Scott M Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2320124/publications.pdf

Version: 2024-02-01

33 papers 3,668 citations

304743 22 h-index 377865 34 g-index

38 all docs 38 docs citations

38 times ranked 4612 citing authors

#	Article	IF	CITATIONS
1	NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 2016, 533, 481-486.	27.8	1,246
2	An excitatory synapse hypothesis of depression. Trends in Neurosciences, 2015, 38, 279-294.	8.6	221
3	Reward behaviour is regulated by the strength of hippocampus–nucleus accumbens synapses. Nature, 2018, 564, 258-262.	27.8	189
4	Compartmentalized and Binary Behavior of Terminal Dendrites in Hippocampal Pyramidal Neurons. Science, 2001, 293, 2272-2275.	12.6	177
5	Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	173
6	Chronic Stress Induces a Selective Decrease in AMPA Receptor-Mediated Synaptic Excitation at Hippocampal Temporoammonic-CA1 Synapses. Journal of Neuroscience, 2013, 33, 15669-15674.	3.6	154
7	Local potentiation of excitatory synapses by serotonin and its alteration in rodent models of depression. Nature Neuroscience, 2013, 16, 464-472.	14.8	129
8	Convergent Mechanisms Underlying Rapid Antidepressant Action. CNS Drugs, 2018, 32, 197-227.	5.9	127
9	Sex differences in antidepressant efficacy. Neuropsychopharmacology, 2019, 44, 140-154.	5.4	127
10	Antidepressant-relevant concentrations of the ketamine metabolite (2 $<$ i>R $<$ /i>,6 $<$ i>R $<$ /i>) Tj ETQq0 0 0 rgBT /0 Sciences of the United States of America, 2019, 116, 5160-5169.	Overlock 1 7.1	0 Tf 50 387 To 120
11	The critical importance of basic animal research for neuropsychiatric disorders. Neuropsychopharmacology, 2019, 44, 1349-1353.	5.4	106
12	Molecular Pharmacology and Neurobiology of Rapid-Acting Antidepressants. Annual Review of Pharmacology and Toxicology, 2019, 59, 213-236.	9.4	98
13	Long-Term Potentiation Requires a Rapid Burst of Dendritic Mitochondrial Fission during Induction. Neuron, 2018, 100, 860-875.e7.	8.1	97
14	Rapid Antidepressant Action and Restoration of Excitatory Synaptic Strength After Chronic Stress by Negative Modulators of Alpha5-Containing GABAA Receptors. Neuropsychopharmacology, 2015, 40, 2499-2509.	5.4	96
15	A Negative Allosteric Modulator for $\hat{l}\pm 5$ Subunit-Containing GABA Receptors Exerts a Rapid and Persistent Antidepressant-Like Action without the Side Effects of the NMDA Receptor Antagonist Ketamine in Mice. ENeuro, 2017, 4, ENEURO.0285-16.2017.	1.9	88
16	Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALS–FTD-linked <i>UBQLN2</i> mutations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7580-E7589.	7.1	77
17	Corticosterone mediates the synaptic and behavioral effects of chronic stress at rat hippocampal temporoammonic synapses. Journal of Neurophysiology, 2015, 114, 1713-1724.	1.8	64
18	(<i>R</i>)â€Ketamine exerts antidepressant actions partly via conversion to (<i>2R,6R</i>)â€hydroxynorketamine, while causing adverse effects at subâ€anaesthetic doses. British Journal of Pharmacology, 2019, 176, 2573-2592.	5.4	61

#	Article	IF	CITATIONS
19	Activation of intrinsic hippocampal theta oscillations by acetylcholine in rat septo-hippocampal cocultures. Journal of Physiology, 1999, 519, 405-413.	2.9	53
20	Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength. Science Advances, 2021, 7, .	10.3	43
21	(2R,6R)-hydroxynorketamine rapidly potentiates hippocampal glutamatergic transmission through a synapse-specific presynaptic mechanism. Neuropsychopharmacology, 2020, 45, 426-436.	5.4	42
22	Zanos et al. reply. Nature, 2017, 546, E4-E5.	27.8	29
23	Preparation and Maintenance of Organotypic Slice Cultures of CNS Tissue. Current Protocols in Neuroscience, 1999, 9, Unit 6.11.	2.6	20
24	Flashy Science: Controlling Neural Function with Light. Journal of Neuroscience, 2005, 25, 10358-10365.	3.6	19
25	Excitatory synaptic transmission and its modulation by PKC is unchanged in the hippocampus of GAP-43- deficient mice. European Journal of Neuroscience, 1999, 11, 433-440.	2.6	18
26	Evidence of calcium-permeable AMPA receptors in dendritic spines of CA1 pyramidal neurons. Journal of Neurophysiology, 2014, 112, 263-275.	1.8	17
27	Pubertal adversity alters chromatin dynamics and stress circuitry in the pregnant brain. Neuropsychopharmacology, 2020, 45, 1263-1271.	5.4	17
28	Negative Allosteric Modulation of Gamma-Aminobutyric Acid A Receptors at α5 Subunit–Containing Benzodiazepine Sites Reverses Stress-Induced Anhedonia and Weakened Synaptic Function in Mice. Biological Psychiatry, 2022, 92, 216-226.	1.3	14
29	IA in Play. Neuron, 2007, 54, 850-852.	8.1	11
30	NEUROSCIENCE: Matching at the Synapse. Science, 2005, 308, 800-801.	12.6	3
31	Perturbations of dendritic excitability in epilepsy. Epilepsia, 2010, 51, 44-44.	5.1	2
32	The synaptic basis of disease. European Journal of Neuroscience, 2014, 39, 1057-1058.	2.6	1
33	Optimizing psychedelic compounds for neuropsychiatric therapy. Neuropsychopharmacology, 2021, 46, 1397-1398.	5.4	1