Jose Perez-Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2322449/publications.pdf

Version: 2024-02-01

50276 54911 7,671 111 46 84 citations h-index g-index papers 112 112 112 5560 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Robust Cre recombinase activity in the biotrophic smut fungus <i>Ustilago maydis</i> enables efficient conditional null mutants <i>in planta</i> . Genetics, 2022, 220, .	2.9	1
2	The Nma1 protein promotes long distance transport mediated by early endosomes in Ustilago maydis. Molecular Microbiology, 2021, , .	2.5	1
3	Incompatibility between proliferation and plant invasion is mediated by a regulator of appressorium formation in the corn smut fungus <i>Ustilago maydis</i> Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30599-30609.	7.1	5
4	Creating novel specificities in a fungal nonself recognition system by single step homologous recombination events. New Phytologist, 2020, 228, 1001-1010.	7.3	13
5	Protein Phosphatase Ppz1 Is Not Regulated by a Hal3-Like Protein in Plant Pathogen Ustilago maydis. International Journal of Molecular Sciences, 2019, 20, 3817.	4.1	5
6	Sugar Partitioning between <i>Ustilago maydis</i> and Its Host <i>Zea mays</i> L during Infection. Plant Physiology, 2019, 179, 1373-1385.	4.8	23
7	Cytoplasmic retention and degradation of a mitotic inducer enable plant infection by a pathogenic fungus. ELife, 2019, 8, .	6.0	7
8	Cytoplasmic Transport Machinery of the SPF27 Homologue Num1 in Ustilago maydis. Scientific Reports, 2018, 8, 3611.	3.3	18
9	Galactose metabolism and toxicity in Ustilago maydis. Fungal Genetics and Biology, 2018, 114, 42-52.	2.1	18
10	Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiology and Molecular Biology Reviews, 2018, 82, .	6.6	231
11	Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Seminars in Cell and Developmental Biology, 2016, 57, 93-99.	5.0	15
12	Editorial. Seminars in Cell and Developmental Biology, 2016, 57, 68.	5.0	0
13	Genetic Manipulation of the Plant Pathogen Ustilago maydis to Study Fungal Biology and Plant Microbe Interactions. Journal of Visualized Experiments, 2016, , .	0.3	25
14	Mre11 and Blm-Dependent Formation of ALT-Like Telomeres in Ku-Deficient Ustilago maydis. PLoS Genetics, 2015, 11, e1005570.	3.5	23
15	MRN- and 9-1-1-Independent Activation of the ATR-Chk1 Pathway during the Induction of the Virulence Program in the Phytopathogen Ustilago maydis. PLoS ONE, 2015, 10, e0137192.	2.5	7
16	Fungal Ku prevents permanent cell cycle arrest by suppressing DNA damage signaling at telomeres. Nucleic Acids Research, 2015, 43, 2138-2151.	14.5	22
17	<scp>H</scp> xt1, a monosaccharide transporter and sensor required for virulence of the maize pathogen <i><scp>U</scp>stilago maydis</i> <new 1086-1100.<="" 2015,="" 206,="" p="" phytologist,=""></new>	7.3	55
18	Uniparental mitochondrial DNA inheritance is not affected in Ustilago maydis \hat{l} atg11 mutants blocked in mitophagy. BMC Microbiology, 2015, 15, 23.	3.3	11

#	Article	IF	Citations
19	LAMMER kinase contributes to genome stability in Ustilago maydis. DNA Repair, 2015, 33, 70-77.	2.8	6
20	Appressorium formation in the corn smut fungus Ustilago maydis requires a G2 cell cycle arrest. Plant Signaling and Behavior, 2015, 10, e1001227.	2.4	12
21	Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis. Journal of Cell Science, 2015, 128, e1-e1.	2.0	0
22	The SPF27 Homologue Num1 Connects Splicing and Kinesin 1-Dependent Cytoplasmic Trafficking in Ustilago maydis. PLoS Genetics, 2014, 10, e1004046.	3.5	15
23	Therapy with antitumor lipids: Worming the way. Cell Cycle, 2014, 13, 2993-2993.	2.6	0
24	Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis. Development (Cambridge), 2014, 141, 4817-4826.	2.5	24
25	Functional Genomics of Smut Fungi. Advances in Botanical Research, 2014, 70, 143-172.	1.1	4
26	Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genetics and Biology, 2014, 70, 42-67.	2.1	133
27	Crosstalk between the Unfolded Protein Response and Pathways That Regulate Pathogenic Development in $\langle i \rangle$ Ustilago maydis $\langle i \rangle$ Â. Plant Cell, 2013, 25, 4262-4277.	6.6	53
28	A DNA Damage Checkpoint Pathway Coordinates the Division of Dikaryotic Cells in the Ink Cap Mushroom <i>Coprinopsis cinerea</i> . Genetics, 2013, 195, 47-57.	2.9	11
29	Initiation of Meiotic Recombination in <i>Ustilago maydis</i> . Genetics, 2013, 195, 1231-1240.	2.9	10
30	The distinct wiring between cell cycle regulation and the widely conserved Morphogenesis-Related (MOR) pathway in the fungus Ustilago maydis determines the morphological outcome. Journal of Cell Science, 2012, 125, 4597-608.	2.0	21
31	Cell Cycle and Morphogenesis Connections During the Formation of the Infective Filament in Ustilago maydis. Topics in Current Genetics, 2012, , 97-114.	0.7	4
32	Targeting GSK3 from <i>Ustilago maydis</i> : Type-II Kinase Inhibitors as Potential Antifungals. ACS Chemical Biology, 2012, 7, 1257-1267.	3.4	18
33	Common motifs in the response of cereal primary metabolism to fungal pathogens are not based on similar transcriptional reprogramming. Frontiers in Plant Science, 2011, 2, 39.	3.6	25
34	Dikaryotic cell cycle in the phytopathogenic fungus <i>Ustilago maydis</i> io controlled by the DNA damage response cascade. Plant Signaling and Behavior, 2011, 6, 1574-1577.	2.4	8
35	The DNA Damage Response Signaling Cascade Regulates Proliferation of the Phytopathogenic Fungus Ustilago maydis in Planta. Plant Cell, 2011, 23, 1654-1665.	6.6	28
36	The <i>Ustilago maydis</i> Forkhead Transcription Factor Fox1 Is Involved in the Regulation of Genes Required for the Attenuation of Plant Defenses During Pathogenic Development. Molecular Plant-Microbe Interactions, 2010, 23, 1118-1129.	2.6	40

#	Article	IF	CITATIONS
37	The i>Ustilago maydis b i>mating type locus controls hyphal proliferation and expression of secreted virulence factors i>in planta i>. Molecular Microbiology, 2010, 75, 208-220.	2.5	72
38	The i>Ustilago maydis i>Clp1 Protein Orchestrates Pheromone and i>b i>Dependent Signaling Pathways to Coordinate the Cell Cycle and Pathogenic Development. Plant Cell, 2010, 22, 2908-2922.	6.6	68
39	Activation of the Cell Wall Integrity Pathway Promotes Escape from G2 in the Fungus Ustilago maydis. PLoS Genetics, 2010, 6, e1001009.	3.5	48
40	The Transcription Factor Rbf1 Is the Master Regulator for b-Mating Type Controlled Pathogenic Development in Ustilago maydis. PLoS Pathogens, 2010, 6, e1001035.	4.7	114
41	A Novel High-Affinity Sucrose Transporter Is Required for Virulence of the Plant Pathogen Ustilago maydis. PLoS Biology, 2010, 8, e1000303.	5.6	205
42	Growth and development: eukaryotes. Current Opinion in Microbiology, 2010, 13, 661-662.	5.1	2
43	Septins from the Phytopathogenic Fungus Ustilago maydis Are Required for Proper Morphogenesis but Dispensable for Virulence. PLoS ONE, 2010, 5, e12933.	2.5	51
44	<i>Ustilago maydis</i> Infection Strongly Alters Organic Nitrogen Allocation in Maize and Stimulates Productivity of Systemic Source Leaves Â. Plant Physiology, 2009, 152, 293-308.	4.8	98
45	A role for the DNA-damage checkpoint kinase Chk1 in the virulence program of the fungus <i>Ustilago maydis</i> . Journal of Cell Science, 2009, 122, 4130-4140.	2.0	27
46	Growth at High pH and Sodium and Potassium Tolerance in Media above the Cytoplasmic pH Depend on ENA ATPases in <i>Ustilago maydis</i> Lukaryotic Cell, 2009, 8, 821-829.	3.4	36
47	DNA-damage response in the basidiomycete fungus Ustilago maydis relies in a sole Chk1-like kinase. DNA Repair, 2009, 8, 720-731.	2.8	20
48	Physicalâ€chemical plantâ€derived signals induce differentiation in <i>Ustilago maydis</i> Molecular Microbiology, 2009, 71, 895-911.	2.5	120
49	Sphingolipid biosynthesis is required for polar growth in the dimorphic phytopathogen Ustilago maydis. Fungal Genetics and Biology, 2009, 46, 190-200.	2.1	27
50	Comparative genomics of MAP kinase and calcium–calcineurin signalling components in plant and human pathogenic fungi. Fungal Genetics and Biology, 2009, 46, 287-298.	2.1	302
51	Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph <i>Ustilago maydis</i> . Plant Journal, 2008, 56, 181-195.	5.7	328
52	Ustilago maydis, a new fungal model system for cell biology. Trends in Cell Biology, 2008, 18, 61-67.	7.9	113
53	Establishment of compatibility in the Ustilago maydis/maize pathosystem. Journal of Plant Physiology, 2008, 165, 29-40.	3.5	106
54	Sex in smut fungi: Structure, function and evolution of mating-type complexes. Fungal Genetics and Biology, 2008, 45, S15-S21.	2.1	116

#	Article	IF	CITATIONS
55	14-3-3 regulates the G2/M transition in the basidiomycete Ustilago maydis. Fungal Genetics and Biology, 2008, 45, 1206-1215.	2.1	21
56	Spa2 is required for morphogenesis but it is dispensable for pathogenicity in the phytopathogenic fungus Ustilago maydis. Fungal Genetics and Biology, 2008, 45, 1315-1327.	2.1	20
57	Cdk5 kinase regulates the association between adaptor protein Bem1 and GEF Cdc24 in the fungus Ustilago maydis. Journal of Cell Science, 2008, 121, 2824-2832.	2.0	14
58	Connections between polar growth and cell cycle arrest during the induction of the virulence program in the phytopathogenic fungus <i>Ustilago maydis</i> . Plant Signaling and Behavior, 2008, 3, 480-481.	2.4	15
59	Sustained cell polarity and virulence in the phytopathogenic fungus Ustilago maydis depends on an essential cyclin-dependent kinase from the Cdk5/Pho85 family. Journal of Cell Science, 2007, 120, 1584-1595.	2.0	79
60	Polar Growth in the Infectious Hyphae of the Phytopathogen <i>Ustilago maydis</i> Depends on a Virulence-Specific Cyclin. Plant Cell, 2007, 19, 3280-3296.	6.6	36
61	Ortholog of BRCA2-interacting protein BCCIP controls morphogenetic responses during DNA replication stress in Ustilago maydis. DNA Repair, 2007, 6, 1651-1660.	2.8	11
62	Tetracycline-regulated gene expression in the pathogen Ustilago maydis. Fungal Genetics and Biology, 2006, 43, 727-738.	2.1	51
63	Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 2006, 444, 97-101.	27.8	1,113
64	Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi. Molecular Genetics and Genomics, 2006, 276, 211-229.	2.1	53
65	The Clp1 Protein Is Required for Clamp Formation and Pathogenic Development of Ustilago maydis. Plant Cell, 2006, 18, 2388-2401.	6.6	103
66	Biz 1, a Zinc Finger Protein Required for Plant Invasion by Ustilago maydis, Regulates the Levels of a Mitotic Cyclin. Plant Cell, 2006, 18, 2369-2387.	6.6	75
67	The cdc25 phosphatase is essential for the G2/M phase transition in the basidiomycete yeast Ustilago maydis. Molecular Microbiology, 2005, 58, 1482-1496.	2.5	24
68	The Induction of the Mating Program in the Phytopathogen Ustilago maydis Is Controlled by a G1 Cyclin[W]. Plant Cell, 2005, 17, 3544-3560.	6.6	26
69	Inhibitory phosphorylation of a mitotic cyclin-dependent kinase regulates the morphogenesis, cell size and virulence of the smut fungus Ustilago maydis. Journal of Cell Science, 2005, 118, 3607-3622.	2.0	37
70	The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein. Genes and Development, 2004, 18, 3117-3130.	5.9	76
71	Characterization of B-type cyclins in the smut fungus Ustilago maydis: roles in morphogenesis and pathogenicity. Journal of Cell Science, 2004, 117, 487-506.	2.0	56
72	A member of the Fizzy-related family of APC activators is regulated by cAMP and is required at different stages of plant infection by Ustilago maydis. Journal of Cell Science, 2004, 117, 4143-4156.	2.0	20

#	Article	IF	Citations
73	CandidaDB: a genome database for Candida albicans pathogenomics. Nucleic Acids Research, 2004, 33, D353-D357.	14.5	79
74	Ustilago maydis: how its biology relates to pathogenic development. New Phytologist, 2004, 164, 31-42.	7.3	138
75	Regulation of mating and pathogenic development in Ustilago maydis. Current Opinion in Microbiology, 2004, 7, 666-672.	5.1	142
76	The crk1 gene encodes an Ime2-related protein that is required for morphogenesis in the plant pathogen Ustilago maydis. Molecular Microbiology, 2003, 47, 729-743.	2.5	59
77	Pheromone-Induced G 2 Arrest in the Phytopathogenic Fungus Ustilago maydis. Eukaryotic Cell, 2003, 2, 494-500.	3.4	104
78	Gpa2, a G-Protein α Subunit Required for Hyphal Development in Candida albicans. Eukaryotic Cell, 2002, 1, 865-874.	3.4	47
79	Site-specific targeting of exogenous DNA into the genome of Candida albicans using the FLP recombinase. Molecular Genetics and Genomics, 2002, 268, 418-424.	2.1	16
80	Dimorphism in fungal pathogens: Candida albicans and Ustilago maydisâ€"similar inputs, different outputs. Current Opinion in Microbiology, 2001, 4, 214-221.	5.1	107
81	Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Molecular Microbiology, 2001, 42, 1047-1063.	2.5	286
82	Identification of a target gene for the bE-bW homeodomain protein complex in Ustilago maydis. Molecular Microbiology, 2000, 37, 54-66.	2.5	61
83	Evidence of an Unusually Long Operator for the Fur Repressor in the Aerobactin Promoter of Escherichia coli. Journal of Biological Chemistry, 2000, 275, 24709-24714.	3.4	52
84	Ustilago maydis, the Causative Agent of Corn Smut Disease. , 2000, , 347-371.		36
85	The IIANtr (PtsN) Protein of Pseudomonas putida Mediates the C Source Inhibition of the Ï,54-dependent Pu Promoter of the TOL Plasmid. Journal of Biological Chemistry, 1999, 274, 15562-15568.	3.4	99
86	Chromatin and transcription in Saccharomyces cerevisiae. FEMS Microbiology Reviews, 1999, 23, 503-523.	8.6	7
87	Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO Journal, 1999, 18, 2580-2592.	7.8	129
88	Binding of the Fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. Journal of Molecular Biology, 1998, 283, 537-547.	4.2	177
89	The C-Terminal Domain of Sin1 Interacts with the SWI-SNF Complex in Yeast. Molecular and Cellular Biology, 1998, 18, 4157-4164.	2.3	26
90	Mutations in Chromatin Components Suppress a Defect of Gcn5 Protein in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1998, 18, 1049-1054.	2.3	39

#	Article	IF	Citations
91	Coactivation in vitro of the sigma54-dependent promoter Pu of the TOL plasmid of Pseudomonas putida by HU and the mammalian HMG-1 protein. Journal of Bacteriology, 1997, 179, 2757-2760.	2.2	15
92	CLUES AND CONSEQUENCES OF DNA BENDING IN TRANSCRIPTION. Annual Review of Microbiology, 1997, 51, 593-628.	7.3	182
93	Genetic evidence of separate repressor and activator activities of the XylR regulator of the TOL plasmid, pWW0, of Pseudomonas putida. Molecular Microbiology, 1997, 23, 1221-1227.	2.5	25
94	VTR expression cassettes for engineering conditional phenotypes in Pseudomonas: activity of the Pu promoter of the TOL plasmid under limiting concentrations of the XylR activator protein. Gene, 1996, 172, 81-86.	2.2	36
95	Physical and Functional Analysis of the Prokaryotic Enhancer of the Ïf54-promoters of the TOL Plasmid ofPseudomonas putida. Journal of Molecular Biology, 1996, 258, 562-574.	4.2	43
96	In Vitro Activities of an N-terminal Truncated Form of XylR, a Ïf54-dependent Transcriptional Activator of Pseudomonas putida. Journal of Molecular Biology, 1996, 258, 575-587.	4.2	83
97	ATP Binding to the $\sharp f$ 54-Dependent Activator XylRTriggers a Protein Multimerization Cycle Catalyzed by UAS DNA. Cell, 1996, 86, 331-339.	28.9	98
98	Involvement of sigma54 in exponential silencing of the Pseudomonas putida TOL plasmid Pu promoter. Molecular Microbiology, 1996, 19, 7-17.	2.5	94
99	Regulatory noise in prokaryotic promoters: how bacteria learn to respond to novel environmental signals. Molecular Microbiology, 1996, 19, 1177-1184.	2.5	101
100	Identification of the Repressor Subdomain within the Signal Reception Module of the Prokaryotic Enhancer-binding Protein XylR of Pseudomonas putida. Journal of Biological Chemistry, 1996, 271, 7899-7902.	3.4	17
101	The amino-terminal domain of the prokaryotic enhancer-binding protein XylR is a specific intramolecular repressor Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9392-9396.	7.1	67
102	Integration host factor suppresses promiscuous activation of the sigma 54-dependent promoter Pu of Pseudomonas putida Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7277-7281.	7.1	50
103	Activation of the transcriptional regulator XylR of Pseudomonas putida by release of repression between functional domains. Molecular Microbiology, 1995, 16, 205-213.	2.5	139
104	Control of mating and development in Ustilago maydis. Current Opinion in Genetics and Development, 1995, 5, 559-564.	3.3	52
105	Multiallelic recognition: Nonself-dependent dimerization of the bE and bW homeodomain proteins in ustilago maydis. Cell, 1995, 81, 73-83.	28.9	268
106	Correlation between DNA Bending and Transcriptional Activation at a Plasmid Promoter. Journal of Molecular Biology, 1994, 241, 7-17.	4.2	34
107	Protein-induced bending as a transcriptional switch. Science, 1993, 260, 805-807.	12.6	83
108	A genetic system to study the in vivo role of transcriptional regulators in Escherichia coli. Gene, 1992, 116, 75-80.	2.2	8

#	Article	IF	CITATIONS
109	Purification and characterization of RepA, a protein involved in the copy number control of plasmid pLS1. Nucleic Acids Research, 1989, 17, 2405-2420.	14.5	53
110	Three regions in the DNA of plasmid pLS1 show sequence-directed static bending. Nucleic Acids Research, 1988, 16, 9113-9126.	14.5	28
111	Mode of Binding of the Fur Protein to Target DNA: Negative Regulation of Iron-Controlled Gene Expression. , 0, , $185-196$.		13