Kyle H Rohde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2316943/publications.pdf

Version: 2024-02-01

430874 395702 2,137 34 18 33 h-index citations g-index papers 36 36 36 2773 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and Evaluation of Marine Natural Product-Inspired Meroterpenoids with Selective Activity toward Dormant <i>Mycobacterium tuberculosis</i> . ACS Omega, 2022, 7, 23487-23496.	3.5	4
2	A Modular Synthetic Route Involving $\langle i \rangle N \langle i \rangle$ -Aryl-2-nitrosoaniline Intermediates Leads to a New Series of 3-Substituted Halogenated Phenazine Antibacterial Agents. Journal of Medicinal Chemistry, 2021, 64, 7275-7295.	6.4	21
3	Atypically Modified Carbapenem Antibiotics Display Improved Antimycobacterial Activity in the Absence of \hat{l}^2 -Lactamase Inhibitors. ACS Infectious Diseases, 2021, 7, 2425-2436.	3.8	15
4	Cascade of deoxyribozymes for the colorimetric analysis of drug resistance in Mycobacterium tuberculosis. Biosensors and Bioelectronics, 2020, 165, 112385.	10.1	10
5	The Prospective Synergy of Antitubercular Drugs With NAD Biosynthesis Inhibitors. Frontiers in Microbiology, 2020, 11, 634640.	3.5	4
6	Crystal structure of a hemerythrin-like protein from <i>Mycobacterium kansasii</i> and homology model of the orthologous Rv2633c protein of <i>M. tuberculosis</i> Biochemical Journal, 2020, 477, 567-581.	3.7	8
7	Novel Antimycobacterial Compounds Suppress NAD Biogenesis by Targeting a Unique Pocket of NaMN Adenylyltransferase. ACS Chemical Biology, 2019, 14, 949-958.	3.4	15
8	Molecular drug susceptibility testing and strain typing of tuberculosis by DNA hybridization. PLoS ONE, 2019, 14, e0212064.	2.5	4
9	Growth hormone-mediated reprogramming of macrophage transcriptome and effector functions. Scientific Reports, 2019, 9, 19348.	3.3	20
10	Plakinamine P, A Steroidal Alkaloid with Bactericidal Activity against Mycobacterium tuberculosis. Marine Drugs, 2019, 17, 707.	4.6	5
11	Species Typing of Nontuberculous Mycobacteria by Use of Deoxyribozyme Sensors. Clinical Chemistry, 2019, 65, 333-341.	3.2	4
12	Evidence for Inhibition of Topoisomerase 1A by $Gold(III)$ Macrocycles and Chelates Targeting Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	18
13	The Rv2633c protein of Mycobacterium tuberculosis is a non-heme di-iron catalase with a possible role in defenses against oxidative stress. Journal of Biological Chemistry, 2018, 293, 1590-1595.	3.4	19
14	Exploitation of Mangrove Endophytic Fungi for Infectious Disease Drug Discovery. Marine Drugs, 2018, 16, 376.	4.6	21
15	Multiplex detection of extensively drug resistant tuberculosis using binary deoxyribozyme sensors. Biosensors and Bioelectronics, 2017, 94, 176-183.	10.1	29
16	Selective Killing of Dormant Mycobacterium tuberculosis by Marine Natural Products. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	34
17	Dragmacidin G, a Bioactive Bis-Indole Alkaloid from a Deep-Water Sponge of the Genus Spongosorites. Marine Drugs, 2017, 15, 16.	4.6	25
18	Reporter-Based Assays for High-Throughput Drug Screening against Mycobacterium abscessus. Frontiers in Microbiology, 2017, 8, 2204.	3.5	26

#	Article	IF	Citations
19	Mycobacterium tuberculosis arrests host cycle at the $G1/S$ transition to establish long term infection. PLoS Pathogens, 2017, 13, e1006389.	4.7	35
20	The Minimal Unit of Infection: <i>Mycobacterium tuberculosis </i> li>in the Macrophage. Microbiology Spectrum, 2016, 4, .	3.0	35
21	Immune activation of the host cell induces drug tolerance in <i>Mycobacterium tuberculosis</i> both in vitro and in vivo. Journal of Experimental Medicine, 2016, 213, 809-825.	8.5	169
22	Small-Molecule Inhibitors Targeting Topoisomerase I as Novel Antituberculosis Agents. Antimicrobial Agents and Chemotherapy, 2016, 60, 4028-4036.	3.2	32
23	DNA Antenna Tileâ€Associated Deoxyribozyme Sensor with Improved Sensitivity. ChemBioChem, 2016, 17, 2038-2041.	2.6	18
24	Synthesis and antitubercular activity of 1,2,4-trisubstitued piperazines. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2206-2209.	2.2	14
25	Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice. Oncotarget, 2015, 6, 26702-26715.	1.8	25
26	Deoxyribozyme Cascade for Visual Detection of Bacterial RNA. ChemBioChem, 2013, 14, 2087-2090.	2.6	35
27	Linking the Transcriptional Profiles and the Physiological States of Mycobacterium tuberculosis during an Extended Intracellular Infection. PLoS Pathogens, 2012, 8, e1002769.	4.7	241
28	<i>aprABC</i> : a <i>Mycobacterium tuberculosis</i> complexâ€specific locus that modulates pHâ€driven adaptation to the macrophage phagosome. Molecular Microbiology, 2011, 80, 678-694.	2.5	176
29	Functional Genetic Diversity among Mycobacterium tuberculosis Complex Clinical Isolates: Delineation of Conserved Core and Lineage-Specific Transcriptomes during Intracellular Survival. PLoS Pathogens, 2010, 6, e1000988.	4.7	228
30	Mycobacterium tuberculosis Wears What It Eats. Cell Host and Microbe, 2010, 8, 68-76.	11.0	166
31	Mycobacterium tuberculosis Invasion of Macrophages: Linking Bacterial Gene Expression to Environmental Cues. Cell Host and Microbe, 2007, 2, 352-364.	11.0	344
32	<i>Mycobacterium tuberculosis</i> and the environment within the phagosome. Immunological Reviews, 2007, 219, 37-54.	6.0	314
33	The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> ii>in the Macrophage., 0,, 635-652.		3
34	Functional Analysis of the Intraphagosomal Environment of the Macrophage: Fluorogenic Reporters and the Transcriptional Responses of Salmonella and Mycobacterium spp , 0, , 249-264.		0