
William Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/231826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
2	Wound healing recapitulates morphogenesis in Drosophila embryos. Nature Cell Biology, 2002, 4, 907-912.	10.3	388
3	Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Current Biology, 2000, 10, 1420-1426.	3.9	311
4	Live imaging of wound inflammation in <i>Drosophila</i> embryos reveals key roles for small GTPases during in vivo cell migration. Journal of Cell Biology, 2005, 168, 567-573.	5.2	283
5	Calcium Flashes Orchestrate the Wound Inflammatory Response through DUOX Activation and Hydrogen Peroxide Release. Current Biology, 2013, 23, 424-429.	3.9	278
6	Wound healing and inflammation: embryos reveal the way to perfect repair. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 777-784.	4.0	249
7	Dynamic Analysis of Actin Cable Function during Drosophila Dorsal Closure. Current Biology, 2002, 12, 1245-1250.	3.9	191
8	Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in <i>Drosophila melanogaster </i> . Journal of Cell Biology, 2006, 173, 405-416.	5.2	186
9	Prioritization of Competing Damage and Developmental Signals by Migrating Macrophages in the Drosophila Embryo. Current Biology, 2010, 20, 464-470.	3.9	176
10	Corpse Engulfment Generates a Molecular Memory that Primes the Macrophage Inflammatory Response. Cell, 2016, 165, 1658-1671.	28.9	160
11	Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nature Reviews Molecular Cell Biology, 2007, 8, 542-551.	37.0	156
12	Structures in focus—filopodia. International Journal of Biochemistry and Cell Biology, 2002, 34, 726-730.	2.8	144
13	<i>Drosophila</i> blood cells and their role in immune responses. FEBS Journal, 2015, 282, 1368-1382.	4.7	123
14	Genetic Ablation of <i>Drosophila</i> Phagocytes Reveals Their Contribution to Both Development and Resistance to Bacterial Infection. Journal of Innate Immunity, 2009, 1, 322-334.	3.8	111
15	Clasp-mediated microtubule bundling regulates persistent motility and contact repulsion in <i>Drosophila</i> macrophages in vivo. Journal of Cell Biology, 2010, 189, 681-689.	5.2	111
16	The Apoptosis Paradox in Cancer. International Journal of Molecular Sciences, 2022, 23, 1328.	4.1	96
17	Swatting flies: modelling wound healing and inflammation in <i>Drosophila</i> . DMM Disease Models and Mechanisms, 2011, 4, 569-574.	2.4	91
18	Fat Body Cells Are Motile and Actively Migrate to Wounds to Drive Repair and Prevent Infection. Developmental Cell, 2018, 44, 460-470.e3.	7.0	90

WILLIAM WOOD

#	Article	IF	CITATIONS
19	Unravelling the Actin Cytoskeleton: A New Competitive Edge?. Trends in Cell Biology, 2016, 26, 569-576.	7.9	87
20	Macrophage Functions in Tissue Patterning and Disease: New Insights from the Fly. Developmental Cell, 2017, 40, 221-233.	7.0	79
21	Recapitulation of morphogenetic cell shape changes enables wound re-epithelialisation. Development (Cambridge), 2014, 141, 1814-1820.	2.5	72
22	Drosophila Embryos as Model Systems for Monitoring Bacterial Infection in Real Time. PLoS Pathogens, 2009, 5, e1000518.	4.7	70
23	Draper/CED-1 Mediates an Ancient Damage Response to Control Inflammatory Blood Cell Migration InÂVivo. Current Biology, 2015, 25, 1606-1612.	3.9	61
24	Enabled Negatively Regulates Diaphanous-Driven Actin Dynamics InÂVitro and InÂVivo. Developmental Cell, 2014, 28, 394-408.	7.0	58
25	Epithelial fusions in the embryo. Current Opinion in Cell Biology, 2002, 14, 569-574.	5.4	57
26	Persistent and polarized global actin flow is essential for directionality during cell migration. Nature Cell Biology, 2019, 21, 1370-1381.	10.3	57
27	Complement-Related Regulates Autophagy in Neighboring Cells. Cell, 2017, 170, 158-171.e8.	28.9	56
28	Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. ELife, 2016, 5, .	6.0	51
29	Interdependence of macrophage migration and ventral nerve cord development in <i>Drosophila</i> embryos. Development (Cambridge), 2010, 137, 1625-1633.	2.5	50
30	SCAR/WAVE-mediated processing of engulfed apoptotic corpses is essential for effective macrophage migration in Drosophila. Cell Death and Differentiation, 2013, 20, 709-720.	11.2	49
31	Ecdysone Mediates the Development of Immunity in the Drosophila Embryo. Current Biology, 2014, 24, 1145-1152.	3.9	49
32	Systems Analysis of the Dynamic Inflammatory Response to Tissue Damage Reveals Spatiotemporal Properties of the Wound Attractant Gradient. Current Biology, 2016, 26, 1975-1989.	3.9	48
33	Ena drives invasive macrophage migration in <i>Drosophila</i> embryos. DMM Disease Models and Mechanisms, 2011, 4, 126-134.	2.4	38
34	Drosophila blood cell chemotaxis. Current Opinion in Cell Biology, 2014, 30, 1-8.	5.4	38
35	Drosophila Embryonic Hemocytes Produce Laminins to Strengthen Migratory Response. Cell Reports, 2017, 21, 1461-1470.	6.4	33
36	Macrophages Use Distinct Actin Regulators to Switch Engulfment Strategies and Ensure Phagocytic Plasticity InÂVivo. Cell Reports, 2020, 31, 107692.	6.4	32

WILLIAM WOOD

#	Article	lF	CITATIONS
37	Live cell tracking of macrophage efferocytosis during <i>Drosophila</i> embryo development in vivo. Science, 2022, 375, 1182-1187.	12.6	30
38	Wound Healing: Calcium Flashes Illuminate Early Events. Current Biology, 2012, 22, R14-R16.	3.9	28
39	A dual role for the βPS integrin <i>myospheroid</i> in mediating <i>Drosophila</i> embryonic macrophage migration. Journal of Cell Science, 2013, 126, 3475-84.	2.0	27
40	Injury Activates a Dynamic Cytoprotective Network to Confer Stress Resilience and Drive Repair. Current Biology, 2019, 29, 3851-3862.e4.	3.9	22
41	Live Imaging Of Drosophila melanogaster Embryonic Hemocyte Migrations. Journal of Visualized Experiments, 2010, , .	0.3	21
42	Long-term In Vivo Tracking of Inflammatory Cell Dynamics Within Drosophila Pupae. Journal of Visualized Experiments, 2018, , .	0.3	19
43	A conserved myotubularin-related phosphatase regulates autophagy by maintaining autophagic flux. Journal of Cell Biology, 2020, 219, .	5.2	17
44	Hydrogen Peroxide Triggers a Dual Signaling Axis To Selectively Suppress Activated Human T Lymphocyte Migration. Journal of Immunology, 2017, 198, 3679-3689.	0.8	16
45	α-actinin accounts for the bioactivity of actin preparations in inducing STAT target genes in Drosophila melanogaster. ELife, 2018, 7, .	6.0	16
46	Ena orchestrates remodelling within the actin cytoskeleton to drive robust <i>Drosophila</i> macrophage chemotaxis. Journal of Cell Science, 2019, 132, .	2.0	15
47	Drosophila embryonic hemocytes. Current Biology, 2011, 21, R173-R174.	3.9	13
48	Imaging Cell Movement During Dorsal Closure in <i>Drosophila</i> Embryos. , 2005, 294, 203-210.		12
49	Phagocyte Responses to Cell Death in Flies. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036350.	5.5	11
50	Inflammation and Wound Healing in Drosophila. Methods in Molecular Biology, 2009, 571, 137-149.	0.9	9
51	Igniting the spread of ferroptotic cell death. Nature Cell Biology, 2020, 22, 1027-1029.	10.3	9
52	Piezo acts as a molecular brake on wound closure to ensure effective inflammation and maintenance of epithelial integrity. Current Biology, 2022, 32, 3584-3592.e4.	3.9	8
53	Creating a Buzz about Macrophages: The Fly as an InÂVivo Model for Studying Immune Cell Behavior. Developmental Cell, 2016, 38, 129-132.	7.0	7
54	Understanding in vivo blood cell migration—Drosophila hemocytes lead the way. Fly, 2011, 5, 110-114.	1.7	5

WILLIAM WOOD

#	Article	IF	CITATIONS
55	PTPN21/Pez Is a Novel and Evolutionarily Conserved Key Regulator of Inflammation InÂVivo. Current Biology, 2021, 31, 875-883.e5.	3.9	5
56	Elucidating the In Vivo Targets of Photorhabdus Toxins in Real-Time Using Drosophila Embryos. Advances in Experimental Medicine and Biology, 2012, 710, 49-57.	1.6	5
57	Cell migration by swimming: Drosophila adipocytes as a new in vivo model of adhesion-independent motility. Seminars in Cell and Developmental Biology, 2020, 100, 160-166.	5.0	2
58	Recapitulation of morphogenetic cell shape changes enables wound re-epithelialisation. Journal of Cell Science, 2014, 127, e1-e1.	2.0	0