
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2317041/publications.pdf Version: 2024-02-01

CHAD RISKO

#	Article	IF	CITATIONS
1	Design, Synthesis, and Characterization of Ladder-Type Molecules and Polymers. Air-Stable, Solution-Processable <i>n</i> -Channel and Ambipolar Semiconductors for Thin-Film Transistors via Experiment and Theory. Journal of the American Chemical Society, 2009, 131, 5586-5608.	13.7	481
2	Synthesis, Characterization, and Transistor Response of Semiconducting Silole Polymers with Substantial Hole Mobility and Air Stability. Experiment and Theory. Journal of the American Chemical Society, 2008, 130, 7670-7685.	13.7	342
3	A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells. Chemical Science, 2011, 2, 1200-1218.	7.4	241
4	Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using Benzothiadiazole/Imide-Based Acceptors. Chemistry of Materials, 2011, 23, 5484-5490.	6.7	232
5	Transition from Tunneling to Hopping Transport in Long, Conjugated Oligo-imine Wires Connected to Metals. Journal of the American Chemical Society, 2010, 132, 4358-4368.	13.7	217
6	Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes. Chemistry of Materials, 2016, 28, 3-16.	6.7	215
7	A molecular interaction–diffusion framework for predicting organic solar cell stability. Nature Materials, 2021, 20, 525-532.	27.5	212
8	Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties. Macromolecules, 2012, 45, 6405-6414.	4.8	203
9	High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries. Energy and Environmental Science, 2016, 9, 3531-3543.	30.8	196
10	Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives. Journal of the American Chemical Society, 2012, 134, 5222-5232.	13.7	187
11	Electron Affinities of 1,1-Diaryl-2,3,4,5-tetraphenylsiloles:Â Direct Measurements and Comparison with Experimental and Theoretical Estimates. Journal of the American Chemical Society, 2005, 127, 9021-9029.	13.7	155
12	Rubrene-Based Single-Crystal Organic Semiconductors: Synthesis, Electronic Structure, and Charge-Transport Properties. Chemistry of Materials, 2013, 25, 2254-2263.	6.7	141
13	Intervalence Transitions in the Mixed-Valence Monocations of Bis(triarylamines) Linked with Vinylene and Phenyleneâ^'Vinylene Bridges. Journal of the American Chemical Society, 2005, 127, 16900-16911.	13.7	135
14	Use of Xâ€Ray Diffraction, Molecular Simulations, and Spectroscopy to Determine the Molecular Packing in a Polymerâ€Fullerene Bimolecular Crystal. Advanced Materials, 2012, 24, 6071-6079.	21.0	126
15	Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers. Journal of the American Chemical Society, 2012, 134, 8944-8957.	13.7	124
16	Heteroannulated acceptors based on benzothiadiazole. Materials Horizons, 2015, 2, 22-36.	12.2	123
17	Ring Substituents Mediate the Morphology of PBDTTPD-PCBM Bulk-Heterojunction Solar Cells. Chemistry of Materials, 2014, 26, 2299-2306.	6.7	119
18	Impact of Molecular Packing on Electronic Polarization in Organic Crystals: The Case of Pentacene vs TIPS-Pentacene. Journal of the American Chemical Society, 2014, 136, 6421-6427.	13.7	113

#	Article	IF	CITATIONS
19	Three-Dimensional Packing Structure and Electronic Properties of Biaxially Oriented Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-‹i>b]thiophene) Films. Journal of the American Chemical Society, 2012, 134, 6177-6190.	13.7	108
20	Electronic Coupling in Tetraanisylarylenediamine Mixed-Valence Systems:Â The Interplay between Bridge Energy and Geometric Factors. Journal of the American Chemical Society, 2005, 127, 8508-8516.	13.7	107
21	Solution-Processed Molecular Bis(Naphthalene Diimide) Derivatives with High Electron Mobility. Chemistry of Materials, 2011, 23, 3408-3410.	6.7	106
22	A stable two-electron-donating phenothiazine for application in nonaqueous redox flow batteries. Journal of Materials Chemistry A, 2017, 5, 24371-24379.	10.3	105
23	Exploiting Excited-State Aromaticity To Design Highly Stable Singlet Fission Materials. Journal of the American Chemical Society, 2019, 141, 13867-13876.	13.7	104
24	Indacenodibenzothiophenes: synthesis, optoelectronic properties and materials applications of molecules with strong antiaromatic character. Chemical Science, 2016, 7, 5547-5558.	7.4	103
25	Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells. Advanced Energy Materials, 2012, 2, 1208-1217.	19.5	97
26	25th Anniversary Article: Design of Polymethine Dyes for Allâ€Optical Switching Applications: Guidance from Theoretical and Computational Studies. Advanced Materials, 2014, 26, 68-84.	21.0	97
27	High Charge-Carrier Mobility in an Amorphous Hexaazatrinaphthylene Derivative. Journal of the American Chemical Society, 2005, 127, 16358-16359.	13.7	95
28	Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene-alt-thienothiophene) [PBTTT]. Journal of Physical Chemistry C, 2013, 117, 1633-1640.	3.1	92
29	Intermixing at the Pentaceneâ€Fullerene Bilayer Interface: A Molecular Dynamics Study. Advanced Materials, 2013, 25, 878-882.	21.0	92
30	Benzothiadiazole-Dithienopyrrole Donor–Acceptor–Donor and Acceptor–Donor–Acceptor Triads: Synthesis and Optical, Electrochemical, and Charge-Transport Properties. Journal of Physical Chemistry C, 2011, 115, 23149-23163.	3.1	90
31	Synthesis, Ionisation Potentials and Electron Affinities of Hexaazatrinaphthylene Derivatives. Chemistry - A European Journal, 2007, 13, 3537-3547.	3.3	88
32	Tuning the Optoelectronic Properties of Vinylene-Linked Donorâ^'Acceptor Copolymers for Organic Photovoltaics. Macromolecules, 2010, 43, 6685-6698.	4.8	86
33	Isolation and Crystal Structures of Two Singlet Bis(Triarylamine) Dications with Nonquinoidal Geometries. Journal of the American Chemical Society, 2006, 128, 1812-1817.	13.7	78
34	To bend or not to bend – are heteroatom interactions within conjugated molecules effective in dictating conformation and planarity?. Materials Horizons, 2016, 3, 333-339.	12.2	78
35	Bis(carbazolyl) derivatives of pyrene and tetrahydropyrene: synthesis, structures, optical properties, electrochemistry, and electroluminescence. Journal of Materials Chemistry C, 2013, 1, 1638.	5.5	77
36	Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6739-E6748.	7.1	77

#	Article	IF	CITATIONS
37	Polymethine dyes for all-optical switching applications: a quantum-chemical characterization of counter-ion and aggregation effects on the third-order nonlinear optical response. Chemical Science, 2012, 3, 3103.	7.4	75
38	Distinguishing the Effects of Bond-Length Alternation versus Bond-Order Alternation on the Nonlinear Optical Properties of π-Conjugated Chromophores. Journal of Physical Chemistry Letters, 2015, 6, 2158-2162.	4.6	75
39	Strain effects on the work function of an organic semiconductor. Nature Communications, 2016, 7, 10270.	12.8	74
40	Tuning Delocalization in the Radical Cations of 1,4-Bis[4-(diarylamino)styryl]benzenes, 2,5-Bis[4-(diarylamino)styryl]thiophenes, and 2,5-Bis[4-(diarylamino)styryl]pyrroles through Substituent Effects. Journal of the American Chemical Society, 2012, 134, 10146-10155.	13.7	72
41	n-type charge transport in heavily p-doped polymers. Nature Materials, 2021, 20, 518-524.	27.5	66
42	nâ€Ðoping of Organic Electronic Materials Using Air‣table Organometallics: A Mechanistic Study of Reduction by Dimeric Sandwich Compounds. Chemistry - A European Journal, 2012, 18, 14760-14772.	3.3	64
43	Fullerene–Carbene Lewis Acid–Base Adducts. Journal of the American Chemical Society, 2011, 133, 12410-12413.	13.7	63
44	Understanding the Electronic Structure of Isoindigo in Conjugated Systems: A Combined Theoretical and Experimental Approach Macromolecules, 2013, 46, 8832-8844.	4.8	63
45	Molecular-Scale Understanding of Cohesion and Fracture in P3HT:Fullerene Blends. ACS Applied Materials & Interfaces, 2015, 7, 9957-9964.	8.0	60
46	Polymethine materials with solid-state third-order optical susceptibilities suitable for all-optical signal-processing applications. Materials Horizons, 2014, 1, 577-581.	12.2	59
47	Entanglements in <scp>P3HT</scp> and their influence on thinâ€film mechanical properties: Insights from molecular dynamics simulations. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 934-942.	2.1	59
48	<i>N</i> ‣ubstituted Phenothiazine Derivatives: How the Stability of the Neutral and Radical Cation Forms Affects Overcharge Performance in Lithiumâ€Ion Batteries. ChemPhysChem, 2015, 16, 1179-1189.	2.1	59
49	Rubrene: The Interplay between Intramolecular and Intermolecular Interactions Determines the Planarization of Its Tetracene Core in the Solid State. Journal of the American Chemical Society, 2015, 137, 8775-8782.	13.7	56
50	A mixed-valence bis(diarylamino)stilbene: crystal structure and comparison of electronic coupling with biphenyl and tolane analogues. Chemical Communications, 2005, , 764-766.	4.1	51
51	On the Molecular Origin of Charge Separation at the Donor–Acceptor Interface. Advanced Energy Materials, 2018, 8, 1702232.	19.5	51
52	Electronic Polarization Effects upon Charge Injection in Oligoacene Molecular Crystals: Description via a Polarizable Force Field. Journal of Physical Chemistry C, 2013, 117, 13853-13860.	3.1	50
53	Fabrication and characterization of metal-molecule-silicon devices. Applied Physics Letters, 2007, 91, 033508.	3.3	48
54	Near-Infrared-Absorbing Indolizine-Porphyrin Push–Pull Dye for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 16474-16489.	8.0	48

#	Article	IF	CITATIONS
55	Rational Functionalization of a C ₇₀ Buckybowl To Enable a C ₇₀ :Buckybowl Cocrystal for Organic Semiconductor Applications. Journal of the American Chemical Society, 2020, 142, 2460-2470.	13.7	48
56	Suppressing bias stress degradation in high performance solution processed organic transistors operating in air. Nature Communications, 2021, 12, 2352.	12.8	48
57	Understanding the effect of host structure of nitrogen doped ultrananocrystalline diamond electrode on electrochemical carbon dioxide reduction. Carbon, 2020, 157, 408-419.	10.3	46
58	Materialsâ€Scale Implications of Solvent and Temperature on [6,6]â€Phenylâ€C61â€butyric Acid Methyl Ester (PCBM): A Theoretical Perspective. Advanced Functional Materials, 2013, 23, 5800-5813.	14.9	43
59	Structure and Disorder in Squaraine–C ₆₀ Organic Solar Cells: A Theoretical Description of Molecular Packing and Electronic Coupling at the Donor–Acceptor Interface. Advanced Functional Materials, 2014, 24, 3790-3798.	14.9	43
60	Fluorenyl-substituted silole molecules: geometric, electronic, optical, and device properties. Journal of Materials Chemistry, 2008, 18, 3157.	6.7	41
61	Synthesis, experimental and theoretical characterization, and field-effect transistor properties of a new class of dibenzothiophene derivatives: From linear to cyclic architectures. Journal of Materials Chemistry, 2012, 22, 1313-1325.	6.7	41
62	Dimers of Nineteenâ€Electron Sandwich Compounds: Crystal and Electronic Structures, and Comparison of Reducing Strengths. Chemistry - A European Journal, 2014, 20, 15385-15394.	3.3	41
63	Organic Semiconductors Derived from Dinaphtho-Fused <i>s</i> -Indacenes: How Molecular Structure and Film Morphology Influence Thin-Film Transistor Performance. Chemistry of Materials, 2019, 31, 6962-6970.	6.7	41
64	Tuning the electronic and photophysical properties of heteroleptic iridium(iii) phosphorescent emitters through ancillary ligand substitution: a theoretical perspective. Physical Chemistry Chemical Physics, 2013, 15, 6293.	2.8	40
65	Influence of Molecular Shape on Solid-State Packing in Disordered PC ₆₁ BM and PC ₇₁ BM Fullerenes. Journal of Physical Chemistry Letters, 2014, 5, 3427-3433.	4.6	40
66	The fate of phenothiazine-based redox shuttles in lithium-ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 6905-6912.	2.8	40
67	Reactivity of an air-stable dihydrobenzoimidazole n-dopant with organic semiconductor molecules. CheM, 2021, 7, 1050-1065.	11.7	40
68	Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors. ACS Applied Materials & Interfaces, 2016, 8, 14053-14062.	8.0	39
69	Noncovalent Interactions and Impact of Charge Penetration Effects in Linear Oligoacene Dimers and Single Crystals. Chemistry of Materials, 2016, 28, 3990-4000.	6.7	37
70	Impact of the Nature of the Excited-State Transition Dipole Moments on the Third-Order Nonlinear Optical Response of Polymethine Dyes for All-Optical Switching Applications. ACS Photonics, 2014, 1, 261-269.	6.6	35
71	Structural dependence of the optical properties of narrow bandgap semiconductors with orthogonal donor–acceptor geometries. Chemical Science, 2013, 4, 1807.	7.4	34
72	Donor or Acceptor? How Selection of the Rylene Imide End Cap Impacts the Polarity of π-Conjugated Molecules for Organic Electronics. ACS Applied Energy Materials, 2018, 1, 4906-4916.	5.1	34

#	Article	IF	CITATIONS
73	Mono- and Dicarbonyl-Bridged Tricyclic Heterocyclic Acceptors: Synthesis and Electronic Properties. Journal of Organic Chemistry, 2011, 76, 2660-2671.	3.2	33
74	nâ€Ðopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions. Chemistry - A European Journal, 2015, 21, 10878-10885.	3.3	31
75	An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells. Chemical Communications, 2017, 53, 10168-10171.	4.1	31
76	Theory-Driven Insight into the Crystal Packing of Trialkylsilylethynyl Pentacenes. Chemistry of Materials, 2017, 29, 2502-2512.	6.7	30
77	Polarization Energies at Organic–Organic Interfaces: Impact on the Charge Separation Barrier at Donor–Acceptor Interfaces in Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 15524-15534.	8.0	29
78	Presence of Short Intermolecular Contacts Screens for Kinetic Stability in Packing Polymorphs. Journal of the American Chemical Society, 2018, 140, 7519-7525.	13.7	29
79	Chemical Stabilities of the Lowest Triplet State in Aryl Sulfones and Aryl Phosphine Oxides Relevant to OLED Applications. Chemistry of Materials, 2019, 31, 1507-1519.	6.7	29
80	Packing and Disorder in Substituted Fullerenes. Journal of Physical Chemistry C, 2016, 120, 17242-17250.	3.1	28
81	On the impact of isomer structure and packing disorder in thienoacene organic semiconductors. Journal of Materials Chemistry C, 2016, 4, 4040-4048.	5.5	28
82	Effect of Solvent Additives on the Solution Aggregation of Phenyl-C ₆₁ –Butyl Acid Methyl Ester (PCBM). Chemistry of Materials, 2015, 27, 8261-8272.	6.7	26
83	Substrate-Induced Variations of Molecular Packing, Dynamics, and Intermolecular Electronic Couplings in Pentacene Monolayers on the Amorphous Silica Dielectric. ACS Nano, 2014, 8, 690-700.	14.6	25
84	Interplay of alternative conjugated pathways and steric interactions on the electronic and optical properties of donor–acceptor conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 8873-8879.	5.5	25
85	An anionic organic mixed-valence system with a remarkably well-resolved vibrational structure in its intervalence band. Chemical Communications, 2003, , 194-195.	4.1	24
86	Trends in Electron-Vibration and Electronic Interactions in Bis(dimethylamino) Mixed-Valence Systems: A Joint Experimental and Theoretical Investigation. Journal of Physical Chemistry C, 2008, 112, 7959-7967.	3.1	24
87	Synthesis and characterization of naphthalene diimide/diethynylbenzene copolymers. Polymer, 2012, 53, 1072-1078.	3.8	24
88	Overcharge protection of lithium-ion batteries above 4 V with a perfluorinated phenothiazine derivative. Journal of Materials Chemistry A, 2016, 4, 5410-5414.	10.3	24
89	Impact of Atomistic Substitution on Thin-Film Structure and Charge Transport in a Germanyl-ethynyl Functionalized Pentacene. Chemistry of Materials, 2019, 31, 6615-6623.	6.7	24
90	Acid dyeing for green solvent processing of solvent resistant semiconducting organic thin films. Materials Horizons, 2020, 7, 2959-2969.	12.2	24

#	Article	IF	CITATIONS
91	Benzo[1,2-b:6,5-bâ€2]dithiophene(dithiazole)-4,5-dione derivatives: synthesis, electronic properties, crystal packing and charge transport. Journal of Materials Chemistry C, 2013, 1, 1467.	5.5	23
92	Charge Delocalization through Benzene, Naphthalene, and Anthracene Bridges in π-Conjugated Oligomers: An Experimental and Quantum Chemical Study. Journal of Physical Chemistry B, 2013, 117, 6304-6317.	2.6	23
93	Noncovalent Close Contacts in Fluorinated Thiophene–Phenylene–Thiophene Conjugated Units: Understanding the Nature and Dominance of OÀ·Â·À·H versus S··Â-F and O···F Interactions with Respect to the Control of Polymer Conformation. Chemistry of Materials, 2019, 31, 7070-7079.	6.7	23
94	OCELOT: An infrastructure for data-driven research to discover and design crystalline organic semiconductors. Journal of Chemical Physics, 2021, 154, 174705.	3.0	23
95	Structure–processing–property correlations in solution-processed, small-molecule, organic solar cells. Journal of Materials Chemistry C, 2013, 1, 5250.	5.5	22
96	Bond Ellipticity Alternation: An Accurate Descriptor of the Nonlinear Optical Properties of l€-Conjugated Chromophores. Journal of Physical Chemistry Letters, 2018, 9, 1377-1383.	4.6	22
97	Even–Odd Alkyl Chain-Length Alternation Regulates Oligothiophene Crystal Structure. Chemistry of Materials, 2019, 31, 6900-6907.	6.7	22
98	Computationally aided design of a high-performance organic semiconductor: the development of a universal crystal engineering core. Chemical Science, 2019, 10, 10543-10549.	7.4	22
99	Experimental and Theoretical Identification of Valence Energy Levels and Interface Dipole Trends for a Family of (Oligo)Phenylene-ethynylenethiols Adsorbed on Gold. Journal of Physical Chemistry C, 2008, 112, 13215-13225.	3.1	21
100	Nonlinear Optical Properties of X(C ₆ H ₅) ₄ (X = B [–] , C,) Tj ET	Qq0 0 0 r 13.7	gBT /Overloo 21
	Journal of the American Chemical Society, 2015, 137, 9635-9642.		
101	Delimited Polyacenes: Edge Topology as a Tool To Modulate Carbon Nanoribbon Structure, Conjugation, and Mobility. Chemistry of Materials, 2018, 30, 947-957.	6.7	21
102	Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications. Journal of Physical Chemistry C, 2014, 118, 23575-23585.	3.1	20
103	Characterizing the Polymer:Fullerene Intermolecular Interactions. Chemistry of Materials, 2016, 28, 1446-1452.	6.7	20
104	Comparative studies of the geometric and electronic properties of 1,1-disubstituted-2,3,4,5-tetraphenylsiloles and 1,1,2,2-tetramethyl-3,4,5,6-tetraphenyl-1,2-disila-3,5-cyclohexadiene. Journal of Materials Chemistry, 2006, 16, 3814-3822.	6.7	19
105	Mixed-Valence Cations of Di(carbazol-9-yl) Biphenyl, Tetrahydropyrene, and Pyrene Derivatives. Journal of Physical Chemistry C, 2016, 120, 3156-3166.	3.1	19
106	Effect of Bulky Substituents on Thiopyrylium Polymethine Aggregation in the Solid State: A Theoretical Evaluation of the Implications for All-Optical Switching Applications. Chemistry of Materials, 2014, 26, 6439-6447.	6.7	18
107	Positional Effects from σ-Bonded Platinum(II) on Intersystem Crossing Rates in Perylenediimide Complexes: Synthesis, Structures, and Photophysical Properties. Journal of Physical Chemistry C, 2018, 122, 13848-13862.	3.1	18
108	Bromination of the benzothioxanthene Bloc: toward new π-conjugated systems for organic electronic applications. Journal of Materials Chemistry C, 2018, 6, 761-766.	5.5	18

CHAD RISKO

#	Article	IF	CITATIONS
109	Impact of rotamer diversity on the self-assembly of nearly isostructural molecular semiconductors. Journal of Materials Chemistry A, 2018, 6, 383-394.	10.3	18
110	Triperyleno[3,3,3]propellane triimides: achieving a new generation of quasi- <i>D</i> _{3h} symmetric nanostructures in organic electronics. Chemical Science, 2019, 10, 4951-4958.	7.4	18
111	Dynamics, Miscibility, and Morphology in Polymer:Molecule Blends: The Impact of Chemical Functionality. Chemistry of Materials, 2015, 27, 7643-7651.	6.7	17
112	Bis(tercarbazole) pyrene and tetrahydropyrene derivatives: photophysical and electrochemical properties, theoretical modeling, and OLEDs. Journal of Materials Chemistry C, 2019, 7, 5009-5018.	5.5	16
113	The Solution is the Solution: Data-Driven Elucidation of Solution-to-Device Feature Transfer for ï€-Conjugated Polymer Semiconductors. ACS Applied Materials & Interfaces, 2022, 14, 3613-3620.	8.0	16
114	Molecular modulation of Schottky barrier height in metal-molecule-silicon diodes: Capacitance and simulation results. Journal of Applied Physics, 2010, 107, 024505.	2.5	15
115	Lowering Electrocatalytic CO ₂ Reduction Overpotential Using N-Annulated Perylene Diimide Rhenium Bipyridine Dyads with Variable Tether Length. Journal of the American Chemical Society, 2021, 143, 16849-16864.	13.7	15
116	Unusual Electronic Structure of the Donor–Acceptor Cocrystal Formed by Dithieno[3,2- <i>a</i> :2′,3′- <i>c</i>]phenazine and 7,7,8,8-Tetracyanoquinodimethane. Journal of Physical Chemistry Letters, 2017, 8, 4510-4515.	4.6	15
117	Small Optical Gap Molecules and Polymers: Using Theory to Design More Efficient Materials for Organic Photovoltaics. Topics in Current Chemistry, 2013, 352, 1-38.	4.0	14
118	Mapping the configuration dependence of electronic coupling in organic semiconductors. Journal of Materials Chemistry C, 2016, 4, 3825-3832.	5.5	13
119	Nitration of benzothioxanthene: towards a new class of dyes with versatile photophysical properties. New Journal of Chemistry, 2020, 44, 900-905.	2.8	12
120	Unveiling the structural, electronic, and optical effects of carbon-doping on multi-layer anatase TiO2 (1 0 1) and the impact on photocatalysis. Applied Surface Science, 2022, 586, 152641.	6.1	12
121	Enhancing CO2 absorption for post-combustion carbon capture via zinc-based biomimetic catalysts in industrially relevant amine solutions. International Journal of Greenhouse Gas Control, 2019, 85, 156-165.	4.6	11
122	Evolution of Chain Dynamics and Oxidation States with Increasing Chain Length for a Donor–Acceptor-Conjugated Oligomer Series. Macromolecules, 2021, 54, 8207-8219.	4.8	11
123	Beyond the Hammett Effect: Using Strain to Alter the Landscape of Electrochemical Potentials. ChemPhysChem, 2017, 18, 2142-2146.	2.1	10
124	Assessment of Front-Substituted Zwitterionic Cyanine Polymethines for All-Optical Switching Applications. Journal of Physical Chemistry C, 2017, 121, 14166-14175.	3.1	10
125	Noncovalent Interactions in Organic Electronic Materials. , 2017, , 277-302.		10
126	Deconstructing the behavior of donor–acceptor copolymers in solution & the melt: the case of PTB7. Physical Chemistry Chemical Physics, 2019, 21, 7802-7813.	2.8	10

CHAD RISKO

#	Article	IF	CITATIONS
127	Modification of the LiFePO ₄ (010) Surface Due to Exposure to Atmospheric Gases. ACS Applied Materials & Interfaces, 2021, 13, 29034-29040.	8.0	10
128	Steric Manipulation as a Mechanism for Tuning the Reduction and Oxidation Potentials of Phenothiazines. Journal of Physical Chemistry A, 2021, 125, 272-278.	2.5	9
129	Geometric and Chelation Influences on the Electronic Structure and Optical Properties of Tetra(carboxylic acid)phenyleneethynylene Dyes. Journal of Physical Chemistry A, 2008, 112, 4202-4208.	2.5	8
130	Intrinsic Properties of Two Benzodithiophene-Based Donor–Acceptor Copolymers Used in Organic Solar Cells: A Quantum-Chemical Approach. Journal of Physical Chemistry A, 2016, 120, 1051-1064.	2.5	8
131	Effect of Halogenation on the Energetics of Pure and Mixed Phases in Model Organic Semiconductors Composed of Anthradithiophene Derivatives and C ₆₀ . Journal of Physical Chemistry C, 2018, 122, 4757-4767.	3.1	8
132	Organometallic hydride-transfer agents as reductants for organic semiconductor molecules. Inorganica Chimica Acta, 2019, 489, 67-77.	2.4	8
133	Genetic Algorithms and Machine Learning for Predicting Surface Composition, Structure, and Chemistry: A Historical Perspective and Assessment. Chemistry of Materials, 2021, 33, 6589-6615.	6.7	8
134	What is special about silicon in functionalised organic semiconductors?. Materials Advances, 2021, 2, 5415-5421.	5.4	8
135	Reconsidering the Roles of Noncovalent Intramolecular "Locks―in π-Conjugated Molecules. Chemistry of Materials, 2021, 33, 9139-9151.	6.7	8
136	Dimers of Nineteen-Electron Sandwich Compounds: An Electrochemical Study of the Kinetics of Their Formation. Organometallics, 2015, 34, 3706-3712.	2.3	7
137	Oxidation Pathways Involving a Sulfide-Endcapped Donor–Acceptor–Donor π-Conjugated Molecule and Antimony(V) Chloride. Journal of Physical Chemistry B, 2019, 123, 3866-3874.	2.6	7
138	The impact of symmetric modes on intramolecular electron transfer: A semi-classical approach. Chemical Physics, 2006, 326, 107-114.	1.9	6
139	Theoretical description of the geometric and electronic structures of organic-organic interfaces in organic solar cells: a brief review. Science China Chemistry, 2014, 57, 1330-1339.	8.2	6
140	Solvent–Molecule Interactions Govern Crystal-Habit Selection in Naphthalene Tetracarboxylic Diimides. Chemistry of Materials, 2019, 31, 9691-9698.	6.7	6
141	Determination of the Free Energies of Mixing of Organic Solutions through a Combined Molecular Dynamics and Bayesian Statistics Approach. Journal of Chemical Information and Modeling, 2020, 60, 1424-1431.	5.4	6
142	Thermomechanical enhancement of <scp>DPPâ€4T</scp> through purposeful <scp>π onjugation</scp> disruption. Journal of Polymer Science, 2022, 60, 559-568.	3.8	5
143	Magnetic ordering in a vanadium-organic coordination polymer using a pyrrolo[2,3- <i>d</i> :5,4- <i>d</i> ′]bis(thiazole)-based ligand. RSC Advances, 2018, 8, 36223-36232.	3.6	4
144	Exploring thermal transitions in anthradithiophene-based organic semiconductors to reveal structure-packing relationships. Journal of Materials Chemistry C, 2018, 6, 10924-10934.	5.5	4

#	Article	IF	CITATIONS
145	A Genetic Algorithmic Approach to Determine the Structure of Li–Al Layered Double Hydroxides. Journal of Chemical Information and Modeling, 2020, 60, 4845-4855.	5.4	4
146	Synthesis and electronic properties of a linearly fused anthracene dimer. Tetrahedron Letters, 2020, 61, 152182.	1.4	4
147	Biotinylation as a tool to enhance the uptake of small molecules in Gram-negative bacteria. PLoS ONE, 2021, 16, e0260023.	2.5	4
148	Parallel and Perpendicular Packing in Mixed-Stack Cocrystals of Trimeric Perfluoro- <i>ortho</i> -phenylene Mercury and Benzo[1,2- <i>b</i> :6,5- <i>b</i> â€2]dithiophene-4,5-dione Derivatives. Crystal Growth and Design, 2016, 16, 2190-2200.	3.0	3
149	Synthesis, structures, and reactivity of isomers of [RuCp*(1,4-(Me2N)2C6H4)]2. Dalton Transactions, 2021, 50, 13020-13030.	3.3	3
150	Nanoribbons or weakly connected acenes? The influence of pyrene insertion on linearly extended ring systems. Journal of Materials Chemistry C, 2021, 9, 16929-16934.	5.5	3
151	Challenges in Information-Mining the Materials Literature: A Case Study and Perspective. Chemistry of Materials, 2022, 34, 4821-4827.	6.7	3
152	The role of crystal packing on the optical response of trialkyltetrelethynyl acenes. Journal of Chemical Physics, 2022, 157, .	3.0	3
153	Healing contact. Nature Materials, 2013, 12, 1084-1085.	27.5	2
154	Work function reduction by a redox-active organometallic sandwich complex. Organic Electronics, 2016, 37, 263-270.	2.6	2
155	Festschrift in Honor of Prof. Jean-Luc Brédas on His 65th Birthday. Chemistry of Materials, 2019, 31, 6307-6308.	6.7	2
156	Understanding the Relationships Among Molecular Structure, Excited-State Properties, and Polarizabilities of π-Conjugated Chromophores. Materials and Energy, 2016, , 393-419.	0.1	1
157	Computational characterization of charge transport resiliency in molecular solids. Molecular Systems Design and Engineering, 2022, 7, 651-660.	3.4	1
158	Barrier height modulation and dipole moments in metal-molecule-silicon diodes. , 2007, , .		0
159	Group 14 effects in alkynyl acene small molecule semiconductors. , 2021, , .		0
160	Following the crystal growth of anthradithiophenes through atomistic molecular dynamics simulations and graph characterization. Molecular Systems Design and Engineering, 0, , .	3.4	0
161	Combined Computational and Experimental Approach to Determine and Understand the Solubility of Phenothiazines as Redoxmers. ECS Meeting Abstracts, 2021, MA2021-02, 1679-1679.	0.0	0