
Kohei Inayoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2317975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance of the KAGRA detector during the first joint observation with GEO 600 (O3GK). Progress of Theoretical and Experimental Physics, 2023, 2023, .	6.6	4
2	Top-heavy stellar mass distribution in galactic nuclei inferred from the universally high abundance ratio of [Fe/Mg]. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2573-2583.	4.4	15
3	Rapid Growth of Seed Black Holes during Early Bulge Formation. Astrophysical Journal, 2022, 927, 237.	4.5	16
4	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
5	The Current Status and Future Prospects of KAGRA, the Large-Scale Cryogenic Gravitational Wave Telescope Built in the Kamioka Underground. Galaxies, 2022, 10, 63.	3.0	13
6	Signature of Supersonic Turbulence in Galaxy Clusters Revealed by AGN-driven Hα Filaments. Astrophysical Journal Letters, 2022, 929, L30.	8.3	7
7	On the Connection between Supermassive Black Holes and Galaxy Growth in the Reionization Epoch. Astrophysical Journal Letters, 2022, 931, L11.	8.3	7
8	The Age of Discovery with the James Webb Space Telescope: Excavating the Spectral Signatures of the First Massive Black Holes. Astrophysical Journal Letters, 2022, 931, L25.	8.3	16
9	Overview of KAGRA: KAGRA science. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	31
10	Super-Eddington Mass Growth of Intermediate-mass Black Holes Embedded in Dusty Circumnuclear Disks. Astrophysical Journal, 2021, 907, 74.	4.5	17
11	Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	66
12	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XII. Extended [C ii] Structure (Merger) Tj ETQq	0.0_rgBT 4.5	/Overlock 10
13	Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave detector. Classical and Quantum Gravity, 2021, 38, 065011.	4.0	7
14	Light, medium-weight, or heavy? The nature of the first supermassive black hole seeds. Monthly Notices of the Royal Astronomical Society, 2021, 506, 613-632.	4.4	29
15	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XIII. Large-scale Feedback and Star Formation in a Low-luminosity Quasar at z = 7.07 on the Local Black Hole to Host Mass Relation. Astrophysical Journal, 2021, 914, 36.	4.5	37
16	Evolution of High-redshift Quasar Hosts and Promotion of Massive Black Hole Seed Formation. Astrophysical Journal, 2021, 917, 60.	4.5	9
17 —	The Sizes of Quasar Host Galaxies in the Hyper Suprime-Cam Subaru Strategic Program. Astrophysical	4.5	26 -

18Dynamics and Morphology of Cold Gas in Fast, Radiatively Cooling Outflows: Constraining AGN
Energetics with Horseshoes. Astrophysical Journal Letters, 2021, 917, L7.8.310

Journal, 2021, 918, 22.

Kohei Inayoshi

#	Article	IF	CITATIONS
19	Gravitational Wave Backgrounds from Coalescing Black Hole Binaries at Cosmic Dawn: An Upper Bound. Astrophysical Journal, 2021, 919, 41.	4.5	8
20	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). IV. Rapidly Growing (Super)Massive Black Holes in Extremely Radio-loud Galaxies. Astrophysical Journal, 2021, 921, 51.	4.5	8
21	The extreme properties of the nearby hyper-Eddington accreting active galactic nucleus in IRASÂ04416+1215. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3599-3615.	4.4	15
22	The Eccentric and Accelerating Stellar Binary Black Hole Mergers in Galactic Nuclei: Observing in Ground and Space Gravitational-wave Observatories. Astrophysical Journal, 2021, 923, 139.	4.5	11
23	On the Mass Loading of AGN-driven Outflows in Elliptical Galaxies and Clusters. Astrophysical Journal, 2021, 923, 256.	4.5	4
24	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
25	The Assembly of the First Massive Black Holes. Annual Review of Astronomy and Astrophysics, 2020, 58, 27-97.	24.3	264
26	Application of independent component analysis to the iKAGRA data. Progress of Theoretical and Experimental Physics, 2020, 2020, .	6.6	7
27	Hyper-Eddington accretion flows on to black holes accompanied by powerful outflows. Monthly Notices of the Royal Astronomical Society, 2020, 497, 302-317.	4.4	31
28	Radiative feedback for supermassive star formation in a massive cloud with H2 molecules in an atomic-cooling halo. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5960-5971.	4.4	7
29	Universal Transition Diagram from Dormant to Actively Accreting Supermassive Black Holes. Astrophysical Journal, 2020, 894, 141.	4.5	11
30	Hunting for Wandering Massive Black Holes. Astrophysical Journal, 2020, 901, 39.	4.5	13
31	Pulsation-driven Mass Loss from Massive Stars behind Stellar Mergers in Metal-poor Dense Clusters. Astrophysical Journal, 2020, 902, 81.	4.5	5
32	Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	114
33	Super-Eddington growth of black holes in the early universe: effects of disc radiation spectra. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2689-2700.	4.4	17
34	Transition of BH feeding from the quiescent regime into star-forming cold disc regime. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5377-5390.	4.4	15
35	Opacity Limit for Supermassive Protostars. Astrophysical Journal, 2018, 857, 138.	4.5	10
36	Stunted accretion growth of black holes by combined effect of the flow angular momentum and radiation feedback. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3961-3975.	4.4	30

Κομεί Ιναγόσηι

#	Article	IF	CITATIONS
37	Low-density, radiatively inefficient rotating-accretion flow on to a black hole. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1412-1426.	4.4	30
38	Rapid growth of black holes accompanied with hot or warm outflows exposed to anisotropic super-Eddington radiation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 673-682.	4.4	34
39	Massive black hole and Population III galaxy formation in overmassive dark-matter haloes with violent merger histories. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4017-4027.	4.4	28
40	Gravitational Waves from Supermassive Black Hole Binaries in Ultraluminous Infrared Galaxies. Astrophysical Journal Letters, 2018, 863, L36.	8.3	17
41	Quenching of Supermassive Black Hole Growth around the Apparent Maximum Mass. Astrophysical Journal Letters, 2017, 840, L9.	8.3	15
42	Probing stellar binary black hole formation in galactic nuclei via the imprint of their center of mass acceleration on their gravitational wave signal. Physical Review D, 2017, 96, .	4.7	59
43	Formation pathway of Population III coalescing binary black holes through stable mass transfer. Monthly Notices of the Royal Astronomical Society, 2017, 468, 5020-5032.	4.4	73
44	Long-term and highly frequent monitor of 6.7ÂGHz methanol masers to statistically research periodic flux variations around high-mass protostars using the Hitachi 32-m. Proceedings of the International Astronomical Union, 2017, 13, 45-48.	0.0	0
45	Hyper-Eddington accretion flows on to massive black holes. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3738-3755.	4.4	148
46	Hyper-Eddington mass accretion on to a black hole with super-Eddington luminosity. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4496-4504.	4.4	38
47	IS THERE A MAXIMUM MASS FOR BLACK HOLES IN GALACTIC NUCLEI?. Astrophysical Journal, 2016, 828, 110.	4.5	42
48	Gravitational wave background from Population III binary black holes consistent with cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2722-2727.	4.4	61
49	STELLAR TIDAL DISRUPTION EVENTS BY DIRECT-COLLAPSE BLACK HOLES. Astrophysical Journal, 2016, 826, 80.	4.5	15
50	Direct collapse black hole formation via high-velocity collisions of protogalaxies. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1692-1700.	4.4	40
51	The suppression of direct collapse black hole formation by soft X-ray irradiation. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4350-4363.	4.4	54
52	FLUX MONITORING OF 6.7 GHz METHANOL MASER TO SYSTEMATICALLY RESEARCH PERIODIC VARIATIONS USING THE HITACHI 32-m. Publications of the Korean Astronomical Society, 2015, 30, 129-131.	0.0	6
53	Possible indirect confirmation of the existence of Pop III massive stars by gravitational wave. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2963-2992.	4.4	215
54	Does disc fragmentation prevent the formation of supermassive stars in protogalaxies?. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1549-1557.	4.4	65

Κομει Ιναγοςμι

#	Article	IF	CITATIONS
55	Conditions for HD cooling in the first galaxies revisited: interplay between far-ultraviolet and cosmic ray feedback in Population III star formation. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2667-2679.	4.4	16
56	Formation of an embryonic supermassive star in the first galaxy. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 445, L109-L113.	3.3	78
57	Pulsational instability of supergiant protostars: do they grow supermassive by accretion?. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3036-3044.	4.4	33
58	FORMATION OF PRIMORDIAL SUPERMASSIVE STARS BY RAPID MASS ACCRETION. Astrophysical Journal, 2013, 778, 178.	4.5	201
59	DIRECT DIAGNOSTICS OF FORMING MASSIVE STARS: STELLAR PULSATION AND PERIODIC VARIABILITY OF MASER SOURCES. Astrophysical Journal Letters, 2013, 769, L20.	8.3	48
60	Supermassive black hole formation by the cold accretion shocks in the first galaxies. , 2012, , .		0
61	Supermassive black hole formation by cold accretion shocks in the first galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2539-2546.	4.4	81
62	Effect of cosmic ray/X-ray ionization on supermassive black hole formation. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2748-2759.	4.4	49
63	Testing Two-Component Jet Models of GRBs with Orphan Afterglows. Publication of the Astronomical Society of Japan, 2011, 63, 735-739.	2.5	Ο