specificity of NCR gene expression in Medicago truncatula. BMC Genomics, 2014, 15, 712.	1.2	70

#	Article	IF	CITATIONS
91	Genomeâ€wide association of droughtâ€related and biomass traits with HapMap SNPs in <i>Medicago truncatula</i> . Plant, Cell and Environment, 2015, 38, 1997-2011.	2.8	69
92	Molecular and Cell Biology of a Family of Voltage-Dependent Anion Channel Porins in Lotus japonicus. Plant Physiology, 2004, 134, 182-193.	2.3	67
93	Siderophore-bound iron in the peribacteriod space of soybean root nodules. Plant and Soil, 1996, 178, 161-169.	1.8	66
94	The <i>Vigna unguiculata</i> Gene Expression Atlas (Vu <scp>GEA</scp>) from <i>de novo</i> assembly and quantification of <scp>RNA</scp> â€seq data provides insights into seed maturation mechanisms. Plant Journal, 2016, 88, 318-327.	2.8	64
95	Title is missing!. Plant and Soil, 2001, 231, 151-160.	1.8	61
96	Mining for robust transcriptional and metabolic responses to longâ€ŧerm salt stress: a case study on the model legume <i>Lotus japonicus</i> . Plant, Cell and Environment, 2010, 33, 468-480.	2.8	57
97	Localization of H + -ATPases in soybean root nodules. Planta, 1999, 209, 25-32.	1.6	55
98	Absence of Symbiotic Leghemoglobins Alters Bacteroid and Plant Cell Differentiation During Development of <i>Lotus japonicus</i> Root Nodules. Molecular Plant-Microbe Interactions, 2009, 22, 800-808.	1.4	55
99	A <i>Medicago truncatula</i> Cystathionine-β-Synthase-like Domain-Containing Protein Is Required for Rhizobial Infection and Symbiotic Nitrogen Fixation. Plant Physiology, 2016, 170, 2204-2217.	2.3	55
100	An Iron-Activated Citrate Transporter, MtMATE67, Is Required for Symbiotic Nitrogen Fixation. Plant Physiology, 2018, 176, 2315-2329.	2.3	55
101	Metabolism of Reactive Oxygen Species Is Attenuated in Leghemoglobin-Deficient Nodules of Lotus japonicus. Molecular Plant-Microbe Interactions, 2007, 20, 1596-1603.	1.4	53
102	TransportTP: A two-phase classification approach for membrane transporter prediction and characterization. BMC Bioinformatics, 2009, 10, 418.	1.2	53
103	Senescence and nitrogen use efficiency in perennial grasses for forage and biofuel production. Journal of Experimental Botany, 2018, 69, 855-865.	2.4	53
104	Mechanisms of ammonium transport, accumulation, and retention in ooyctes and yeast cells expressingArabidopsisAtAMT1;1. FEBS Letters, 2006, 580, 3931-3936.	1.3	48
105	A Research Road Map for Responsible Use of Agricultural Nitrogen. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	48
106	Overexpression of AtLOV1 in Switchgrass Alters Plant Architecture, Lignin Content, and Flowering Time. PLoS ONE, 2012, 7, e47399.	1.1	48
107	Specificity and regulation of the dicarboxylate carrier on the peribacteroid membrane of soybean nodules. Planta, 1990, 182, 437-444.	1.6	46
108	ATPase activity and anion transport across the peribacteroid membrane of isolated soybean symbiosomes. Archives of Microbiology, 1991, 156, 362-366.	1.0	45

#	Article	IF	CITATIONS
109	A sucrose transporter, LjSUT4, is up-regulated during Lotus japonicus nodule development. Journal of Experimental Botany, 2003, 54, 1789-1791.	2.4	45
110	<i>Lotus japonicus</i> NF-YA1 Plays an Essential Role During Nodule Differentiation and Targets Members of the <i>SHI/STY</i> Gene Family. Molecular Plant-Microbe Interactions, 2016, 29, 950-964.	1.4	44
111	<i>Medicago truncatula</i> copper transporter 1 (Mt <scp>COPT</scp> 1) delivers copper for symbiotic nitrogen fixation. New Phytologist, 2018, 218, 696-709.	3.5	42
112	Ammonia (¹⁴ C-Methylamine) Transport across the Bacteroid and Peribacteroid Membranes of Soybean Root Nodules. Plant Physiology, 1990, 94, 71-76.	2.3	41
113	Spatial and Temporal Organization of Sucrose Metabolism in Lotus japonicus Nitrogen-Fixing Nodules Suggests a Role for the Elusive Alkaline/Neutral Invertase. Plant Molecular Biology, 2006, 62, 53-69.	2.0	40
114	Lignin Modification Leads to Increased Nodule Numbers in Alfalfa Â. Plant Physiology, 2014, 164, 1139-1150.	2.3	40
115	MtSSPdb: The <i>Medicago truncatula</i> Small Secreted Peptide Database. Plant Physiology, 2020, 183, 399-413.	2.3	40
116	Identification and Overexpression of a Knotted1-Like Transcription Factor in Switchgrass (Panicum) Tj ETQq0 0 C) rgBT /Ove 1.7	erlggk 10 Tf 5
117	Lotus japonicus LjKUP Is Induced Late During Nodule Development and Encodes a Potassium Transporter of the Plasma Membrane. Molecular Plant-Microbe Interactions, 2004, 17, 789-797.	1.4	38
118	LegumeGRN: A Gene Regulatory Network Prediction Server for Functional and Comparative Studies. PLoS ONE, 2013, 8, e67434.	1.1	37
119	Nitrogen remobilization and conservation, and underlying senescenceâ€associated gene expression in the perennial switchgrass <i>Panicum virgatum</i> . New Phytologist, 2016, 211, 75-89.	3.5	37
120	Identification of potential early regulators of aphid resistance in <i>Medicago truncatula</i> via transcription factor expression profiling. New Phytologist, 2010, 186, 980-994.	3.5	36
121	GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. New Phytologist, 2020, 228, 667-681.	3.5	36
122	Isolation and analysis of a cDNA clone that encodes an alfalfa (Medicago sativa) aspartate aminotransferase. Molecular Genetics and Genomics, 1991, 231, 97-105.	2.4	35
123	A Lotus japonicus β-type carbonic anhydrase gene expression pattern suggests distinct physiological roles during nodule development. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2003, 1628, 186-194.	2.4	35
124	Genetic and genomic analysis of legume flowers and seeds. Current Opinion in Plant Biology, 2006, 9, 133-141.	3.5	35
125	Functional Analysis of Cellulose Synthase CesA4 and CesA6 Genes in Switchgrass (Panicum virgatum) by Overexpression and RNAi-Mediated Gene Silencing. Frontiers in Plant Science, 2018, 9, 1114.	1.7	34

¹²⁶Nitrogen Fertilization Reduces Nitrogen Fixation Activity of Diverse Diazotrophs in Switchgrass1.433Roots. Phytobiomes Journal, 2021, 5, 80-87.1.433

#	Article	IF	CITATIONS
127	Clobal regulation of reactive oxygen species scavenging genes in alfalfa root and shoot under gradual drought stress and recovery. Plant Signaling and Behavior, 2012, 7, 539-543.	1.2	32
128	Isolation and characterization of a cDNA encoding NADP+-specific isocitrate dehydrogenase from soybean (Glycine max). Plant Molecular Biology, 1993, 21, 739-752.	2.0	31
129	DASH transcription factor impacts Medicago truncatula seed size by its action on embryo morphogenesis and auxin homeostasis. Plant Journal, 2015, 81, 453-466.	2.8	31
130	Induction and Spatial Organization of Polyamine Biosynthesis During Nodule Development in Lotus japonicus. Molecular Plant-Microbe Interactions, 2004, 17, 1283-1293.	1.4	30
131	Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing. Biotechnology for Biofuels, 2018, 11, 170.	6.2	30
132	The future of legume genetic data resources: Challenges, opportunities, and priorities. , 2019, 1, e16.		30
133	Transcriptional, metabolic, physiological and developmental responses of switchgrass to phosphorus limitation. Plant, Cell and Environment, 2021, 44, 186-202.	2.8	27
134	Metabolome-ionome-biomass interactions. Plant Signaling and Behavior, 2008, 3, 598-600.	1.2	26
135	Ascorbate oxidase: The unexpected involvement of a â€~wasteful enzyme' in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi. Plant Physiology and Biochemistry, 2012, 59, 71-79.	2.8	26
136	Transcriptomic and Metabolic Changes Associated with Photorespiratory Ammonium Accumulation in the Model Legume Lotus japonicus À Â. Plant Physiology, 2013, 162, 1834-1848.	2.3	26
137	Development and use of a switchgrass (Panicum virgatum L.) transformation pipeline by the BioEnergy Science Center to evaluate plants for reduced cell wall recalcitrance. Biotechnology for Biofuels, 2017, 10, 309.	6.2	26
138	Genomeâ€wide association analysis of salinity responsive traits in Medicago truncatula. Plant, Cell and Environment, 2019, 42, 1513-1531.	2.8	26
139	Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy. PLoS Genetics, 2020, 16, e1009249.	1.5	26
140	Genomeâ€wide analysis of flanking sequences reveals thatÂ <i>Tnt1</i> insertion is positively correlated with gene methylation in <i>Medicago truncatula</i> . Plant Journal, 2019, 98, 1106-1119.	2.8	25
141	The Soybean GmN6L Gene Encodes a Late Nodulin Expressed in the Infected Zone of Nitrogen-Fixing Nodules. Molecular Plant-Microbe Interactions, 2002, 15, 630-636.	1.4	24
142	Control of Vegetative to Reproductive Phase Transition Improves Biomass Yield and Simultaneously Reduces Lignin Content in Medicago truncatula. Bioenergy Research, 2015, 8, 857-867.	2.2	23
143	Nitrogen-Fixing Nodules Are an Important Source of Reduced Sulfur, Which Triggers Global Changes in Sulfur Metabolism in <i>Lotus japonicus</i> . Plant Cell, 2015, 27, 2384-2400.	3.1	23
144	MtMTP2-Facilitated Zinc Transport Into Intracellular Compartments Is Essential for Nodule Development in Medicago truncatula. Frontiers in Plant Science, 2018, 9, 990.	1.7	23

#	Article	IF	CITATIONS
145	Tissue-specific down-regulation of LjAMT1;1 compromises nodule function and enhances nodulation in Lotus japonicus. Plant Molecular Biology, 2008, 68, 585-595.	2.0	22
146	Carbon and Nitrogen Metabolism in Rhizobia. , 1998, , 461-485.		21
147	Defects in Rhizobial Cyclic Glucan and Lipopolysaccharide Synthesis Alter Legume Gene Expression During Nodule Development. Molecular Plant-Microbe Interactions, 2008, 21, 50-60.	1.4	21
148	Keel petal incision: a simple and efficient method for genetic crossing in Medicago truncatula. Plant Methods, 2014, 10, 11.	1.9	21
149	Clobal gene expression profiling of two switchgrass cultivars following inoculation with <i>Burkholderia phytofirmans</i> strain PsJN. Journal of Experimental Botany, 2015, 66, 4337-4350.	2.4	21
150	PvNAC1 and PvNAC2 Are Associated with Leaf Senescence and Nitrogen Use Efficiency in Switchgrass. Bioenergy Research, 2015, 8, 868-880.	2.2	21
151	PLANT SCIENCE: GRAS Genes and the Symbiotic Green Revolution. Science, 2005, 308, 1749-1750.	6.0	20
152	Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans. Frontiers in Plant Science, 2016, 7, 1580.	1.7	20
153	The Nodule-Specific PLAT Domain Protein NPD1 Is Required for Nitrogen-Fixing Symbiosis. Plant Physiology, 2019, 180, 1480-1497.	2.3	20
154	Nodulation enhances dark CO2 fixation and recycling in the model legume Lotus japonicus. Journal of Experimental Botany, 2011, 62, 2959-2971.	2.4	19
155	Cessation of photosynthesis in Lotus japonicus leaves leads to reprogramming of nodule metabolism. Journal of Experimental Botany, 2013, 64, 1317-1332.	2.4	18
156	GWASpro: a high-performance genome-wide association analysis server. Bioinformatics, 2019, 35, 2512-2514.	1.8	18
157	Differentiation of Plant Cells During Symbiotic Nitrogen Fixation. Comparative and Functional Genomics, 2002, 3, 151-157.	2.0	17
158	Molecular and Biochemical Characterization of the Parvulin-Type PPIases in <i>Lotus japonicus</i> Â Â Â Â. Plant Physiology, 2009, 150, 1160-1173.	2.3	16
159	Nutrient transport across symbiotic membranes from legume nodules. Functional Plant Biology, 2001, 28, 669.	1.1	15
160	Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm. Molecular BioSystems, 2010, 6, 988.	2.9	13
161	Functional genomics of plant transporters in legume nodules. Functional Plant Biology, 2006, 33, 731.	1.1	12
162	Enabling Reverse Genetics in Medicago truncatula Using High-Throughput Sequencing for Tnt1 Flanking Sequence Recovery. Methods in Molecular Biology, 2017, 1610, 25-37.	0.4	12

#	Article	IF	CITATIONS
163	Three Common Symbiotic ABC Subfamily B Transporters in <i>Medicago truncatula</i> Are Regulated by a NIN-Independent Branch of the Symbiosis Signaling Pathway. Molecular Plant-Microbe Interactions, 2021, 34, 939-951.	1.4	12
164	A High-Throughput RNA Interference (RNAi)-Based Approach Using Hairy Roots for the Study of Plant–Rhizobia Interactions. Methods in Molecular Biology, 2015, 1287, 159-178.	0.4	11
165	PHO1 family members transport phosphate from infected nodule cells to bacteroids in Medicago truncatula. Plant Physiology, 2021, 185, 196-209.	2.3	11
166	Microscopic and Transcriptomic Analyses of Dalbergoid Legume Peanut Reveal a Divergent Evolution Leading to Nod-Factor-Dependent Epidermal Crack-Entry and Terminal Bacteroid Differentiation. Molecular Plant-Microbe Interactions, 2022, 35, 131-145.	1.4	11
167	AffyTrees: Facilitating Comparative Analysis of Affymetrix Plant Microarray Chips. Plant Physiology, 2008, 146, 377-386.	2.3	10
168	Cloning and functional characterization of <i>Lj</i> PLT4, a plasma membrane xylitol H ⁺ - symporter from <i>Lotus japonicus</i> . Molecular Membrane Biology, 2011, 28, 1-13.	2.0	10
169	Targeted Switchgrass BAC Library Screening and Sequence Analysis Identifies Predicted Biomass and Stress Response-Related Genes. Bioenergy Research, 2016, 9, 109-122.	2.2	10
170	Characterization of two novel nodule-enhanced α-type carbonic anhydrases from Lotus japonicus. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 496-504.	1.1	9
171	Application of Synthetic Peptide CEP1 Increases Nutrient Uptake Rates Along Plant Roots. Frontiers in Plant Science, 2021, 12, 793145.	1.7	9
172	A Plant Gene Encoding One-Heme and Two-Heme Hemoglobins With Extreme Reactivities Toward Diatomic Gases and Nitrite. Frontiers in Plant Science, 2020, 11, 600336.	1.7	8
173	Physiological and biochemical adaptive traits support the specific breeding of alfalfa (<scp><i>Medicago sativa</i></scp>) for severely droughtâ€stressed or moistureâ€favourable environments. Journal of Agronomy and Crop Science, 2023, 209, 132-143.	1.7	8
174	Analysis of Large Seeds from Three Different Medicago truncatula Ecotypes Reveals a Potential Role of Hormonal Balance in Final Size Determination of Legume Grains. International Journal of Molecular Sciences, 2016, 17, 1472.	1.8	7
175	Stimulation of respiration and nitrogenase in bacteroids of Siratro (Macroptilium atropurpureum) by plant nodule cytosol. Plant Cell Reports, 1986, 5, 207-209.	2.8	6
176	Silencing Folylpolyglutamate Synthetase1 (FPGS1) in Switchgrass (Panicum virgatum L.) Improves Lignocellulosic Biofuel Production. Frontiers in Plant Science, 2020, 11, 843.	1.7	6
177	Metabolome analysis using GC-MS. , 2005, , 165-174.		5
178	The Medicago truncatula Gene Expression Atlas (MtGEA): A Tool for Legume Seed Biology and Biotechnology. , 2012, , 111-127.		2
179	Plant Transcription Factors as Novel Molecular Markers for Legumes. , 2010, , 421-425.		2
180	Transcriptional Programs and Regulators Underlying Age-Dependent and Dark-Induced Senescence in Medicago truncatula. Cells, 2022, 11, 1570.	1.8	2

#	Article	IF	CITATIONS
181	Draft Genome Sequences of Switchgrass Diazotrophs. Microbiology Resource Announcements, 2021, 10, e0028421.	0.3	1
182	Dissection of physiological, transcriptional, and metabolic traits in two tall fescue genotypes with contrasting drought tolerance. Plant-Environment Interactions, 2021, 2, 277.	0.7	1
183	Spectroscopic analysis reveals that soil phosphorus availability and plant allocation strategies impact feedstock quality of nutrient-limited switchgrass. Communications Biology, 2022, 5, 227.	2.0	1
184	Increased Ascorbate Biosynthesis Does Not Improve Nitrogen Fixation Nor Alleviate the Effect of Drought Stress in Nodulated Medicago truncatula Plants. Frontiers in Plant Science, 2021, 12, 686075.	1.7	0
185	A Tutorial on Lotus japonicus Transcriptomic Tools. Compendium of Plant Genomes, 2014, , 183-199.	0.3	0