Ashok B Kulkarni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2322249/publications.pdf

Version: 2024-02-01

40 papers 2,770 citations

26 h-index

218677

302126 39 g-index

41 all docs

41 docs citations

41 times ranked

3647 citing authors

#	Article	IF	CITATIONS
1	Visualization of trigeminal ganglion sensory neuronal signaling regulated by Cdk5. Cell Reports, 2022, 38, 110458.	6.4	4
2	Nociceptive signaling through transient receptor potential vanilloid 1 is regulated by Cyclin Dependent Kinase 5-mediated phosphorylation of T407 in vivo. Molecular Pain, 2022, 18, 174480692211114.	2.1	1
3	Leucine rich amelogenin peptide prevents ovariectomy-induced bone loss in mice. PLoS ONE, 2021, 16, e0259966.	2.5	2
4	Blockade of TIGIT/CD155 Signaling Reverses T-cell Exhaustion and Enhances Antitumor Capability in Head and Neck Squamous Cell Carcinoma. Cancer Immunology Research, 2019, 7, 1700-1713.	3.4	126
5	Behavioral and synaptic alterations relevant to obsessive-compulsive disorder in mice with increased EAAT3 expression. Neuropsychopharmacology, 2019, 44, 1163-1173.	5.4	27
6	Anti-CD47 treatment enhances anti-tumor T-cell immunity and improves immunosuppressive environment in head and neck squamous cell carcinoma. Oncolmmunology, 2018, 7, e1397248.	4.6	45
7	Specific blockade <scp>CD</scp> 73 alters the "exhausted―phenotype of <scp>T</scp> cells in head and neck squamous cell carcinoma. International Journal of Cancer, 2018, 143, 1494-1504.	5.1	31
8	Phosphorylation of the Transient Receptor Potential Ankyrin 1 by Cyclin-dependent Kinase 5 affects Chemo-nociception. Scientific Reports, 2018, 8, 1177.	3.3	22
9	$\hat{I}^3\hat{a}$ €Secretase inhibitor reduces immunosuppressive cells and enhances tumour immunity in head and neck squamous cell carcinoma. International Journal of Cancer, 2018, 142, 999-1009.	5.1	59
10	TGF- \hat{l}^2 receptor 1 regulates progenitors that promote browning of white fat. Molecular Metabolism, 2018, 16, 160-171.	6.5	33
11	Tâ€cell immunoglobulin mucin 3 blockade drives an antitumor immune response in head and neck cancer. Molecular Oncology, 2017, 11, 235-247.	4.6	65
12	Selective blockade of B7â€H3 enhances antitumour immune activity by reducing immature myeloid cells in head and neck squamous cell carcinoma. Journal of Cellular and Molecular Medicine, 2017, 21, 2199-2210.	3.6	43
13	Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Molecular Cancer, 2017, 16, 99.	19.2	129
14	Cyclin-dependent kinase 5 modulates the P2X2a receptor channel gating through phosphorylation of C-terminal threonine 372. Pain, 2017, 158, 2155-2168.	4.2	14
15	Inhibition of SRC family kinases reduces myeloidâ€derived suppressor cells in head and neck cancer. International Journal of Cancer, 2017, 140, 1173-1185.	5.1	30
16	TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception. Scientific Reports, 2016, 6, 22007.	3.3	27
17	LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma. Oncolmmunology, 2016, 5, e1239005.	4.6	108
18	NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Scientific Reports, 2016, 6, 24704.	3.3	76

#	Article	IF	CITATIONS
19	Targeting STAT3 signaling reduces immunosuppressive myeloid cells in head and neck squamous cell carcinoma. Oncolmmunology, 2016, 5, e1130206.	4.6	32
20	PD-1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPα axis in HPV negative head and neck squamous cell carcinoma. Oncotarget, 2015, 6, 42067-42080.	1.8	95
21	Epidermal Growth Factor Receptor Inhibition Reduces Angiogenesis via Hypoxia-Inducible Factor-1α and Notch1 in Head Neck Squamous Cell Carcinoma. PLoS ONE, 2015, 10, e0119723.	2.5	41
22	Regulation of Sox6 by Cyclin Dependent Kinase 5 in Brain. PLoS ONE, 2014, 9, e89310.	2.5	10
23	Adhesive and Migratory Effects of Phosphophoryn Are Modulated by Flanking Peptides of the Integrin Binding Motif. PLoS ONE, 2014, 9, e112490.	2.5	13
24	Tracking Endogenous Amelogenin and Ameloblastin In Vivo. PLoS ONE, 2014, 9, e99626.	2.5	23
25	Activation of Cyclin-Dependent Kinase 5 Mediates Orofacial Mechanical Hyperalgesia. Molecular Pain, 2013, 9, 1744-8069-9-66.	2.1	22
26	Transforming Growth Factor- \hat{l}^21 Regulates Cdk5 Activity in Primary Sensory Neurons. Journal of Biological Chemistry, 2012, 287, 16917-16929.	3.4	50
27	Amelogenins: Multi-Functional Enamel Matrix Proteins and Their Binding Partners. Journal of Oral Biosciences, 2011, 53, 257-266.	2.2	13
28	Amelogenins: Multi-Functional Enamel Matrix Proteins and Their Binding Partners. Journal of Oral Biosciences, 2011, 53, 257-266.	2.2	6
29	Generation of Transgenic Mice. Current Protocols in Cell Biology, 2009, 42, Unit 19.11.	2.3	54
30	Partial Rescue of the Amelogenin Null Dental Enamel Phenotype. Journal of Biological Chemistry, 2008, 283, 15056-15062.	3.4	30
31	Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 , $660-665$.	7.1	107
32	Comparison of body weight and gene expression in amelogenin null and wild-type mice. European Journal of Oral Sciences, 2006, 114, 190-193.	1.5	31
33	Cdk5: A New Player in Pain Signaling. Cell Cycle, 2006, 5, 585-588.	2.6	57
34	Cyclin-dependent kinase 5 activity regulates pain signaling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 791-796.	7.1	107
35	Increased activity of cyclin-dependent kinase 5 leads to attenuation of cocaine-mediated dopamine signaling. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1737-1742.	7.1	81
36	Amelogenin: A Potential Regulator of Cementumâ€Associated Genes. Journal of Periodontology, 2003, 74, 1423-1431.	3.4	84

3

#	Article	IF	CITATION
37	The Receptor Activator of Nuclear Factor-κB Ligand-mediated Osteoclastogenic Pathway Is Elevated in Amelogenin-null Mice. Journal of Biological Chemistry, 2003, 278, 35743-35748.	3.4	93
38	Amelogenin-deficient Mice Display an Amelogenesis Imperfecta Phenotype. Journal of Biological Chemistry, 2001, 276, 31871-31875.	3.4	423
39	Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nature Genetics, 1998, 20, 78-82.	21.4	543
40	Phenotypic consequences of transforming growth factor \hat{l}^21 gene ablation in murine embryonic fibroblasts: Autocrine control of cell proliferation and extracellular matrix biosynthesis., 1998, 176, 67-75.		12