Francisco José Romero-Campero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2314926/publications.pdf Version: 2024-02-01

Francisco José

#	Article	IF	CITATIONS
1	ALGAEFUN with MARACAS, microALGAE FUNctional enrichment tool for MicroAlgae RnA-seq and Chip-seq AnalysiS. BMC Bioinformatics, 2022, 23, 113.	2.6	3
2	Transcriptomic and Metabolomic Response to High Light in the Charophyte Alga Klebsormidium nitens. Frontiers in Plant Science, 2022, 13, .	3.6	6
3	H2AK121ub in Arabidopsis associates with a less accessible chromatin state at transcriptional regulation hotspots. Nature Communications, 2021, 12, 315.	12.8	35
4	Changes at a Critical Branchpoint in the Anthocyanin Biosynthetic Pathway Underlie the Blue to Orange Flower Color Transition in Lysimachia arvensis. Frontiers in Plant Science, 2021, 12, 633979.	3.6	13
5	A chloroplast redox relay adapts plastid metabolism to light and affects cytosolic protein quality control. Plant Physiology, 2021, 187, 88-102.	4.8	12
6	Unveiling the underlying molecular basis of astaxanthin accumulation in Haematococcus through integrative metabolomic-transcriptomic analysis. Bioresource Technology, 2021, 332, 125150.	9.6	22
7	Role of a cryptic tRNA gene operon in survival under translational stress. Nucleic Acids Research, 2021, 49, 8757-8776.	14.5	8
8	Comparative transcriptomic analysis unveils interactions between the regulatory CarS protein and light response in Fusarium. BMC Genomics, 2019, 20, 67.	2.8	15
9	Evolution of photoperiod sensing in plants and algae. Current Opinion in Plant Biology, 2017, 37, 10-17.	7.1	39
10	H2A monoubiquitination in Arabidopsis thaliana is generally independent of LHP1 and PRC2 activity. Genome Biology, 2017, 18, 69.	8.8	71
11	The Arabidopsis Polycomb Repressive Complex 1 (PRC1) Components AtBMI1A, B, and C Impact Gene Networks throughout All Stages of Plant Development. Plant Physiology, 2017, 173, 627-641.	4.8	38
12	Evolutionary Analysis of DELLA-Associated Transcriptional Networks. Frontiers in Plant Science, 2017, 8, 626.	3.6	35
13	Evolution of Daily Gene Co-expression Patterns from Algae to Plants. Frontiers in Plant Science, 2017, 8, 1217.	3.6	26
14	ChlamyNET: a Chlamydomonas gene co-expression network reveals global properties of the transcriptome and the early setup of key co-expression patterns in the green lineage. BMC Genomics, 2016, 17, 227.	2.8	45
15	New challenges in microalgae biotechnology. European Journal of Protistology, 2016, 55, 95-101.	1.5	22
16	An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling. Plant Physiology, 2015, 168, 561-574.	4.8	23
17	The Glycerol-Dependent Metabolic Persistence of Pseudomonas putida KT2440 Reflects the Regulatory Logic of the GlpR Repressor. MBio, 2015, 6, .	4.1	62
18	Photoperiodic Control of Carbon Distribution during the Floral Transition in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2014, 26, 565-584.	6.6	73

Francisco José

#	Article	IF	CITATIONS
19	Infobiotics Workbench: A P Systems Based Tool for Systems and Synthetic Biology. Emergence, Complexity and Computation, 2014, , 1-41.	0.3	19
20	A contribution to the study of plant development evolution based on gene co-expression networks. Frontiers in Plant Science, 2013, 4, 291.	3.6	22
21	A polynomial alternative to unbounded environment for tissue P systems with cell division. International Journal of Computer Mathematics, 2013, 90, 760-775.	1.8	14
22	Heterotic Computing Examples with Optics, Bacteria, and Chemicals. Lecture Notes in Computer Science, 2012, , 198-209.	1.3	4
23	Looking for Small Efficient P Systems. Fundamenta Informaticae, 2011, 110, 295-308.	0.4	Ο
24	The Infobiotics Workbench: an integrated <i>in silico</i> modelling platform for Systems and Synthetic Biology. Bioinformatics, 2011, 27, 3323-3324.	4.1	40
25	Evolving cell models for systems and synthetic biology. Systems and Synthetic Biology, 2010, 4, 55-84.	1.0	40
26	A computational study of liposome logic: towards cellular computing from the bottom up. Systems and Synthetic Biology, 2010, 4, 157-179.	1.0	16
27	Deterministic and stochastic P systems for modelling cellular processes. Natural Computing, 2010, 9, 457-473.	3.0	20
28	MODULAR ASSEMBLY OF CELL SYSTEMS BIOLOGY MODELS USING P SYSTEMS. International Journal of Foundations of Computer Science, 2009, 20, 427-442.	1.1	41
29	On the efficiency of cell-like and tissue-like recognizing membrane systems. International Journal of Intelligent Systems, 2009, 24, 747-765.	5.7	2
30	A Multiscale Modeling Framework Based on P Systems. Lecture Notes in Computer Science, 2009, , 63-77.	1.3	11
31	An Approach to the Engineering of Cellular Models Based on P Systems. Lecture Notes in Computer Science, 2009, , 430-436.	1.3	0
32	Modelling gene expression control using P systems: The Lac Operon, a case study. BioSystems, 2008, 91, 438-457.	2.0	55
33	Membrane Computing as a Modeling Framework. Cellular Systems Case Studies. , 2008, , 168-214.		9
34	Structure and parameter estimation for cell systems biology models. , 2008, , .		18
35	A Model of the Quorum Sensing System in <i>Vibrio fischeri</i> Using P Systems. Artificial Life, 2008, 14, 95-109.	1.3	76
36	How to express tumours using membrane systems. Progress in Natural Science: Materials International, 2007, 17, 449-457.	4.4	2

Francisco José

#	Article	IF	CITATIONS
37	Cellular modelling using P systems and process algebra. Progress in Natural Science: Materials International, 2007, 17, 375-383.	4.4	8
38	Simulating FAS-induced apoptosis by using P systems. Progress in Natural Science: Materials International, 2007, 17, 424-431.	4.4	27
39	A uniform solution to SAT using membrane creation. Theoretical Computer Science, 2007, 371, 54-61.	0.9	44
40	A Hybrid Approach to Modeling Biological Systems. , 2007, , 138-159.		18
41	Computational efficiency of dissolution rules in membrane systems. International Journal of Computer Mathematics, 2006, 83, 593-611.	1.8	26
42	P Systems, a New Computational Modelling Tool for Systems Biology. Lecture Notes in Computer Science, 2006, , 176-197.	1.3	45
43	Towards a P Systems Pseudomonas Quorum Sensing Model. Lecture Notes in Computer Science, 2006, , 197-214.	1.3	13
44	Towards Probabilistic Model Checking on P Systems Using PRISM. Lecture Notes in Computer Science, 2006, , 477-495.	1.3	21
45	Modeling Signal Transduction Using P Systems. Lecture Notes in Computer Science, 2006, , 100-122.	1.3	12
46	A Modeling Approach Based on P Systems with Bounded Parallelism. Lecture Notes in Computer Science, 2006, , 49-65.	1.3	1
47	Characterizing tractability with membrane creation. , 2005, , .		2
48	On P systems with bounded parallelism. , 2005, , .		6
49	Trading Polarization for Bi-stable Catalysts in P Systems with Active Membranes. Lecture Notes in Computer Science, 2005, , 373-388.	1.3	6