
Dario Zappa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2317137/publications.pdf Version: 2024-02-01

Πλρίο Ζλορλ

#	Article	IF	CITATIONS
1	Selective H2S gas sensors based on ohmic hetero-interface of Au-functionalized WO3 nanowires. Applied Surface Science, 2022, 571, 151262.	6.1	49
2	NiO-GDC nanowire anodes for SOFCs: novel growth, characterization and cell performance. Materials Advances, 2022, 3, 5922-5929.	5.4	2
3	Optimizing MOX sensor array performances with a reconfigurable self-adaptive temperature modulation interface. Sensors and Actuators B: Chemical, 2021, 333, 129509.	7.8	19
4	Assessment of Integrated Aerosol Sampling Techniques in Indoor, Confined and Outdoor Environments Characterized by Specific Emission Sources. Applied Sciences (Switzerland), 2021, 11, 4360.	2.5	2
5	Novel Christmas Branched Like NiO/NiWO ₄ /WO ₃ (p–p–n) Nanowire Heterostructures for Chemical Sensing. Advanced Functional Materials, 2021, 31, 2104416.	14.9	32
6	Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy, 2021, 46, 27643-27674.	7.1	253
7	Tailoring the selectivity of ultralow-power heterojunction gas sensors by noble metal nanoparticle functionalization. Nano Energy, 2021, 88, 106241.	16.0	21
8	Catalyst – Assisted vapor liquid solid growth of α-Bi2O3 nanowires for acetone and ethanol detection. Sensors and Actuators B: Chemical, 2021, 346, 130432.	7.8	18
9	Robust Room-Temperature NO ₂ Sensors from Exfoliated 2D Few-Layered CVD-Grown Bulk Tungsten Di-selenide (2H-WSe ₂). ACS Applied Materials & Interfaces, 2021, 13, 4316-4329.	8.0	45
10	Manganese Oxide Nanoarchitectures as Chemoresistive Gas Sensors to Monitor Fruit Ripening. Journal of Nanoscience and Nanotechnology, 2020, 20, 3025-3030.	0.9	15
11	One Dimensional ZnO Nanostructures: Growth and Chemical Sensing Performances. Nanomaterials, 2020, 10, 1940.	4.1	27
12	Influence of iron and nitrogen ion beam exposure on the gas sensing properties of CuO nanowires. Sensors and Actuators B: Chemical, 2020, 321, 128579.	7.8	16
13	Seed-Assisted Growth of TiO2 Nanowires by Thermal Oxidation for Chemical Gas Sensing. Nanomaterials, 2020, 10, 935.	4.1	14
14	Hydrogen Gas Sensing Performances of p-Type Mn3O4 Nanosystems: The Role of Built-in Mn3O4/Ag and Mn3O4/SnO2 Junctions. Nanomaterials, 2020, 10, 511.	4.1	14
15	Quasi-1D MnO2 nanocomposites as gas sensors for hazardous chemicals. Applied Surface Science, 2020, 512, 145667.	6.1	35
16	Chemical Gas Sensors Studied at SENSOR Lab, Brescia (Italy): From Conventional to Energy-Efficient and Biocompatible Composite Structures. Sensors, 2020, 20, 579.	3.8	7
17	Novel insight on the local surface properties of ZnO nanowires. Nanotechnology, 2020, 31, 465705.	2.6	37
18	Nanostructured MOS Sensor for the Detection, Follow up, and Threshold Pursuing of Campylobacter Jejuni Development in Milk Samples. Sensors, 2020, 20, 2009.	3.8	13

#	Article	IF	CITATIONS
19	An Array of MOX Sensors and ANNs to Assess Grated Parmigiano Reggiano Cheese Packs' Compliance with CFPR Guidelines. Biosensors, 2020, 10, 47.	4.7	7
20	Low-Power Detection of Food Preservatives by a Novel Nanowire-Based Sensor Array. Foods, 2019, 8, 226.	4.3	13
21	Synthesis of Nanoporous TiO2 with the Use of Diluted Hydrogen Peroxide Solution and Its Application in Gas Sensing. Coatings, 2019, 9, 681.	2.6	21
22	Mn ₃ O ₄ Nanomaterials Functionalized with Fe ₂ O ₃ and ZnO: Fabrication, Characterization, and Ammonia Sensing Properties. Advanced Materials Interfaces, 2019, 6, 1901239.	3.7	12
23	3D-Integrated Multi-Sensor Demonstrator System for Environmental Monitoring. , 2019, , .		Ο
24	Shelf Life Study of NiO Nanowire Sensors for NO2 Detection. Electronic Materials Letters, 2019, 15, 743-749.	2.2	14
25	Integration of VLS-Grown WO ₃ Nanowires into Sensing Devices for the Detection of H ₂ S and O ₃ . ACS Omega, 2019, 4, 16336-16343.	3.5	28
26	Sensing Nitrogen Mustard Gas Simulant at the ppb Scale via Selective Dual-Site Activation at Au/Mn ₃ O ₄ Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 23692-23700.	8.0	26
27	The Influence of Nb on the Synthesis of WO3 Nanowires and the Effects on Hydrogen Sensing Performance. Sensors, 2019, 19, 2332.	3.8	13
28	Chemical Vapor Deposition: Mn ₃ O ₄ Nanomaterials Functionalized with Fe ₂ O ₃ and ZnO: Fabrication, Characterization, and Ammonia Sensing Properties (Adv. Mater. Interfaces 24/2019). Advanced Materials Interfaces, 2019, 6, 1970151.	3.7	0
29	Branch-like NiO/ZnO heterostructures for VOC sensing. Sensors and Actuators B: Chemical, 2018, 262, 477-485.	7.8	110
30	Tin Oxide Nanowires Decorated with Ag Nanoparticles for Visible Light-Enhanced Hydrogen Sensing at Room Temperature: Bridging Conductometric Gas Sensing and Plasmon-Driven Catalysis. Journal of Physical Chemistry C, 2018, 122, 5026-5031.	3.1	26
31	UV Light Assisted NO2Sensing by SnO2/Graphene Oxide Composite. Proceedings (mdpi), 2018, 2, .	0.2	5
32	New Sustainable Hybrid Porous Materials for Air Particulate Matter Trapping. Materials Science Forum, 2018, 941, 2237-2242.	0.3	3
33	Surface Properties of SnO2 Nanowires Deposited on Si Substrate Covered by Au Catalyst Studies by XPS, TDS and SEM. Nanomaterials, 2018, 8, 738.	4.1	22
34	"Metal oxide -based heterostructures for gas sensors― A review. Analytica Chimica Acta, 2018, 1039, 1-23.	5.4	270
35	Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems. Sensors, 2018, 18, 453.	3.8	5
36	Gold functionalized MoO3 nano flakes for gas sensing applications. Sensors and Actuators B: Chemical, 2018, 269, 331-339.	7.8	62

#	Article	IF	CITATIONS
37	Application of a Novel S3 Nanowire Gas Sensor Device in Parallel with GC-MS for the Identification of Rind Percentage of Grated Parmigiano Reggiano. Sensors, 2018, 18, 1617.	3.8	25
38	Detection of food and skin pathogen microbiota by means of an electronic nose based on metal oxide chemiresistors. Sensors and Actuators B: Chemical, 2017, 238, 1224-1230.	7.8	35
39	Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors. Beilstein Journal of Nanotechnology, 2017, 8, 1205-1217.	2.8	29
40	Chili Pepper Scent: Study and Recognition with Chemiresistors Array. Proceedings (mdpi), 2017, 1, .	0.2	0
41	Metal Oxide Gas Sensors, a Survey of Selectivity Issues Addressed at the SENSOR Lab, Brescia (Italy). Sensors, 2017, 17, 714.	3.8	126
42	Molybdenum Dichalcogenides for Environmental Chemical Sensing. Materials, 2017, 10, 1418.	2.9	25
43	Influence of Metal Catalyst on SnO2 Nanowires Growth and Gas Sensing Performance. Proceedings (mdpi), 2017, 1, 460.	0.2	4
44	Titanium Dioxide Nanostructures Chemical Sensor. Procedia Engineering, 2016, 168, 313-316.	1.2	10
45	NiO/ZnO Nanowire-heterostructures by Vapor Phase Growth for Gas Sensing. Procedia Engineering, 2016, 168, 1140-1143.	1.2	7
46	Single Metal Oxide Nanowire devices for Ammonia and Other Gases Detection in Humid Atmosphere. Procedia Engineering, 2016, 168, 1052-1055.	1.2	10
47	Low Temperature Gas Sensing Properties of Graphene Oxide/SnO 2 Nanowires Composite for H 2. Procedia Engineering, 2016, 168, 305-308.	1.2	7
48	Influence of Nb-doping on Hydrogen Sensing Performance of WO 3 Nanowires. Procedia Engineering, 2016, 168, 317-320.	1.2	5
49	Sweat for the Discrimination of Human's Habit using NWs Gas Sensors Technology. Materials Today: Proceedings, 2016, 3, 603-607.	1.8	1
50	Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device. Nanotechnology, 2016, 27, 205701.	2.6	57
51	Kelvin probe as an effective tool to develop sensitive p-type CuO gas sensors. Sensors and Actuators B: Chemical, 2016, 222, 1257-1263.	7.8	34
52	Synthesis and characterization of Zinc and Tin Oxide nanowires for the detection of Parmigiano Reggiano cheese. , 2015, , .		1
53	Niobium and Tungsten Oxide Nanowires for Chemical Sensor. Procedia Engineering, 2015, 120, 1149-1152.	1.2	0
54	Skin Microbiota Monitoring by Nanowire MOS Sensors. Procedia Engineering, 2015, 120, 756-759.	1.2	2

#	Article	IF	CITATIONS
55	Small Sensor Sistem S3 device to control the microbial contamination in water. , 2015, , .		2
56	Tungsten Oxide Nanowires on Micro Hotplates for Gas Sensing Applications. Procedia Engineering, 2015, 120, 439-442.	1.2	5
57	Detection of chlorinated compounds in ground water by a novel electronic nose. , 2015, , .		0
58	Nanostructures of Tungsten Trioxide, Nickel Oxide and Niobium Oxide for Chemical Sensing Applications. Procedia Engineering, 2015, 120, 803-806.	1.2	5
59	Nickel Oxide Nanowires Growth by VLS Technique for Gas Sensing Application. Procedia Engineering, 2015, 120, 760-763.	1.2	13
60	Tungsten oxide nanowires for chemical detection. Analytical Methods, 2015, 7, 2203-2209.	2.7	34
61	Integration of ZnO and CuO nanowires into a thermoelectric module. Beilstein Journal of Nanotechnology, 2014, 5, 927-936.	2.8	27
62	Metal Oxide Gas Sensors Technologies for Hidden People Detection. , 2014, , .		0
63	Tungsten Oxide Nanowires Chemical Sensors. Procedia Engineering, 2014, 87, 696-699.	1.2	2
64	P-type CuO Nanowires and thin Film for Highly Sensitive Kelvin Probe Gas Sensing Applications. Procedia Engineering, 2014, 87, 16-19.	1.2	5
65	Copper Oxide Nanowires for Surface Ionization Based Gas Sensor. Procedia Engineering, 2014, 87, 1023-1026.	1.2	13
66	Niobium Oxide Nanostructures for Chemical Sensing. Procedia Engineering, 2014, 87, 807-810.	1.2	1
67	A Novel Electronic Nose as Adaptable Device to Judge Microbiological Quality and Safety in Foodstuff. BioMed Research International, 2014, 2014, 1-6.	1.9	30
68	Classification of Different Roasting Processes by MOX Nanowire. Procedia Engineering, 2014, 87, 572-575.	1.2	7
69	Nanowire Technology for the Detection of Microorganisms in Potable Water. Procedia Engineering, 2014, 87, 1453-1456.	1.2	13
70	Surface chemistry of SnO2 nanowires on Ag-catalyst-covered Si substrate studied using XPS and TDS methods. Nanoscale Research Letters, 2014, 9, 43.	5.7	15
71	Investigation of Seebeck Effect in ZnO Nanowires for Micropower Generation in Autonomous Sensor Systems. Lecture Notes in Electrical Engineering, 2014, , 245-249.	0.4	0
72	Array of Metal Oxide Nanostructures for Nerve Agent Detection and Food Quality. Sensor Letters, 2014, 12, 985-989.	0.4	1

#	Article	IF	CITATIONS
73	Investigation of Seebeck Effect in Metal Oxide Nanowires for Powering Autonomous Microsystems. Lecture Notes in Electrical Engineering, 2014, , 3-7.	0.4	1
74	Detection of microbial contamination in potable water by Nanowire technology. International Journal on Smart Sensing and Intelligent Systems, 2014, 7, 1-4.	0.7	4
75	Thermally oxidized zinc oxide nanowires for use as chemical sensors. Nanotechnology, 2013, 24, 444008.	2.6	41
76	Electronic nose for the early detection of different types of indigenous mold contamination in green coffee. , 2013, , .		14
77	Metal oxide nanoscience and nanotechnology for chemical sensors. Sensors and Actuators B: Chemical, 2013, 179, 3-20.	7.8	153
78	Preparation of copper oxide nanowire-based conductometric chemical sensors. Sensors and Actuators B: Chemical, 2013, 182, 7-15.	7.8	58
79	Metal oxide nanowire chemical and biochemical sensors. Journal of Materials Research, 2013, 28, 2911-2931.	2.6	22
80	Gas-Sensing Properties of Thermally-Oxidized Metal Oxide Nanowires. Procedia Engineering, 2012, 47, 430-433.	1.2	5
81	Zinc Oxide Nanowires Deposited on Polymeric Hotplates for Low-power Gas Sensors. Procedia Engineering, 2012, 47, 1137-1140.	1.2	12
82	Planar Thermoelectric Generator based on Metal-Oxide Nanowires for Powering Autonomous Microsystems. Procedia Engineering, 2012, 47, 346-349.	1.2	12
83	Functionalised zinc oxide nanowire gas sensors: Enhanced NO ₂ gas sensor response by chemical modification of nanowire surfaces. Beilstein Journal of Nanotechnology, 2012, 3, 368-377.	2.8	69
84	Copper oxide nanowires prepared by thermal oxidation for chemical sensing. Procedia Engineering, 2011, 25, 753-756.	1.2	23
85	Seebeck effect in ZnO nanowires for micropower generation. Procedia Engineering, 2011, 25, 1481-1484.	1.2	13
86	Physical Vapor Deposition of Copper Oxide Nanowires. Procedia Engineering, 2010, 5, 1051-1054.	1.2	2
87	Space-charge-limited current in organic light emitting diodes. Applied Physics Letters, 2010, 96, .	3.3	40