Stephen G Hickey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2318507/publications.pdf

Version: 2024-02-01

136885 143943 4,711 67 32 citations h-index papers

g-index 72 72 72 7152 docs citations times ranked citing authors all docs

57

#	Article	IF	CITATIONS
1	The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1567-1582.	1.4	4
2	Segmental Mobility Studies of Poly(<i>N</i> â€isopropyl acrylamide) Interactions with Gold Nanoparticles and Its Use as a Thermally Driven Trapping System. Macromolecular Rapid Communications, 2018, 39, e1800090.	2.0	2
3	Absolute Energy Level Positions in CdSe Nanostructures from Potential-Modulated Absorption Spectroscopy (EMAS). ACS Nano, 2017, 11, 12174-12184.	7.3	38
4	Excitable Oil Droplets ―FRET Across a Liquidâ€Liquid Phase Boundary. ChemistrySelect, 2016, 1, 4062-4067.	0.7	0
5	The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice. Beilstein Journal of Nanotechnology, 2015, 6, 111-123.	1.5	44
6	Band-Emission Evolutions from Magic-sized Clusters to Nanosized Quantum Dots of Cd ₃ As ₂ in the Hot-Bubbling Synthesis. Journal of Physical Chemistry C, 2015, 119, 16390-16395.	1.5	6
7	Easy and Fast Phase Transfer of CTAB Stabilised Gold Nanoparticles from Water to Organic Phase. Zeitschrift Fur Physikalische Chemie, 2015, 229, 235-245.	1.4	18
8	Optofluidic Sensor: Evaporation Kinetics Detection of Solvents Dissolved with Cd ₃ P ₂ Colloidal Quantum Dots in a Rolledâ€Up Microtube. Advanced Optical Materials, 2015, 3, 187-193.	3.6	22
9	Ultrasmall SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage. Scientific Reports, 2015, 4, 4647.	1.6	75
10	Synthesis of radioactively labelled CdSe/CdS/ZnS quantum dots for in vivo experiments. Beilstein Journal of Nanotechnology, 2014, 5, 2383-2387.	1.5	1
11	Relationship of the nanocrystal morphology and atomistic structure with respect to the superstructure ordering within PbS- and Gold-Mesocrystals. Materials Research Society Symposia Proceedings, 2014, 1705, 14.	0.1	2
12	Thomas Wolff. Zeitschrift Fur Physikalische Chemie, 2014, 228, 127-128.	1.4	О
13	Interconnection of Nanoparticles within 2D Superlattices of PbS/Oleic Acid Thin Films. Advanced Materials, 2014, 26, 3042-3049.	11.1	51
14	Photoelectrochemical Investigations of Semiconductor Nanoparticles and Their Application to Solar Cells. Journal of Physical Chemistry C, 2014, 118, 17123-17141.	1.5	26
15	Encapsulated Cd ₃ P ₂ quantum dots emitting from the visible to the near infrared for bio-labelling applications. CrystEngComm, 2014, 16, 9622-9630.	1.3	6
16	Mesocrystalline materials and the involvement of oriented attachment $\hat{a} \in \hat{a}$ a review. CrystEngComm, 2014, 16, 9408-9424.	1.3	67
17	Preparation of near-infrared absorbing composites comprised of conjugated macroligands on the surface of PbS nanoparticles. Polymer, 2013, 54, 5525-5533.	1.8	3
18	Stimuli-responsive hierarchically self-assembled 3D porous polymer-based structures with aligned pores. Journal of Materials Chemistry B, 2013, 1, 1786.	2.9	31

#	Article	IF	Citations
19	Emissive ZnO@Zn ₃ P ₂ Nanocrystals: Synthesis, Optical, and Optoelectrochemical Properties. Small, 2013, 9, 3415-3422.	5.2	22
20	Quantum-Dot-Based Photoelectrochemical Sensors for Chemical and Biological Detection. ACS Applied Materials & Detection.	4.0	314
21	Effect of Electrochemical Charge Injection on the Photoluminescence Properties of CdSe Quantum Dot Monolayers Anchored to Oxide Substrates. Zeitschrift Fur Physikalische Chemie, 2013, , 130311033635007.	1.4	0
22	A versatile approach for coating oxidic surfaces with a range of nanoparticulate materials. Journal of Materials Chemistry C, 2013, 1, 1515.	2.7	15
23	Emissive Semiconductor Nanocrystals: Recent Progress. ECS Transactions, 2012, 45, 61-66.	0.3	0
24	Low-band gap nanoparticles embedded in high-K dielectrics. , 2012, , .		0
25	Large-area (> 50 cm $\tilde{A}-$ 50 cm), freestanding, flexible, optical membranes of Cd-free nanocrystal quantum dots. , 2012, , .		0
26	PbS–Organic Mesocrystals: The Relationship between Nanocrystal Orientation and Superlattice Array. Angewandte Chemie - International Edition, 2012, 51, 10776-10781.	7.2	67
27	Enhancing the efficiency of a dye sensitized solar cell due to the energy transfer between CdSe quantum dots and a designed squaraine dye. RSC Advances, 2012, 2, 2748.	1.7	56
28	Light Energy Conversion by Mesoscopic PbS Quantum Dots/TiO ₂ Heterojunction Solar Cells. ACS Nano, 2012, 6, 3092-3099.	7.3	132
29	High Efficiency Quantum Dot Heterojunction Solar Cell Using Anatase (001) TiO ₂ Nanosheets. Advanced Materials, 2012, 24, 2202-2206.	11.1	150
30	Large-Area (over 50 cm \tilde{A} — 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dots. Nano Letters, 2012, 12, 3986-3993.	4.5	104
31	Synthesis of Monodisperse Cadmium Phosphide Nanoparticles Using ex-Situ Produced Phosphine. ACS Nano, 2012, 6, 7059-7065.	7.3	30
32	Study of the Attachment of Linker Molecules and Their Effects on the Charge Carrier Transfer at Lead Sulfide Nanoparticle Sensitized ZnO Substrates. Journal of Physical Chemistry C, 2011, 115, 13047-13055.	1.5	32
33	Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications. Journal of Materials Chemistry, 2011, 21, 11550.	6.7	67
34	Bright Whiteâ€Light Emitting Manganese and Copper Coâ€Doped ZnSe Quantum Dots. Angewandte Chemie - International Edition, 2011, 50, 4432-4436.	7.2	173
35	Exciton relaxation in PbS quantum dots. Physica Status Solidi - Rapid Research Letters, 2010, 4, 341-343.	1.2	5
36	Synthesis and Characterization of Cadmium Phosphide Quantum Dots Emitting in the Visible Red to Near-Infrared. Journal of the American Chemical Society, 2010, 132, 5613-5615.	6.6	79

3

#	Article	IF	CITATIONS
37	Nanostructured Silver Substrates With Stable and Universal SERS Properties: Application to Organic Molecules and Semiconductor Nanoparticles. Nanoscale Research Letters, 2010, 5, 403-409.	3.1	36
38	Progress in the Light Emission of Colloidal Semiconductor Nanocrystals. Small, 2010, 6, 1364-1378.	5.2	159
39	Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length. Optics Letters, 2010, 35, 1197.	1.7	115
40	Synthesis of Palladium Nanoparticles and Their Applications for Surface-Enhanced Raman Scattering and Electrocatalysis. Journal of Physical Chemistry C, 2010, 114, 21976-21981.	1.5	109
41	Wavefunction Mapping of Immobilized InP Semiconductor Nanocrystals. Small, 2009, 5, 808-812.	5.2	12
42	The use of nanocrystals with emission in the visible or near infrared and their applications for photonics and optoelectronics. Proceedings of SPIE, 2009, , .	0.8	0
43	DEMONSTRATION OF SHAPE AND SIZE CONTROL OF APPLICATIONS RELEVANT COLLOIDALLY SYNTHESIZED IV-VI NANOPARTICULATE TIN(II) SULFIDE. , 2009, , .		0
44	Size and Shape Control of Colloidally Synthesized IVâ^'VI Nanoparticulate Tin(II) Sulfide. Journal of the American Chemical Society, 2008, 130, 14978-14980.	6.6	207
45	Self-assembled macroscopic structures of gold nanoparticles. Proceedings of SPIE, 2007, , .	0.8	0
46	NIR-emitting nanocrystals for photonic applications. , 2007, , .		0
47	Synthesis and characterisation of NIR-emitting nanocrystals for photonic and optoelectronic applications. Photonics and Nanostructures - Fundamentals and Applications, 2007, 5, 113-118.	1.0	4
48	Infrared-Emitting Colloidal Nanocrystals: Synthesis, Assembly, Spectroscopy, and Applications. Small, 2007, 3, 536-557.	5.2	385
49	Synthesis of Monodisperse PbS Nanoparticles and Their Assembly into Highly Ordered 3D Colloidal Crystals. Zeitschrift Fur Physikalische Chemie, 2007, 221, 427-437.	1.4	37
50	RELAXATION PROCESSES IN LEAD SULFIDE QUANTUM DOTS., 2007,,.		0
51	Variable Orbital Coupling in a Two-Dimensional Quantum-Dot Solid Probed on a Local Scale. Physical Review Letters, 2006, 97, 096803.	2.9	81
52	The Hidden Role of Acetate in the PbSe Nanocrystal Synthesis. Journal of the American Chemical Society, 2006, 128, 6792-6793.	6.6	186
53	Publisher's Note: Variable Orbital Coupling in a Two-Dimensional Quantum-Dot Solid Probed on a Local Scale [Phys. Rev. Lett.97, 096803 (2006)]. Physical Review Letters, 2006, 97, .	2.9	3
54	Density of States Measured by Scanning-Tunneling Spectroscopy Sheds New Light on the Optical Transitions in PbSe Nanocrystals. Physical Review Letters, 2005, 95, 086801.	2.9	113

#	Article	IF	CITATION
55	Photoelectron Spectroscopic Investigations of Chemical Bonding in Organically Stabilized PbS Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 17422-17428.	1.2	103
56	ONE POT SYNTHESIS AND SUBSEQUENT CHARACTERISATION OF THE LEAD CHALCOGENIDES. , 2005, , .		0
57	Spontaneous Assembly of a Monolayer of Charged Gold Nanocrystals at the Water/Oil Interface. Angewandte Chemie - International Edition, 2004, 43, 458-462.	7.2	411
58	A study of CdS nanoparticle surface states by potential-modulated sub-bandgap spectroscopy. Journal of Electroanalytical Chemistry, 2004, 569, 271-274.	1.9	10
59	Single-Step Synthesis to Control the Photoluminescence Quantum Yield and Size Dispersion of CdSe Nanocrystals ChemInform, 2003, 34, no.	0.1	1
60	Single-Step Synthesis to Control the Photoluminescence Quantum Yield and Size Dispersion of CdSe Nanocrystals. Journal of Physical Chemistry B, 2003, 107, 489-496.	1.2	346
61	Highly Luminescent Water-Soluble CdTe Quantum Dots. Nano Letters, 2003, 3, 503-507.	4.5	423
62	Electrochemical and topological characterization of gold (111) \hat{a} £oligo (cyclohexylidene) \hat{a} £gold nanocrystal interfaces. Journal of Electroanalytical Chemistry, 2002, 522, 2-10.	1.9	20
63	Intensity modulated photocurrent spectroscopy studies of CdS nanoparticle modified electrodes. Electrochimica Acta, 2000, 45, 3277-3282.	2.6	28
64	Photoelectrochemical Studies of CdS Nanoparticle Modified Electrodes:Â Absorption and Photocurrent Investigations. Journal of Physical Chemistry B, 2000, 104, 7623-7626.	1.2	72
65	Underpotential deposition of copper on electrodes modified with colloidal gold. Electrochemistry Communications, 1999, 1, 116-118.	2.3	13
66	CdS nanoparticle-modified electrodes for photoelectrochemical studies. Chemical Communications, 1999, , 67-68.	2.2	27
67	Photoelectrochemical Studies of CdS Nanoparticle-Modified Electrodes. Journal of Physical	1.2	63