Tsvee Lapidot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2319991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367, 645-648.	27.8	4,203
2	Dependence of Human Stem Cell Engraftment and Repopulation of NOD/SCID Mice on CXCR4. Science, 1999, 283, 845-848.	12.6	1,598
3	G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 2002, 3, 687-694.	14.5	1,215
4	How do stem cells find their way home?. Blood, 2005, 106, 1901-1910.	1.4	901
5	Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy. Nature Medicine, 1996, 2, 1329-1337.	30.7	765
6	Current understanding of stem cell mobilization. Experimental Hematology, 2002, 30, 973-981.	0.4	734
7	Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature Medicine, 2006, 12, 657-664.	30.7	697
8	The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood, 2000, 95, 3289-3296.	1.4	685
9	Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature, 2016, 532, 323-328.	27.8	553
10	HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. Journal of Clinical Investigation, 2003, 112, 160-169.	8.2	526
11	Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. Journal of Clinical Investigation, 2000, 106, 1331-1339.	8.2	516
12	The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. Journal of Clinical Investigation, 1999, 104, 1199-1211.	8.2	479
13	CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood, 2004, 103, 2981-2989.	1.4	466
14	Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature, 2016, 532, 380-384.	27.8	355
15	Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood, 2005, 105, 3793-3801.	1.4	341
16	Caspase-8 Serves Both Apoptotic and Nonapoptotic Roles. Journal of Immunology, 2004, 173, 2976-2984.	0.8	339
17	CXCR4 Regulates Migration and Development of Human Acute Myelogenous Leukemia Stem Cells in Transplanted NOD/SCID Mice. Cancer Research, 2004, 64, 2817-2824.	0.9	322
18	Chemokine receptor CXCR4–dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nature Immunology, 2005, 6, 1038-1046.	14.5	322

#	Article	IF	CITATIONS
19	Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Experimental Hematology, 2006, 34, 967-975.	0.4	308
20	Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nature Immunology, 2007, 8, 1123-1131.	14.5	302
21	Engraftment in Nonobese Diabetic Severe Combined Immunodeficient Mice of Human CD34+ Cord Blood Cells After Ex Vivo Expansion: Evidence for the Amplification and Self-Renewal of Repopulating Stem Cells. Blood, 1999, 93, 3736-3749.	1.4	296
22	Subsecond Induction of α4 Integrin Clustering by Immobilized Chemokines Stimulates Leukocyte Tethering and Rolling on Endothelial Vascular Cell Adhesion Molecule 1 under Flow Conditions. Journal of Experimental Medicine, 2000, 192, 495-506.	8.5	296
23	Rapid and efficient homing of human CD34+CD38â^'/lowCXCR4+stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2mnull mice. Blood, 2001, 97, 3283-3291.	1.4	283
24	Reactive Oxygen Species Regulate Hematopoietic Stem Cell Self-Renewal, Migration and Development, As Well As Their Bone Marrow Microenvironment. Antioxidants and Redox Signaling, 2014, 21, 1605-1619.	5.4	241
25	Kinetic Evidence of the Regeneration of Multilineage Hematopoiesis From Primitive Cells in Normal Human Bone Marrow Transplanted Into Immunodeficient Mice. Blood, 1997, 89, 4307-4316.	1.4	228
26	Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood, 2004, 103, 2942-2949.	1.4	219
27	Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nature Immunology, 2012, 13, 1072-1082.	14.5	196
28	An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nature Communications, 2015, 6, 7901.	12.8	187
29	Stem Cell Mobilization. Hematology American Society of Hematology Education Program, 2003, 2003, 419-437.	2.5	186
30	Elevated Serum Levels of Stromal-Derived Factor-1α Are Associated with Increased Osteoclast Activity and Osteolytic Bone Disease in Multiple Myeloma Patients. Cancer Research, 2005, 65, 1700-1709.	0.9	186
31	Mechanism of Human Stem Cell Migration and Repopulation of NOD/SCID and B2mnull NOD/SCID Mice. Annals of the New York Academy of Sciences, 2001, 938, 83-95.	3.8	183
32	Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia, 2011, 25, 1286-1296.	7.2	180
33	β2 Microglobulin-deficient (B2mnull) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood, 2000, 95, 3102-3105.	1.4	175
34	S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood, 2012, 119, 2478-2488.	1.4	175
35	Human CD34+CXCR4â^' sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation. Blood, 2002, 100, 2778-2786.	1.4	147
36	CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nature Immunology, 2011, 12, 391-398.	14.5	142

#	Article	IF	CITATIONS
37	Unique SDF-1–induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood, 2004, 103, 2900-2907.	1.4	136
38	p53 Attenuates Cancer Cell Migration and Invasion through Repression of SDF-1/CXCL12 Expression in Stromal Fibroblasts. Cancer Research, 2006, 66, 10671-10676.	0.9	135
39	Atypical PKC-ζ regulates SDF-1–mediated migration and development of human CD34+ progenitor cells. Journal of Clinical Investigation, 2005, 115, 168-176.	8.2	127
40	PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells. Nature Medicine, 2015, 21, 1307-1317.	30.7	125
41	The Multiple Roles of Osteoclasts in Host Defense: Bone Remodeling and Hematopoietic Stem Cell Mobilization. Annual Review of Immunology, 2007, 25, 51-69.	21.8	124
42	Stem Cell Regulation via Dynamic Interactions of the Nervous and Immune Systems with the Microenvironment. Cell Stem Cell, 2008, 3, 484-492.	11.1	115
43	Regulation of Hematopoiesis and Osteogenesis by Blood Vessel–Derived Signals. Annual Review of Cell and Developmental Biology, 2016, 32, 649-675.	9.4	115
44	Enhanced c-Met activity promotes G-CSF–induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood, 2011, 117, 419-428.	1.4	114
45	FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation. Blood, 2012, 120, 1843-1855.	1.4	99
46	Biology of Normal and Acute Myeloid Leukemia Stem Cells. International Journal of Hematology, 2005, 82, 389-396.	1.6	97
47	MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization. Journal of Clinical Investigation, 2009, 119, 492-503.	8.2	94
48	Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. Nature Communications, 2020, 11, 3547.	12.8	93
49	The Soluble Interleukin-6 (IL-6) Receptor/IL-6 Fusion Protein Enhances In Vitro Maintenance and Proliferation of Human CD34+CD38â°'/low Cells Capable of Repopulating Severe Combined Immunodeficiency Mice. Blood, 1999, 94, 923-931.	1.4	86
50	Daily Onset of Light and Darkness Differentially Controls Hematopoietic Stem Cell Differentiation and Maintenance. Cell Stem Cell, 2018, 23, 572-585.e7.	11.1	86
51	Transplantation of Normal and Leukemic Human Bone Marrow into Immune-Deficient Mice: Development of Animal Models for Human Hematopoiesis. Immunological Reviews, 1991, 124, 25-43.	6.0	85
52	cAMP-induced PKCζ activation increases functional CXCR4 expression on human CD34+ hematopoietic progenitors. Blood, 2006, 107, 870-879.	1.4	82
53	CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules. Journal of Experimental Medicine, 2008, 205, 2381-2395.	8.5	78
54	The Brain-Bone-Blood Triad: Traffic Lights for Stem-Cell Homing and Mobilization. Hematology American Society of Hematology Education Program, 2010, 2010, 1-6.	2.5	74

#	Article	IF	CITATIONS
55	FGF signaling facilitates postinjury recovery of mouse hematopoietic system. Blood, 2012, 120, 1831-1842.	1.4	69
56	Induction of T cell adhesion to extracellular matrix or endothelial cell ligands by soluble or matrix-bound interleukin-7. European Journal of Immunology, 1997, 27, 2562-2570.	2.9	68
57	The Wnt Antagonist Dickkopf-1 Mobilizes Vasculogenic Progenitor Cells via Activation of the Bone Marrow Endosteal Stem Cell Niche. Circulation Research, 2008, 103, 796-803.	4.5	68
58	Functional CXCR4-Expressing Microparticles and SDF-1 Correlate with Circulating Acute Myelogenous Leukemia Cells. Cancer Research, 2006, 66, 11013-11020.	0.9	60
59	Blood-forming stem cells are nervous: Direct and indirect regulation of immature human CD34+ cells by the nervous system. Brain, Behavior, and Immunity, 2009, 23, 1059-1065.	4.1	56
60	Pathways Implicated in Stem Cell Migration: The SDF-1/CXCR4 Axis. Methods in Molecular Biology, 2011, 750, 277-289.	0.9	55
61	Synaptojanin 2 is a druggable mediator of metastasis and the gene is overexpressed and amplified in breast cancer. Science Signaling, 2015, 8, ra7.	3.6	53
62	Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma. Blood, 2020, 136, 2607-2619.	1.4	47
63	Heparanase regulates retention and proliferation of primitive Sca-1+/c-Kit+/Linâ~' cells via modulation of the bone marrow microenvironment. Blood, 2008, 111, 4934-4943.	1.4	38
64	Dynamic Cross Talk between S1P and CXCL12 Regulates Hematopoietic Stem Cells Migration, Development and Bone Remodeling. Pharmaceuticals, 2013, 6, 1145-1169.	3.8	37
65	Regulation of longâ€ŧerm repopulating hematopoietic stem cells by EPCR/PAR1 signaling. Annals of the New York Academy of Sciences, 2016, 1370, 65-81.	3.8	36
66	Extravascular coagulation in hematopoietic stem and progenitor cell regulation. Blood, 2018, 132, 123-131.	1.4	35
67	GSK3β regulates physiological migration of stem/progenitor cells via cytoskeletal rearrangement. Journal of Clinical Investigation, 2013, 123, 1705-1717.	8.2	32
68	Motility, proliferation, and egress to the circulation of human AML cells are elastase dependent in NOD/SCID chimeric mice. Blood, 2005, 106, 2120-2127.	1.4	31
69	Tumor Necrosis Factor Promotes Human T-Cell Development in Nonobese Diabetic/Severe Combined Immunodeficient Mice. Stem Cells, 2004, 22, 1085-1100.	3.2	27
70	Regulatory Cross Talks of Bone Cells, Hematopoietic Stem Cells and the Nervous System Maintain Hematopoiesis. Inflammation and Allergy: Drug Targets, 2012, 11, 170-180.	1.8	23
71	Daily light and darkness onset and circadian rhythms metabolically synchronize hematopoietic stem cell differentiation and maintenance: The role of bone marrow norepinephrine, tumor necrosis factor, and melatonin cycles. Experimental Hematology, 2019, 78, 1-10.	0.4	23
72	MT1-MMP and RECK: opposite and essential roles in hematopoietic stem and progenitor cell retention and migration. Journal of Molecular Medicine, 2011, 89, 1167-1174.	3.9	20

#	Article	IF	CITATIONS
73	CD45 regulates homing and engraftment of immature normal and leukemic human cells in transplanted immunodeficient mice. Experimental Hematology, 2011, 39, 1161-1170.e1.	0.4	19
74	Cycling G1 CD34+/CD38+Cells Potentiate the Motility and Engraftment of Quiescent G0 CD34+/CD38â^'/lowSevere Combined Immunodeficiency Repopulating Cells. Stem Cells, 2005, 23, 561-574.	3.2	16
75	Mobilizing the older patient with myeloma. Blood Reviews, 2006, 20, 43-50.	5.7	16
76	Osteoclasts Are Involved in Stem Cell Mobilization: Cleavage of SDF-1 by Cathepsin K Blood, 2004, 104, 1291-1291.	1.4	14
77	Bacterial infection disrupts established germinal center reactions through monocyte recruitment and impaired metabolic adaptation. Immunity, 2022, 55, 442-458.e8.	14.3	12
78	Mitochondria Transfer from Hematopoietic Stem and Progenitor Cells to Pdgfrα+/Sca-1-/CD48dim BM Stromal Cells Via CX43 Gap Junctions and AMPK Signaling Inversely Regulate ROS Generation in Both Cell Populations. Blood, 2016, 128, 5-5.	1.4	11
79	Differential effects of CD4+ and CD8+ cells on lymphocyte development from human cord blood cells in murine fetal thymus explants. Experimental Hematology, 1999, 27, 282-292.	0.4	8
80	The Endosteum Region Keeps Human Leukemic Stem Cells Alive. Cell Stem Cell, 2007, 1, 483-484.	11.1	7
81	The Chemotactic Lipid S1P Regulates Hematopoietic Progenitor Cell Egress and Mobilization Via Its Major Receptor S1P1 and by SDF-1 Inhibition In a p38/Akt/mTOR Dependent Manner. Blood, 2010, 116, 553-553.	1.4	7
82	Membrane Type 1-Matrix Metalloproteinase Is Directly Involved in G-CSF Induced Human Hematopoietic Stem and Progenitor Cell Mobilization Blood, 2004, 104, 2675-2675.	1.4	7
83	Stem cells take a shortcut to the bone marrow. Blood, 2003, 101, 2901-2901.	1.4	5
84	Insights into the mechanism of enhanced mobilization of hematopoietic progenitor cells and release of CXCL12 by a combination of AMD3100 and aminoglycoside–polyarginine conjugates. FEBS Journal, 2011, 278, 4150-4165.	4.7	5
85	PAR1 Expression Predicts Clinical G SF CD34 ⁺ HSPC Mobilization and Repopulation Potential in Transplanted Patients. HemaSphere, 2019, 3, e288.	2.7	4
86	Microrna-155 Promotes Hematopoietic Stem and Progenitor Cell Mobilization and Proliferation. Blood, 2012, 120, 214-214.	1.4	4
87	Daily light-and-darkness onset regulates mouse hematopoietic stem cells. Blood Advances, 2019, 3, 704-704.	5.2	3
88	Enhanced thrombin/PAR1 activity promotes G-CSF- and AMD3100-induced mobilization of hematopoietic stem and progenitor cells via NO upregulation. Leukemia, 2021, 35, 3334-3338.	7.2	3
89	EPCR/PAR1 Signaling Navigates Long-Term Repopulating Hematopoietic Stem Cell Bone Marrow Homing to Thrombomodulin-Enriched Blood Vessels. Blood, 2015, 126, 33-33.	1.4	3
90	CD45 Phosphatase Is Involved in Motility and Development of Hematopoietic Stem and Maturing Cells by the Regulation of Cell Adhesion and Cytokine Signaling Blood, 2004, 104, 119-119.	1.4	3

#	Article	IF	CITATIONS
91	Bone Marrow Hematopoietic Connexin 43 Is Required for Mitotransfer and AMPK Dependent Mesenchymal Microenvironment Regeneration after Irradiation. Blood, 2018, 132, 872-872.	1.4	2
92	Regulation Of Hematopoietic Stem Cell Trafficking By The Coagulation Pathway. Blood, 2013, 122, 456-456.	1.4	2
93	Connexin-43 Is a Negative Regulator of Mitochondrial Fission, Mitophagy and Apoptosis of Dividing Hematopoietic Stem Cells through the Drp1-Pink1 Axis. Blood, 2018, 132, 639-639.	1.4	2
94	The doctor prescribed a fat-free diet for stem cell mobilization. Haematologica, 2021, 106, 1512-1513.	3.5	2
95	Quantifying Hematopoietic Stem and Progenitor Cell Mobilization. Methods in Molecular Biology, 2012, 904, 15-35.	0.9	1
96	Coagulation Factor Thrombin Regulates Hematopoietic Stem and Progenitor Cell Egress and Mobilization Via PAR-1 & CXCR4 Upregulation, SDF-1 Secretion and EPCR Shedding. Blood, 2011, 118, 2341-2341.	1.4	1
97	Distinct Bone Marrow Blood Vessels Differentially Regulate Normal and Malignant Hematopoietic Stem and Progenitor Cells. Blood, 2015, 126, 664-664.	1.4	1
98	Inverse PAR1 Activity of Hematopoietic Stem Cells and BM Stromal Cells Mediates G-CSF-Induced Mobilization By Regulation of Nitric Oxide Generation. Blood, 2016, 128, 3370-3370.	1.4	1
99	Expansion of Normal and Leukemic Hematopoietic Progenitor Cells by PTH Requires bFGF Activation of c-Kit and Its Downstream JAK2/STAT5 Signaling Blood, 2009, 114, 2511-2511.	1.4	1
100	Daily Light and Darkness Signals Regulate Bone Marrow Stem Cell Development and Leukocyte Production Via Tnfα and an Interplay Between Norepinephrine and Melatonin. Blood, 2016, 128, 721-721.	1.4	1
101	Vascular Procr+ stem cells: Finding new branches while looking for the roots. Cell Research, 2016, 26, 1071-1072.	12.0	0
102	Interactions Between Hematopoietic Stem and Progenitor Cells and the Bone Marrow. , 2018, , 145-151.		0
103	MT1-MMP and RECK Inversely Regulate Hematopoietic Progenitor Cell Egress Blood, 2007, 110, 1259-1259.	1.4	0
104	Functional SDF-1 Secretion from BM Stromal Cells Is a Cell Contact-Dependent Event Mediated by Cx43 and Cx45 Gap-Junctions. Blood, 2008, 112, 319-319.	1.4	0
105	In Vivo Mobilization of Leukemic Human Precursor-B-ALL Cells by the CXCR4-Antagonist AMD3100 Is Via Secretion of SDF-1 and Synergistically by Catecholamine Action Blood, 2008, 112, 1920-1920.	1.4	0
106	Mobilization of Hematopoietic Stem and Progenitor Cells. , 2010, , 413-440.		0
107	GSK3Î ² Signaling Regulates the Motility of Hematopoietic Progenitors Via Prune Blood, 2010, 116, 1553-1553.	1.4	0
108	Endothelial Blood-Bone Marrow-Barrier Dynamically Regulates Balanced Stem and Progenitor Cell Trafficking and Maintenance. Blood, 2012, 120, 507-507.	1.4	0

#	Article	IF	CITATIONS
109	Hematopoietic Stem Cells and Their BM Stromal Microenvironment Share a Dynamic Inverse Metabolic State During Quiescence and Proliferation Via ROS Transfer Between The Two Populations. Blood, 2013, 122, 587-587.	1.4	0
110	EPCR Limits Nitric Oxide Levels, Mediating Human and Murine Stem Cell Adhesion and Retention In The Bone Marrow, By Conjugating PAR1 and CXCR4 Signaling. Blood, 2013, 122, 795-795.	1.4	0
111	Blood Cell Replenishment and Bone Marrow Stem Cell Pool Renewal Are Regulated By Different Circadian Peaks Via Norepinephrine and TNFα/S1P Signaling. Blood, 2013, 122, 217-217.	1.4	0
112	Cathecholamines Differently Regulate Human AML and Normal Hematopoietic Progenitor Cell Motility Via miR126 and RGS16. Blood, 2013, 122, 1413-1413.	1.4	0
113	Human and Murine β-Defensin-Derived Peptides Induce Rapid Mobilization Of Murine Hematopoietic Stem and Progenitor Cells Via Activation Of CXCR4 Signaling and CXCL12 Release. Blood, 2013, 122, 890-890.	1.4	0
114	Disturbed Endothelial Blood-Bone Marrow-Barrier In Nox4 Deficient Mice. Blood, 2013, 122, 1169-1169.	1.4	0
115	EPCR Guides Hematopoietic Stem Cells Homing to the Bone Marrow Independently of Niche Clearance. Blood, 2016, 128, 4538-4538.	1.4	0
116	VLA-4 Affinity Assay for Murine Bone Marrow-derived Hematopoietic Stem Cells. Bio-protocol, 2017, 7, e2134.	0.4	0
117	Adhesion Assay for Murine Bone Marrow Hematopoietic Stem Cells. Bio-protocol, 2017, 7, e2135.	0.4	0
118	Nocturnal Melatonin Renews Bone and Blood Forming Stem Cells Reservoir By Metabolic Reprograming. Blood, 2018, 132, 3326-3326.	1.4	0
119	Acute Inflammation Induces Lactate Release By Bone Marrow Neutrophils That Promotes Their Mobilization Via Endothelial GPR81 Signaling. Blood, 2019, 134, 3582-3582.	1.4	0
120	Regulation of hematopoietic stem cell function by nitric oxide signaling. Blood Science, 2020, 2, 66-67.	0.9	0