
Xian-Ming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2321709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infectious Diseases, The, 2015, 15, 85-94.	9.1	725
2	Cryptosporidiosis. New England Journal of Medicine, 2002, 346, 1723-1731.	27.0	451
3	A Cellular Micro-RNA, let-7i, Regulates Toll-like Receptor 4 Expression and Contributes to Cholangiocyte Immune Responses against Cryptosporidium parvum Infection. Journal of Biological Chemistry, 2007, 282, 28929-28938.	3.4	409
4	MicroRNA Microarray Identifies <i>Let-7i</i> as a Novel Biomarker and Therapeutic Target in Human Epithelial Ovarian Cancer. Cancer Research, 2008, 68, 10307-10314.	0.9	343
5	Long non-coding RNAs (IncRNAs) and their transcriptional control of inflammatory responses. Journal of Biological Chemistry, 2017, 292, 12375-12382.	3.4	204
6	Multiple TLRs Are Expressed in Human Cholangiocytes and Mediate Host Epithelial Defense Responses to <i>Cryptosporidium parvum</i> via Activation of NF-î₽B. Journal of Immunology, 2005, 175, 7447-7456.	0.8	199
7	LincRNA-Cox2 Promotes Late Inflammatory Gene Transcription in Macrophages through Modulating SWI/SNF-Mediated Chromatin Remodeling. Journal of Immunology, 2016, 196, 2799-2808.	0.8	192
8	NF-kappaB p65-Dependent Transactivation of miRNA Genes following Cryptosporidium parvum Infection Stimulates Epithelial Cell Immune Responses. PLoS Pathogens, 2009, 5, e1000681.	4.7	191
9	MicroRNA-513 Regulates B7-H1 Translation and Is Involved in IFN-Î ³ -Induced B7-H1 Expression in Cholangiocytes. Journal of Immunology, 2009, 182, 1325-1333.	0.8	190
10	Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Research, 2010, 38, 3222-3232.	14.5	180
11	Release of Luminal Exosomes Contributes to TLR4-Mediated Epithelial Antimicrobial Defense. PLoS Pathogens, 2013, 9, e1003261.	4.7	159
12	MicroRNA-98 and <i>let-7</i> Confer Cholangiocyte Expression of Cytokine-Inducible Src Homology 2-Containing Protein in Response to Microbial Challenge. Journal of Immunology, 2009, 183, 1617-1624.	0.8	113
13	MicroRNA signatures in liver diseases. World Journal of Gastroenterology, 2009, 15, 1665.	3.3	113
14	MicroRNA regulation of innate immune responses in epithelial cells. Cellular and Molecular Immunology, 2011, 8, 371-379.	10.5	108
15	Mechanisms of attachment and internalization of Cryptosporidium parvum to biliary and intestinal epithelial cells. Gastroenterology, 2000, 118, 368-379.	1.3	106
16	The NF-κB–Responsive Long Noncoding RNA FIRRE Regulates Posttranscriptional Regulation of Inflammatory Gene Expression through Interacting with hnRNPU. Journal of Immunology, 2017, 199, 3571-3582.	0.8	105
17	Cryptosporidium parvum is cytopathic for cultured human biliary epithelia via an apoptotic mechanism. Hepatology, 1998, 28, 906-913.	7.3	102
18	NFκB p50-CCAAT/Enhancer-binding Protein β (C/EBPβ)-mediated Transcriptional Repression of MicroRNA let-7i following Microbial Infection. Journal of Biological Chemistry, 2010, 285, 216-225.	3.4	97

XIAN-MING CHEN

#	Article	IF	CITATIONS
19	LincRNAâ€Cox2 modulates TNFâ€î±â€induced transcription of <i>ll12b</i> gene in intestinal epithelial cells through regulation of Miâ€2/NuRDâ€mediated epigenetic histone modifications. FASEB Journal, 2016, 30, 1187-1197.	0.5	88
20	Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host-cell membrane protrusion. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6338-6343.	7.1	84
21	miRâ€141 modulates androgen receptor transcriptional activity in human prostate cancer cells through targeting the small heterodimer partner protein. Prostate, 2012, 72, 1514-1522.	2.3	84
22	The cell biology of cryptosporidium infection. Microbes and Infection, 2011, 13, 721-730.	1.9	83
23	Astrocyte EV-Induced lincRNA-Cox2 Regulates Microglial Phagocytosis: Implications for Morphine-Mediated Neurodegeneration. Molecular Therapy - Nucleic Acids, 2018, 13, 450-463.	5.1	83
24	miR-27b Targets KSRP to Coordinate TLR4-Mediated Epithelial Defense against Cryptosporidium parvum Infection. PLoS Pathogens, 2012, 8, e1002702.	4.7	82
25	Apical Organelle Discharge by Cryptosporidium parvum Is Temperature, Cytoskeleton, and Intracellular Calcium Dependent and Required for Host Cell Invasion. Infection and Immunity, 2004, 72, 6806-6816.	2.2	77
26	Cryptosporidium parvum invasion of biliary epithelia requires host cell tyrosine phosphorylation of cortactin via c-Src. Gastroenterology, 2003, 125, 216-228.	1.3	75
27	A long noncoding RNA, lincRNAâ€Tnfaip3, acts as a coregulator of NFâ€îºB to modulate inflammatory gene transcription in mouse macrophages. FASEB Journal, 2017, 31, 1215-1225.	0.5	75
28	The immunobiology of cholangiocytes. Immunology and Cell Biology, 2008, 86, 497-505.	2.3	74
29	CRYPTOSPORIDIUM PARVUM ATTACHMENT TO AND INTERNALIZATION BY HUMAN BILIARY EPITHELIA IN VITRO: A MORPHOLOGIC STUDY. Journal of Parasitology, 2004, 90, 212-221.	0.7	71
30	MicroRNAâ€98 and <i>letâ€7</i> Regulate Expression of Suppressor of Cytokine Signaling 4 in Biliary Epithelial Cells in Response to <i>Cryptosporidium parvum</i> Infection. Journal of Infectious Diseases, 2010, 202, 125-135.	4.0	71
31	Phosphatidylinositol 3-Kinase and Frabin Mediate Cryptosporidium parvum Cellular Invasion via Activation of Cdc42. Journal of Biological Chemistry, 2004, 279, 31671-31678.	3.4	65
32	Cryptosporidiosis and the Pathogenesis of AIDS-Cholangiopathy. Seminars in Liver Disease, 2002, 22, 277-290.	3.6	63
33	<i>Cryptosporidium parvum</i> Induces B7â€H1 Expression in Cholangiocytes by Downâ€Regulating MicroRNAâ€513. Journal of Infectious Diseases, 2010, 201, 160-169.	4.0	62
34	miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer, 2012, 12, 492.	2.6	62
35	Histone Deacetylases and NF-kB Signaling Coordinate Expression of CX3CL1 in Epithelial Cells in Response to Microbial Challenge by Suppressing miR-424 and miR-503. PLoS ONE, 2013, 8, e65153.	2.5	55
36	<i>Cryptosporidium parvum</i> induces apoptosis in biliary epithelia by a Fas/Fas ligand-dependent mechanism. American Journal of Physiology - Renal Physiology, 1999, 277, G599-G608.	3.4	54

XIAN-MING CHEN

#	Article	IF	CITATIONS
37	Cdc42 and the Actin-Related Protein/Neural Wiskott-Aldrich Syndrome Protein Network Mediate Cellular Invasion by Cryptosporidium parvum. Infection and Immunity, 2004, 72, 3011-3021.	2.2	52
38	miR-221 suppresses ICAM-1 translation and regulates interferon-Î ³ -induced ICAM-1 expression in human cholangiocytes. American Journal of Physiology - Renal Physiology, 2010, 298, G542-G550.	3.4	52
39	<i>Cryptosporidium parvum</i> infection attenuates the exÂvivo propagation of murine intestinal enteroids. Physiological Reports, 2016, 4, e13060.	1.7	50
40	miR-16 Targets Transcriptional Corepressor SMRT and Modulates NF-kappaB-Regulated Transactivation of Interleukin-8 Gene. PLoS ONE, 2012, 7, e30772.	2.5	48
41	Downregulation of PCAF by miR-181a/b Provides Feedback Regulation to TNF-α–Induced Transcription of Proinflammatory Genes in Liver Epithelial Cells. Journal of Immunology, 2012, 188, 1266-1274.	0.8	44
42	MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection. International Journal for Parasitology, 2011, 41, 397-403.	3.1	43
43	Cryptosporidium parvum infects human cholangiocytes via sphingolipid-enriched membrane microdomains. Cellular Microbiology, 2006, 8, 1932-1945.	2.1	42
44	Non-coding RNAs in epithelial immunity to <i>Cryptosporidium</i> infection. Parasitology, 2014, 141, 1233-1243.	1.5	38
45	HIVâ€l Tat Protein Suppresses Cholangiocyte Tollâ€Like Receptor 4 Expression and Defense against <i>Cryptosporidium parvum</i> . Journal of Infectious Diseases, 2009, 199, 1195-1204.	4.0	36
46	Phenethyl isothiocyanate inhibits androgen receptorâ€regulated transcriptional activity in prostate cancer cells through suppressing <scp>PCAF</scp> . Molecular Nutrition and Food Research, 2013, 57, 1825-1833.	3.3	35
47	Delivery of parasite Cdg7_Flc_0990 RNA transcript into intestinal epithelial cells during <i>Cryptosporidium parvum</i> infection suppresses host cell gene transcription through epigenetic mechanisms. Cellular Microbiology, 2017, 19, e12760.	2.1	35
48	Cryptosporidium parvum induces SIRT1 expression in host epithelial cells through downregulating let-7i. Human Immunology, 2014, 75, 760-765.	2.4	34
49	Delivery of parasite RNA transcripts into infected epithelial cells during Cryptosporidium infection and its potential impact on host gene transcription. Journal of Infectious Diseases, 2016, 215, jiw607.	4.0	32
50	Col1A1 Production and Apoptotic Resistance in TGF-β1-Induced Epithelial-to-Mesenchymal Transition-Like Phenotype of 603B Cells. PLoS ONE, 2012, 7, e51371.	2.5	32
51	Knockdown of m6A methyltransferase METTL3 in gastric cancer cells results in suppression of cell proliferation. Oncology Letters, 2020, 20, 2191-2198.	1.8	26
52	Involvement of Cryptosporidium parvum Cdg7_FLc_1000 RNA in the Attenuation of Intestinal Epithelial Cell Migration via Trans-Suppression of Host Cell SMPD3. Journal of Infectious Diseases, 2018, 217, 122-133.	4.0	25
53	Induction of a Long Noncoding RNA Transcript, NR_045064, Promotes Defense Gene Transcription and Facilitates Intestinal Epithelial Cell Responses against <i>Cryptosporidium</i> Infection. Journal of Immunology, 2018, 201, 3630-3640.	0.8	22
54	Induction of Inflammatory Responses in Splenocytes by Exosomes Released from Intestinal Epithelial Cells following <i>Cryptosporidium parvum</i> Infection. Infection and Immunity, 2019, 87, .	2.2	22

#	Article	IF	CITATIONS
55	The Human Immunodeficiency Virus Type 1 Tat Protein Enhances Cryptosporidium parvum -Induced Apoptosis in Cholangiocytes via a Fas Ligand-Dependent Mechanism. Infection and Immunity, 2007, 75, 684-696.	2.2	20
56	Nuclear delivery of parasite Cdg2_FLc_0220 RNA transcript to epithelial cells during Cryptosporidium parvum infection modulates host gene transcription. Veterinary Parasitology, 2018, 251, 27-33.	1.8	20
57	MicroRNAs and Epithelial Immunity. International Reviews of Immunology, 2009, 28, 139-154.	3.3	18
58	A novel long intergenic non-coding RNA, Nostrill, regulates iNOS gene transcription and neurotoxicity in microglia. Journal of Neuroinflammation, 2021, 18, 16.	7.2	18
59	DISTRIBUTION OF CRYPTOSPORIDIUM PARVUM SPOROZOITE APICAL ORGANELLES DURING ATTACHMENT TO AND INTERNALIZATION BY CULTURED BILIARY EPITHELIAL CELLS. Journal of Parasitology, 2005, 91, 995-999.	0.7	16
60	Creatinine downregulates TNF-Î \pm in macrophage and T cell lines. Cytokine, 2018, 110, 29-38.	3.2	12
61	A host cell long noncoding RNA NR_033736 regulates type I interferon-mediated gene transcription and modulates intestinal epithelial anti-Cryptosporidium defense. PLoS Pathogens, 2021, 17, e1009241.	4.7	12
62	Cryptosporidial Infection Suppresses Intestinal Epithelial Cell MAPK Signaling Impairing Host Anti-Parasitic Defense. Microorganisms, 2021, 9, 151.	3.6	11
63	Upregulation of KSRP by miR-27b provides IFN-Î ³ -induced post-transcriptional regulation of CX3CL1 in liver epithelial cells. Scientific Reports, 2015, 5, 17590.	3.3	10
64	Trans-suppression of defense DEFB1 gene in intestinal epithelial cells following Cryptosporidium parvum infection is associated with host delivery of parasite Cdg7_FLc_1000 RNA. Parasitology Research, 2018, 117, 831-840.	1.6	10
65	m6A mRNA Methylation Regulates Epithelial Innate Antimicrobial Defense Against Cryptosporidial Infection. Frontiers in Immunology, 2021, 12, 705232.	4.8	8
66	Immunology of Cryptosporidiosis. , 2014, , 423-454.		8
67	The Long Non-Coding RNA Nostrill Regulates Transcription of Irf7 Through Interaction With NF-κB p65 to Enhance Intestinal Epithelial Defense Against Cryptosporidium parvum. Frontiers in Immunology, 2022, 13, 863957.	4.8	8
68	Trans-suppression of host CDH3 and LOXL4 genes during Cryptosporidium parvum infection involves nuclear delivery of parasite Cdg7_FLc_1000 RNA. International Journal for Parasitology, 2018, 48, 423-431.	3.1	7
69	Microglia induce neurogenic protein expression in primary cortical cells by stimulating PI3K/AKT intracellular signaling in vitro. Molecular Biology Reports, 2021, 48, 563-584.	2.3	5
70	Attenuation of Intestinal Epithelial Cell Migration During Cryptosporidium parvum Infection Involves Parasite Cdg7_FLc_1030 RNA-Mediated Induction and Release of Dickkopf-1. Journal of Infectious Diseases, 2018, 218, 1336-1347.	4.0	4
71	LncRNA XR_001779380 Primes Epithelial Cells for IFN-Î ³ -Mediated Gene Transcription and Facilitates Age-Dependent Intestinal Antimicrobial Defense. MBio, 2021, 12, e0212721.	4.1	4

72 MicroRNAs in Epithelial Antimicrobial Immunity. , 2010, , 355-367.

#	Article	IF	CITATIONS
73	Use of miRNAs to Study Host Cell–Parasite Interactions. Methods in Molecular Biology, 2020, 2052, 205-218.	0.9	Ο
74	Epigenetic Silencing of Mir-218 Regulates CDK6 Expression In Pre-B Acute Lymphoblastic Leukemia Cells. Blood, 2010, 116, 3621-3621.	1.4	0