List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2316352/publications.pdf Version: 2024-02-01

ANCELIKA R AMON

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Effects of Aneuploidy on Cellular Physiology and Cell Division in Haploid Yeast. Science, 2007, 317, 916-924.	12.6	811
3	CDC20 and CDH1: A Family of Substrate-Specific Activators of APC-Dependent Proteolysis. Science, 1997, 278, 460-463.	12.6	796
4	The Phosphatase Cdc14 Triggers Mitotic Exit by Reversal of Cdk-Dependent Phosphorylation. Molecular Cell, 1998, 2, 709-718.	9.7	706
5	Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature, 1999, 398, 818-823.	27.8	549
6	Aneuploidy Affects Proliferation and Spontaneous Immortalization in Mammalian Cells. Science, 2008, 322, 703-709.	12.6	534
7	Budding Yeast Cdc20: A Target of the Spindle Checkpoint. Science, 1998, 279, 1041-1044.	12.6	514
8	Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nature Reviews Molecular Cell Biology, 2015, 16, 473-485.	37.0	439
9	Separase, Polo Kinase, the Kinetochore Protein Slk19, and Spo12 Function in a Network that Controls Cdc14 Localization during Early Anaphase. Cell, 2002, 108, 207-220.	28.9	414
10	Context is everything: aneuploidy in cancer. Nature Reviews Genetics, 2020, 21, 44-62.	16.3	407
11	Closing Mitosis: The Functions of the Cdc14 Phosphatase and Its Regulation. Annual Review of Genetics, 2004, 38, 203-232.	7.6	403
12	Aneuploidy Drives Genomic Instability in Yeast. Science, 2011, 333, 1026-1030.	12.6	367
13	Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell, 1993, 74, 993-1007.	28.9	356
14	Identification of Aneuploidy-Tolerating Mutations. Cell, 2010, 143, 71-83.	28.9	352
15	The spindle checkpoint. Current Opinion in Genetics and Development, 1999, 9, 69-75.	3.3	349
16	Excessive Cell Growth Causes Cytoplasm Dilution And Contributes to Senescence. Cell, 2019, 176, 1083-1097.e18.	28.9	347
17	Aneuploidy: Cells Losing Their Balance. Genetics, 2008, 179, 737-746.	2.9	342
18	MEN and SIN: what's the difference?. Nature Reviews Molecular Cell Biology, 2001, 2, 815-826.	37.0	321

#	Article	IF	CITATIONS
19	Regulation of p34CDC28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevisiae. Nature, 1992, 355, 368-371.	27.8	308
20	Identification of Aneuploidy-Selective Antiproliferation Compounds. Cell, 2011, 144, 499-512.	28.9	305
21	A Mechanism for Coupling Exit from Mitosis to Partitioning of the Nucleus. Cell, 2000, 102, 21-31.	28.9	297
22	Meiosis: cell-cycle controls shuffle and deal. Nature Reviews Molecular Cell Biology, 2004, 5, 983-997.	37.0	293
23	Gene Copy-Number Alterations: A Cost-Benefit Analysis. Cell, 2013, 152, 394-405.	28.9	281
24	Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System. Developmental Cell, 2017, 41, 638-651.e5.	7.0	263
25	Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13409-13414.	7.1	261
26	Cdc14 and Condensin Control the Dissolution of Cohesin-Independent Chromosome Linkages at Repeated DNA. Cell, 2004, 117, 455-469.	28.9	256
27	Aneuploidy causes proteotoxic stress in yeast. Genes and Development, 2012, 26, 2696-2708.	5.9	255
28	MitoCPR—A surveillance pathway that protects mitochondria in response to protein import stress. Science, 2018, 360, .	12.6	253
29	A Genome-Wide Screen Identifies Genes Required for Centromeric Cohesion. Science, 2004, 303, 1367-1370.	12.6	252
30	Transcriptional consequences of aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12644-12649.	7.1	250
31	Role of Polo-like Kinase <i>CDC5</i> in Programming Meiosis I Chromosome Segregation. Science, 2003, 300, 482-486.	12.6	244
32	Measurement of mass, density, and volume during the cell cycle of yeast. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 999-1004.	7.1	240
33	Transcription of Two Long Noncoding RNAs Mediates Mating-Type Control of Gametogenesis in Budding Yeast. Cell, 2012, 150, 1170-1181.	28.9	235
34	Tight Coordination of Protein Translation and HSF1 Activation Supports the Anabolic Malignant State. Science, 2013, 341, 1238303.	12.6	234
35	The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends in Genetics, 2011, 27, 446-453.	6.7	225
36	Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. ELife, 2014, 3, e03023.	6.0	218

#	Article	IF	CITATIONS
37	The regulation of Cdc20 proteolysis reveals a role for the APC components Cdc23 and Cdc27 during S phase and early mitosis. Current Biology, 1998, 8, 750-760.	3.9	211
38	Emergence of a High-Plasticity Cell State during Lung Cancer Evolution. Cancer Cell, 2020, 38, 229-246.e13.	16.8	210
39	Isolation of <i>COM1</i> , a New Gene Required to Complete Meiotic Double-Strand Break-Induced Recombination in <i>Saccharomyces cerevisiae</i> . Genetics, 1997, 146, 781-795.	2.9	210
40	Meiosis I Is Established through Division-Specific Translational Control of a Cyclin. Cell, 2008, 133, 280-291.	28.9	202
41	Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Reports, 2012, 13, 515-527.	4.5	182
42	New Insights into the Troubles of Aneuploidy. Annual Review of Cell and Developmental Biology, 2012, 28, 189-214.	9.4	178
43	Single-chromosome Gains Commonly Function as Tumor Suppressors. Cancer Cell, 2017, 31, 240-255.	16.8	164
44	The rate of cell growth is governed by cell cycle stage. Genes and Development, 2009, 23, 1408-1422.	5.9	150
45	The nucleolus: the magician's hat for cell cycle tricks. Current Opinion in Cell Biology, 2000, 12, 372-377.	5.4	149
46	Regulated Formation of an Amyloid-like Translational Repressor Governs Gametogenesis. Cell, 2015, 163, 406-418.	28.9	148
47	Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature, 2006, 441, 532-536.	27.8	145
48	Inhibition of homologous recombination by a cohesin-associated clamp complex recruited to the rDNA recombination enhancer. Genes and Development, 2006, 20, 2887-2901.	5.9	144
49	The FK506 Binding Protein Fpr3 Counteracts Protein Phosphatase 1 to Maintain Meiotic Recombination Checkpoint Activity. Cell, 2005, 122, 861-873.	28.9	137
50	Aneuploidy-induced cellular stresses limit autophagic degradation. Genes and Development, 2015, 29, 2010-2021.	5.9	136
51	The Protein Kinase Kin4 Inhibits Exit from Mitosis in Response to Spindle Position Defects. Molecular Cell, 2005, 19, 223-234.	9.7	131
52	Kinetochore Orientation during Meiosis Is Controlled by Aurora B and the Monopolin Complex. Cell, 2007, 128, 477-490.	28.9	131
53	Regulation of the Mitotic Exit Protein Kinases Cdc15 and Dbf2. Molecular Biology of the Cell, 2001, 12, 2961-2974.	2.1	130
54	Checking Your Breaks: Surveillance Mechanisms of Meiotic Recombination. Current Biology, 2006, 16, R217-R228.	3.9	127

#	Article	IF	CITATIONS
55	Emerging roles for centromeres in meiosis I chromosome segregation. Nature Reviews Genetics, 2008, 9, 899-910.	16.3	122
56	Gametogenesis Eliminates Age-Induced Cellular Damage and Resets Life Span in Yeast. Science, 2011, 332, 1554-1557.	12.6	122
57	The Monopolin Complex Crosslinks Kinetochore Components to Regulate Chromosome-Microtubule Attachments. Cell, 2010, 142, 556-567.	28.9	119
58	The Cdc14 Phosphatase and the FEAR Network Control Meiotic Spindle Disassembly and Chromosome Segregation. Developmental Cell, 2003, 4, 711-726.	7.0	118
59	At the interface between signaling and executing anaphase–Cdc14 and the FEAR network. Genes and Development, 2004, 18, 2581-2595.	5.9	118
60	Chromosome Segregation Fidelity in Epithelia Requires Tissue Architecture. Cell, 2018, 175, 200-211.e13.	28.9	117
61	Aneuploidy: implications for protein homeostasis and disease. DMM Disease Models and Mechanisms, 2014, 7, 15-20.	2.4	108
62	Assessment of megabase-scale somatic copy number variation using single-cell sequencing. Genome Research, 2016, 26, 376-384.	5.5	102
63	Aneuploidy drives lethal progression in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11390-11395.	7.1	101
64	The BRCA1 suppressor hypothesis: An explanation for the tissue-specific tumor development in BRCA1 patients. Cancer Cell, 2002, 1, 129-132.	16.8	100
65	Regulation of entry into gametogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3521-3531.	4.0	98
66	Activation of the Yeast Hippo Pathway by Phosphorylation-Dependent Assembly of Signaling Complexes. Science, 2013, 340, 871-875.	12.6	96
67	A developmentally regulated translational control pathway establishes the meiotic chromosome segregation pattern. Genes and Development, 2013, 27, 2147-2163.	5.9	90
68	The core centromere and Sgo1 establish a 50-kb cohesin-protected domain around centromeres during meiosis I. Genes and Development, 2005, 19, 3017-3030.	5.9	87
69	The Multiple Roles of Cohesin in Meiotic Chromosome Morphogenesis and Pairing. Molecular Biology of the Cell, 2009, 20, 1030-1047.	2.1	85
70	Meiosis I chromosome segregation is established through regulation of microtubule–kinetochore interactions. ELife, 2012, 1, e00117.	6.0	85
71	The Role of the Polo Kinase Cdc5 in Controlling Cdc14 Localization. Molecular Biology of the Cell, 2003, 14, 4486-4498.	2.1	84
72	Protein aggregation mediates stoichiometry of protein complexes in aneuploid cells. Genes and Development, 2019, 33, 1031-1047.	5.9	83

#	Article	IF	CITATIONS
73	Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo. Genes and Development, 2016, 30, 1395-1408.	5.9	81
74	Aneuploidy Causes Non-genetic Individuality. Cell, 2017, 169, 229-242.e21.	28.9	81
75	Spo13 Maintains Centromeric Cohesion and Kinetochore Coorientation during Meiosis I. Current Biology, 2004, 14, 2168-2182.	3.9	80
76	APC/C-Cdh1-mediated degradation of the Polo kinase Cdc5 promotes the return of Cdc14 into the nucleolus. Genes and Development, 2008, 22, 79-90.	5.9	80
77	Aneuploidy: Cancer's Fatal Flaw?. Cancer Research, 2009, 69, 5289-5291.	0.9	80
78	Aneuploid yeast strains exhibit defects in cell growth and passage through START. Molecular Biology of the Cell, 2013, 24, 1274-1289.	2.1	79
79	Relevance and Regulation of Cell Density. Trends in Cell Biology, 2020, 30, 213-225.	7.9	79
80	Control of Lte1 Localization by Cell Polarity Determinants and Cdc14. Current Biology, 2002, 12, 2098-2110.	3.9	76
81	Cell size is a determinant of stem cell potential during aging. Science Advances, 2021, 7, eabk0271.	10.3	75
82	The FEAR network. Current Biology, 2009, 19, R1063-R1068.	3.9	74
83	Control of Meiosis by Respiration. Current Biology, 2008, 18, 969-975.	3.9	70
84	Phosphorylation-Mediated Clearance of Amyloid-like Assemblies in Meiosis. Developmental Cell, 2018, 45, 392-405.e6.	7.0	66
85	Aneuploidy in Cancer: Seq-ing Answers to Old Questions. Annual Review of Cancer Biology, 2017, 1, 335-354.	4.5	65
86	Cell Polarity Determinants Establish Asymmetry in MEN Signaling. Developmental Cell, 2009, 16, 132-145.	7.0	64
87	Cdc15 integrates Tem1 GTPase-mediated spatial signals with Polo kinase-mediated temporal cues to activate mitotic exit. Genes and Development, 2011, 25, 1943-1954.	5.9	57
88	Why haploinsufficiency persists. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11866-11871.	7.1	57
89	The Replication Fork Block Protein Fob1 Functions as a Negative Regulator of the FEAR Network. Current Biology, 2004, 14, 467-480.	3.9	56
90	Polo kinase Cdc5 is a central regulator of meiosis I. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14278-14283.	7.1	55

#	Article	IF	CITATIONS
91	Aneuploid proliferation defects in yeast are not driven by copy number changes of a few dosage-sensitive genes. Genes and Development, 2015, 29, 898-903.	5.9	55
92	Meiosis: how to create a specialized cell cycle. Current Opinion in Cell Biology, 2001, 13, 770-777.	5.4	54
93	Mitotic CDKs control the metaphase–anaphase transition and trigger spindle elongation. Genes and Development, 2008, 22, 1534-1548.	5.9	53
94	The protein phosphatase 2A functions in the spindle position checkpoint by regulating the checkpoint kinase Kin4. Genes and Development, 2009, 23, 1639-1649.	5.9	53
95	No current evidence for widespread dosage compensation in S. cerevisiae. ELife, 2016, 5, e10996.	6.0	52
96	Novel Response to Microtubule Perturbation in Meiosis. Molecular and Cellular Biology, 2005, 25, 4767-4781.	2.3	49
97	Synchronization procedures. Methods in Enzymology, 2002, 351, 457-467.	1.0	48
98	Growth and division—not a one-way road. Current Opinion in Cell Biology, 2010, 22, 795-800.	5.4	47
99	Spo13 regulates cohesin cleavage. Genes and Development, 2002, 16, 1672-1681.	5.9	46
100	Deregulation of the G1/S-phase transition is the proximal cause of mortality in old yeast mother cells. Genes and Development, 2018, 32, 1075-1084.	5.9	46
101	Spindle Position Is Coordinated with Cell-Cycle Progression through Establishment of Mitotic Exit-Activating and -Inhibitory Zones. Molecular Cell, 2010, 39, 444-454.	9.7	44
102	Shugoshin Promotes Sister Kinetochore Biorientation in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2008, 19, 1199-1209.	2.1	43
103	Aneuploidy increases resistance to chemotherapeutics by antagonizing cell division. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30566-30576.	7.1	43
104	Mitotic Exit Regulation through Distinct Domains within the Protein Kinase Cdc15. Molecular and Cellular Biology, 2003, 23, 5018-5030.	2.3	42
105	Aneuploid senescent cells activate NFâ€̂₽B to promote their immune clearance by NK cells. EMBO Reports, 2021, 22, e52032.	4.5	42
106	Meiosis I: when chromosomes undergo extreme makeover. Current Opinion in Cell Biology, 2013, 25, 687-696.	5.4	40
107	Mother and Daughter Are Doing Fine: Asymmetric Cell Division in Yeast. Cell, 1996, 84, 651-654.	28.9	39
108	Linked for life: temporal and spatial coordination of late mitotic events. Current Opinion in Cell Biology, 2004, 16, 41-48.	5.4	39

#	Article	IF	CITATIONS
109	Regulation of Spo12 Phosphorylation and Its Essential Role in the FEAR Network. Current Biology, 2009, 19, 449-460.	3.9	39
110	Condensins Promote Coorientation of Sister Chromatids During Meiosis I in Budding Yeast. Genetics, 2010, 185, 55-64.	2.9	39
111	Ribosomal DNA Transcription-Dependent Processes Interfere with Chromosome Segregation. Molecular and Cellular Biology, 2006, 26, 6239-6247.	2.3	38
112	Changes in Cell Morphology Are Coordinated with Cell Growth through the TORC1 Pathway. Current Biology, 2013, 23, 1269-1279.	3.9	38
113	Chromosome-Specific and Global Effects of Aneuploidy in <i>Saccharomyces cerevisiae</i> . Genetics, 2016, 202, 1395-1409.	2.9	37
114	Aneuploid Cell Survival Relies upon Sphingolipid Homeostasis. Cancer Research, 2017, 77, 5272-5286.	0.9	37
115	Lte1 promotes mitotic exit by controlling the localization of the spindle position checkpoint kinase Kin4. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12584-12590.	7.1	36
116	Mitotic entry in the presence of DNA damage is a widespread property of aneuploidy in yeast. Molecular Biology of the Cell, 2015, 26, 1440-1451.	2.1	36
117	Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability. PLoS Genetics, 2016, 12, e1006075.	3.5	36
118	Clonal selection of stable aneuploidies in progenitor cells drives high-prevalence tumorigenesis. Genes and Development, 2021, 35, 1079-1092.	5.9	35
119	Opportunities, barriers, and recommendations in Down syndrome research. Translational Science of Rare Diseases, 2021, 5, 99-129.	1.5	33
120	The Stress-activated Mitogen-activated Protein Kinase Signaling Cascade Promotes Exit from Mitosis. Molecular Biology of the Cell, 2006, 17, 3136-3146.	2.1	31
121	The environmental stress response causes ribosome loss in aneuploid yeast cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17031-17040.	7.1	28
122	<i>RAD21</i> is a driver of chromosome 8 gain in Ewing sarcoma to mitigate replication stress. Genes and Development, 2021, 35, 556-572.	5.9	28
123	Meiosis: Rec8 is the reason for cohesion. Nature Cell Biology, 1999, 1, E125-E127.	10.3	27
124	Aneuploidy and a deregulated DNA damage response suggest haploinsufficiency in breast tissues of <i>BRCA2</i> mutation carriers. Science Advances, 2020, 6, eaay2611.	10.3	27
125	Spatial signals link exit from mitosis to spindle position. ELife, 2016, 5, .	6.0	26
126	A decade of Cdc14 – a personal perspective†Delivered on 9 July 2007 at the 32nd FEBS Congress in Vienna, Austria. FEBS Journal, 2008, 275, 5774-5784.	4.7	24

#	Article	IF	CITATIONS
127	The Polo-like kinase Cdc5 interacts with FEAR network components and Cdc14. Cell Cycle, 2008, 7, 3262-3272.	2.6	24
128	Together until separin do us part. Nature Cell Biology, 2001, 3, E12-E14.	10.3	22
129	Effects of Age on Meiosis in Budding Yeast. Developmental Cell, 2009, 16, 844-855.	7.0	22
130	<i>LTE1</i> promotes exit from mitosis by multiple mechanisms. Molecular Biology of the Cell, 2016, 27, 3991-4001.	2.1	22
131	The pleiotropic deubiquitinase Ubp3 confers aneuploidy tolerance. Genes and Development, 2016, 30, 2259-2271.	5.9	22
132	The Mitotic Exit Network integrates temporal and spatial signals by distributing regulation across multiple components. ELife, 2019, 8, .	6.0	22
133	Ras and the Rho Effector Cla4 Collaborate to Target and Anchor Lte1 at the Bud Cortex. Cell Cycle, 2005, 4, 940-946.	2.6	21
134	Control of the mitotic exit network during meiosis. Molecular Biology of the Cell, 2012, 23, 3122-3132.	2.1	21
135	Cross-compartment signal propagation in the mitotic exit network. ELife, 2021, 10, .	6.0	21
136	Aneuploidy triggers a TFEB-mediated lysosomal stress response. Autophagy, 2015, 11, 2383-2384.	9.1	20
137	The Lrs4-Csm1 monopolin complex associates with kinetochores during anaphase and is required for accurate chromosome segregation. Cell Cycle, 2010, 9, 3611-3618.	2.6	19
138	Polo Kinase: Meiotic Cell Cycle Coordinator. Cell Cycle, 2003, 2, 399-401.	2.6	15
139	Spindle pole bodies function as signal amplifiers in the Mitotic Exit Network. Molecular Biology of the Cell, 2020, 31, 906-916.	2.1	12
140	The micronucleus gets its big break. Nature, 2015, 522, 162-163.	27.8	9
141	Cell adaptation to aneuploidy by the environmental stress response dampens induction of the cytosolic unfolded-protein response. Molecular Biology of the Cell, 2021, 32, 1557-1564.	2.1	9
142	The many sides of CIN. Nature Reviews Molecular Cell Biology, 2013, 14, 611-611.	37.0	5
143	Not just Salk. Science, 2017, 357, 1105-1106.	12.6	4
144	A System to Study Aneuploidy In Vivo. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 93-101.	1.1	3

#	Article	IF	CITATIONS
145	A case for more curiosity-driven basic research. Molecular Biology of the Cell, 2015, 26, 3690-3691.	2.1	2
146	Decreasing mitochondrial RNA polymerase activity reverses biased inheritance of hypersuppressive mtDNA. PLoS Genetics, 2021, 17, e1009808.	3.5	2
147	Angelika Amon. Current Biology, 2013, 23, R906-R907.	3.9	1
148	Evaluation of Chen etÂal.: Overexpression of Protein Complexes and Aneuploidy. Cell Systems, 2019, 9, 107-108.	6.2	1
149	Life and death decisions. Current Opinion in Cell Biology, 2009, 21, 767-770.	5.4	Ο
150	A somatic evolutionary model of the dynamics of aneuploid cells during hematopoietic reconstitution. Scientific Reports, 2020, 10, 12198.	3.3	0
151	Causes and consequences of aneuploidy FASEB Journal, 2007, 21, A150.	0.5	Ο