Michiel Albertus Basson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2315267/publications.pdf

Version: 2024-02-01

70 papers

7,259 citations

34 h-index 71 g-index

76 all docs

76 docs citations

76 times ranked 11774 citing authors

#	Article	IF	CITATIONS
1	Distinct, dosage-sensitive requirements for the autism-associated factor CHD8 during cortical development. Molecular Autism, 2021, 12, 16.	4.9	15
2	Cell-type-specific synaptic imbalance and disrupted homeostatic plasticity in cortical circuits of ASD-associated Chd8 haploinsufficient mice. Molecular Psychiatry, 2021, 26, 3614-3624.	7.9	18
3	Inositol treatment inhibits medulloblastoma through suppression of epigenetic-driven metabolic adaptation. Nature Communications, 2021, 12, 2148.	12.8	20
4	Effects of Low-Dose Gestational TCDD Exposure on Behavior and on Hippocampal Neuron Morphology and Gene Expression in Mice. Environmental Health Perspectives, 2021, 129, 57002.	6.0	11
5	<scp><i>ZMYND11</i></scp> variants are a novel cause of centrotemporal and generalised epilepsies with neurodevelopmental disorder. Clinical Genetics, 2021, 100, 412-429.	2.0	5
6	Brain mapping across 16 autism mouse models reveals a spectrum of functional connectivity subtypes. Molecular Psychiatry, 2021, 26, 7610-7620.	7.9	47
7	The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration. Communications Biology, 2021, 4, 1260.	4.4	10
8	A recessive PRDM13 mutation results in congenital hypogonadotropic hypogonadism and cerebellar hypoplasia. Journal of Clinical Investigation, 2021, 131, .	8.2	16
9	Regulation of autism-relevant behaviors by cerebellar–prefrontal cortical circuits. Nature Neuroscience, 2020, 23, 1102-1110.	14.8	149
10	The AHR pathway represses TGFÎ ² -SMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. Scientific Reports, 2020, 10, 148.	3.3	22
11	Infraslow State Fluctuations Govern Spontaneous fMRI Network Dynamics. Current Biology, 2019, 29, 2295-2306.e5.	3.9	107
12	Sprouty1 Controls Genitourinary Development via its N-Terminal Tyrosine. Journal of the American Society of Nephrology: JASN, 2019, 30, 1398-1411.	6.1	5
13	Altered Neocortical Gene Expression, Brain Overgrowth and Functional Over-Connectivity in Chd8 Haploinsufficient Mice. Cerebral Cortex, 2018, 28, 2192-2206.	2.9	118
14	Autismâ€linked <scp>CHD</scp> gene expression patterns during development predict multiâ€organ disease phenotypes. Journal of Anatomy, 2018, 233, 755-769.	1.5	14
15	Sex bias in autism: new insights from Chd8 mutant mice?. Nature Neuroscience, 2018, 21, 1144-1146.	14.8	7
16	Advanced paternal age effects in neurodevelopmental disordersâ€"review of potential underlying mechanisms. Translational Psychiatry, 2017, 7, e1019-e1019.	4.8	94
17	Engrailed controls epaxial-hypaxial muscle innervation and the establishment of vertebrate three-dimensional mobility. Developmental Biology, 2017, 430, 90-104.	2.0	7
18	Convergence of BMI1 and CHD7 on ERK Signaling in Medulloblastoma. Cell Reports, 2017, 21, 2772-2784.	6.4	31

#	Article	IF	Citations
19	The neuroanatomy of autism – a developmental perspective. Journal of Anatomy, 2017, 230, 4-15.	1.5	156
20	Distinct cerebellar foliation anomalies in a <i>CHD7</i> haploinsufficient mouse model of CHARGE syndrome. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2017, 175, .	1.6	19
21	Cerebellar Vermis and Midbrain Hypoplasia Upon Conditional Deletion of Chd7 from the Embryonic Mid-Hindbrain Region. Frontiers in Neuroanatomy, 2017, 11, 86.	1.7	7
22	The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression. Journal of Clinical Investigation, 2017, 127, 874-887.	8.2	61
23	An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Developmental Cell, 2016, 37, 85-97.	7.0	24
24	Functional Insights into Chromatin Remodelling from Studies on CHARGE Syndrome. Trends in Genetics, 2015, 31, 600-611.	6.7	66
25	CHD7 Maintains Neural Stem Cell Quiescence and Prevents Premature Stem Cell Depletion in the Adult Hippocampus. Stem Cells, 2015, 33, 196-210.	3.2	74
26	Heparan Sulfotransferases Hs6st1 and Hs2st Keep Erk in Check for Mouse Corpus Callosum Development. Journal of Neuroscience, 2014, 34, 2389-2401.	3.6	30
27	Epistatic interactions betweenChd7andFgf8during cerebellar development. Rare Diseases (Austin, Tex), 2014, 2, e28688.	1.8	11
28	Gli3 Controls Corpus Callosum Formation by Positioning Midline Guideposts During Telencephalic Patterning. Cerebral Cortex, 2014, 24, 186-198.	2.9	33
29	Coordinated activity of Spry1 and Spry2 is required for normal development of the external genitalia. Developmental Biology, 2014, 386, 1-11.	2.0	27
30	Endodermâ€specific deletion of <i>Tbx1</i> reveals an FGFâ€independent role for Tbx1 in pharyngeal apparatus morphogenesis. Developmental Dynamics, 2014, 243, 1143-1151.	1.8	24
31	A bi-modal function of Wnt signalling directs an FGF activity gradient to spatially regulate neuronal differentiation in the midbrain. Development (Cambridge), 2014, 141, 63-72.	2.5	30
32	Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences. Frontiers in Neuroanatomy, 2013, 7, 29.	1.7	80
33	Deregulated FGF and homeotic gene expression underlies cerebellar vermis hypoplasia in CHARGE syndrome. ELife, 2013, 2, e01305.	6.0	55
34	Sprouty1 Haploinsufficiency Prevents Renal Agenesis in a Model of Fraser Syndrome. Journal of the American Society of Nephrology: JASN, 2012, 23, 1790-1796.	6.1	24
35	Localised inhibition of FGF signalling in the third pharyngeal pouch is required for normal thymus and parathyroid organogenesis. Development (Cambridge), 2012, 139, 3456-3466.	2.5	30
36	Sprouty1 is a candidate tumor-suppressor gene in medullary thyroid carcinoma. Oncogene, 2012, 31, 3961-3972.	5.9	31

#	Article	IF	Citations
37	The aged niche disrupts muscle stem cell quiescence. Nature, 2012, 490, 355-360.	27.8	682
38	Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nature Genetics, 2012, 44, 348-351.	21.4	214
39	Sprouty Is a Negative Regulator of Transforming Growth Factor \hat{I}^2 -Induced Epithelial-to-Mesenchymal Transition and Cataract. Molecular Medicine, 2012, 18, 861-873.	4.4	49
40	Signaling in Cell Differentiation and Morphogenesis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008151-a008151.	5.5	121
41	Biallelic expression of <i>Tbx1</i> protects the embryo from developmental defects caused by increased receptor tyrosine kinase signaling. Developmental Dynamics, 2012, 241, 1310-1324.	1.8	9
42	Regulation of CD4+ and CD8+ Effector Responses by Sprouty-1. PLoS ONE, 2012, 7, e49801.	2.5	16
43	Expression of fibroblast growth factors (Fgfs) in murine tooth development. Journal of Anatomy, 2011, 218, 534-543.	1.5	37
44	Sprouty genes are essential for the normal development of epibranchial ganglia in the mouse embryo. Developmental Biology, 2011, 358, 147-155.	2.0	16
45	Sprouty genes prevent excessive FGF signalling in multiple cell types throughout development of the cerebellum. Development (Cambridge), 2011, 138, 2957-2968.	2.5	53
46	Characterization of a <i>Dchs1</i> mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development (Cambridge), 2011, 138, 947-957.	2.5	172
47	Sprouty Proteins Inhibit Receptor-mediated Activation of Phosphatidylinositol-specific Phospholipase C. Molecular Biology of the Cell, 2010, 21, 3487-3496.	2.1	45
48	Sprouty1 Regulates Reversible Quiescence of a Self-Renewing Adult Muscle Stem Cell Pool during Regeneration. Cell Stem Cell, 2010, 6, 117-129.	11.1	275
49	FGF ligands emerge as potential specifiers of synaptic identity. Cellscience, 2010, 7, 33-42.	0.3	4
50	Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. Journal of Clinical Investigation, 2009, 119, 3301-10.	8.2	119
51	Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating <i>Gbx2</i> expression in the pharyngeal ectoderm. Development (Cambridge), 2009, 136, 3173-3183.	2.5	124
52	Loss of Sprouty1 Rescues Renal Agenesis Caused by Ret Mutation. Journal of the American Society of Nephrology: JASN, 2009, 20, 255-259.	6.1	45
53	Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development. Development (Cambridge), 2009, 136, 1962-1962.	2.5	1
54	Fibroblast growth factor (FGF) gene expression in the developing cerebellum suggests multiple roles for FGF signaling during cerebellar morphogenesis and development. Developmental Dynamics, 2009, 238, 2058-2072.	1.8	46

#	Article	IF	CITATIONS
55	MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456, 980-984.	27.8	2,111
56	An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development (Cambridge), 2008, 135, 377-385.	2.5	150
57	Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development. Development (Cambridge), 2008, 135, 889-898.	2.5	124
58	Itchâ^'/â^'αβ and γδT cells independently contribute to autoimmunity in Itchy mice. Blood, 2008, 111, 4273-72	821.4	42
59	Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Developmental Biology, 2006, 299, 466-477.	2.0	141
60	Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends in Cell Biology, 2006, 16, 45-54.	7.9	408
61	Synergistic activity of Sef and Sprouty proteins in regulating the expression of Gbx2 in the mid-hindbrain region. Genesis, 2005, 41, 110-115.	1.6	36
62	Sprouty1 Is a Critical Regulator of GDNF/RET-Mediated Kidney Induction. Developmental Cell, 2005, 8, 229-239.	7.0	327
63	The influence of the srcâ€family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunological Reviews, 2003, 191, 107-118.	6.0	178
64	Insights into T-Cell Development from Studies Using Transgenic and Knockout Mice. Molecular Biotechnology, 2001, 18, 11-24.	2.4	3
65	The CD4/CD8 lineage decision: integration of signalling pathways. Trends in Immunology, 2000, 21, 509-514.	7.5	44
66	Early Growth Response (Egr)-1 Gene Induction in the Thymus in Response to TCR Ligation During Early Steps in Positive Selection Is Not Required for CD8 Lineage Commitment. Journal of Immunology, 2000, 165, 2444-2450.	0.8	22
67	Greatly reduced efficiency of both positive and negative selection of thymocytes in CD45 tyrosine phosphatase-deficient mice. European Journal of Immunology, 1999, 29, 2923-2933.	2.9	67
68	Greatly reduced efficiency of both positive and negative selection of thymocytes in CD45 tyrosine phosphatase-deficient mice. European Journal of Immunology, 1999, 29, 2923-2933.	2.9	2
69	Molecular requirements for lineage commitment in the thymus - antibody-mediated receptor engagements reveal a central role for lck in lineage decisions. Immunological Reviews, 1998, 165, 181-194.	6.0	28
70	CD3 Ligation on Immature Thymocytes Generates Antagonist-like Signals Appropriate for CD8 Lineage Commitment, Independently of  T Cell Receptor Specificity. Journal of Experimental Medicine, 1998, 187, 1249-1260.	8.5	58