
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2314530/publications.pdf Version: 2024-02-01

Ριιτή Πιιροέο

#	Article	IF	CITATIONS
1	Small scale effects in the observable power spectrum at large angular scales. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 035.	5.4	5
2	Lensing Magnification Seen by Gravitational Wave Detectors. Universe, 2022, 8, 19.	2.5	4
3	An estimator for the lensing potential from galaxy number counts. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 024.	5.4	3
4	On the importance of lensing for galaxy clustering in photometric and spectroscopic surveys. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 055.	5.4	25
5	Intrinsic and extrinsic correlations of galaxy shapes and sizes in weak lensing data. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2594-2609.	4.4	9
6	Image rotation from lensing. Classical and Quantum Gravity, 2021, 38, 245008.	4.0	4
7	A new way to test the Cosmological Principle: measuring our peculiar velocity and the large-scale anisotropy independently. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 009.	5.4	24
8	Cosmological simulations of number counts. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 021.	5.4	7
9	Primordial magnetic helicity evolution with a homogeneous magnetic field from inflation. Physical Review D, 2020, 102, .	4.7	14
10	Weak-lensing observables in relativistic N-body simulations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2078-2095.	4.4	28
11	Generation of chiral asymmetry via helical magnetic fields. Physical Review D, 2020, 101, .	4.7	14
12	Nonlinear contributions to angular power spectra. Physical Review D, 2020, 101, .	4.7	24
13	Full-sky bispectrum in redshift space for 21cm intensity maps. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 003-003.	5.4	13
14	General and consistent statistics for cosmological observations. Physical Review Research, 2020, 2, .	3.6	17
15	Intensity mapping of the 21 cm emission: lensing. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 020-020.	5.4	16
16	Bias and scatter in the Hubble diagram from cosmological large-scale structure. Physical Review D, 2019, 100, .	4.7	34
17	The full-sky angular bispectrum in redshift space. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 053-053.	5.4	38
18	Scale-invariant helical magnetic fields from inflation. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 008-008.	5.4	38

#	Article	IF	CITATIONS
19	Cosmological number counts in Einstein and Jordan frames. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 071-071.	5.4	11
20	Polarization of a stochastic gravitational wave background through diffusion by massive structures. Physical Review D, 2019, 99, .	4.7	35
21	The observable Eg statistics. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 010-010.	5.4	10
22	Cosmological information contents on the light-cone. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 015-015.	5.4	13
23	Rotation of the CMB polarization by foreground lensing. Physical Review D, 2019, 100, .	4.7	10
24	Background photon temperature <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mover accent="true"><mml:mi>T</mml:mi><mml:mo stretchy="false">Â⁻</mml:mo </mml:mover></mml:math> : A new cosmological Parameter?. Physical Review D, 2019, 100, .	4.7	16
25	The cosmological consistency relation in a Universe with structure. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 034-034.	5.4	1
26	Safely smoothing spacetime: backreaction in relativistic cosmological simulations. Classical and Quantum Gravity, 2019, 36, 014001.	4.0	28
27	Redshift-space distortions from vector perturbations. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 028-028.	5.4	11
28	Cosmology and fundamental physics with the Euclid satellite. Living Reviews in Relativity, 2018, 21, 2.	26.7	602
29	The full-sky relativistic correlation function and power spectrum of galaxy number counts. Part I: theoretical aspects. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 019-019.	5.4	50
30	Redshift-space distortions from vector perturbations. II. Anisotropic signal. Physical Review D, 2018, 98, .	4.7	6
31	Tensor bounds on the hidden universe. Journal of High Energy Physics, 2018, 2018, 1.	4.7	11
32	COFFE: a code for the full-sky relativistic galaxy correlation function. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 032-032.	5.4	23
33	Editorial note to: A. G. Doroshkevich and I. D. Novikov, Mean density of radiation in the metagalaxy and certain problems in relativistic cosmology. General Relativity and Gravitation, 2018, 50, 1.	2.0	0
34	CMB lensing beyond the leading order: Temperature and polarization anisotropies. Physical Review D, 2018, 98, .	4.7	23
35	The generation of vorticity in cosmological N-body simulations. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 006-006.	5.4	30
36	General relativistic corrections in density-shear correlations. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 008-008.	5.4	14

#	Article	IF	CITATIONS
37	Statistical properties of scale-invariant helical magnetic fields and applications to cosmology. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 034-034.	5.4	16
38	Higher order relativistic galaxy number counts: dominating terms. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 010-010.	5.4	22
39	The Alcock Paczy'nski test with Baryon Acoustic Oscillations: systematic effects for future surveys. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 020-020.	5.4	8
40	Gauge-transformation properties of cosmological observables and its application to the light-cone average. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 016-016.	5.4	24
41	Impact of Next-to-Leading Order Contributions to Cosmic Microwave Background Lensing. Physical Review Letters, 2017, 118, 211301.	7.8	24
42	Vorticity generation in the Universe: A perturbative approach. Physical Review D, 2017, 95, .	4.7	22
43	Relativistic N-body simulations with massive neutrinos. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 004-004.	5.4	54
44	Scale-invariant helical magnetic field evolution and the duration of inflation. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 002-002.	5.4	22
45	Lensing corrections to the <i>E</i> _{<i>g</i>} (<i>z</i>) statistics from large scale structure. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 035-035.	5.4	14
46	Cosmological measurements with general relativistic galaxy correlations. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 009-009.	5.4	57
47	CMB-lensing beyond the Born approximation. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 028-028.	5.4	39
48	gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 053-053.	5.4	107
49	Vector perturbations of galaxy number counts. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 037-037.	5.4	17
50	Lensing convergence and the neutrino mass scale in galaxy redshift surveys. Physical Review D, 2016, 94, .	4.7	37
51	Curvature constraints from large scale structure. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 013-013.	5.4	47
52	Lensing signals from spin-2 perturbations. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 024-024.	5.4	13
53	General relativity and cosmic structure formation. Nature Physics, 2016, 12, 346-349.	16.7	120
54	The bispectrum of relativistic galaxy number counts. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 016-016.	5.4	53

#	Article	IF	CITATIONS
55	A general mass term for bigravity. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 051-051.	5.4	14
56	Detecting the cosmological neutrino background in the CMB. Physical Review D, 2015, 92, .	4.7	20
57	Measuring the lensing potential with tomographic galaxy number counts. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 070-070.	5.4	63
58	Inflationary perturbations in bimetric gravity. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 043-043.	5.4	10
59	Gravitational waves in bigravity cosmology. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 030-030.	5.4	46
60	The cosmic microwave background: the history of its experimental investigation and its significance for cosmology. Classical and Quantum Gravity, 2015, 32, 124007.	4.0	32
61	The imprint of inflation on the cosmic microwave background. Comptes Rendus Physique, 2015, 16, 948-959.	0.9	Ο
62	Does Small Scale Structure Significantly Affect Cosmological Dynamics?. Physical Review Letters, 2015, 114, 051302.	7.8	28
63	Cosmological ensemble and directional averages of observables. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 040-040.	5.4	34
64	Do we care about the distance to the CMB? Clarifying the impact of second-order lensing. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 050-050.	5.4	35
65	What is the distance to the CMB?. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 036-036.	5.4	29
66	Cosmological parameter estimation with large scale structure observations. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 042-042.	5.4	56
67	Can self-ordering scalar fields explain the BICEP2 B-mode signal?. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 029-029.	5.4	13
68	Distance-redshift relation in plane symmetric universes. Physical Review D, 2014, 89, .	4.7	16
69	Perturbations for massive gravity theories. Physical Review D, 2014, 89, .	4.7	19
70	Galaxy number counts to second order and their bispectrum. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 017-017.	5.4	84
71	Cosmic microwave background temperature and polarization anisotropies from the large-Nlimit of global defects. Physical Review D, 2014, 89, .	4.7	9
72	Can Primordial Magnetic Fields be the Origin of the BICEP2 Data?. Physical Review Letters, 2014, 112, 191303.	7.8	44

#	Article	IF	CITATIONS
73	<i>N</i> -body methods for relativistic cosmology. Classical and Quantum Gravity, 2014, 31, 234006.	4.0	63
74	Value of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><m the Inhomogeneous Universe. Physical Review Letters, 2014, 112, 221301.</m </mml:mrow></mml:msub></mml:mrow></mml:math>	ml:m p.æ 0 <td>ıml8ı£ın></td>	ıml 8ı £ın>
75	A longitudinal gauge degree of freedom and the Pais Uhlenbeck field. Journal of High Energy Physics, 2013, 2013, 1.	4.7	19
76	Cosmological magnetic fields: their generation, evolution and observation. Astronomy and Astrophysics Review, 2013, 21, 1.	25.5	552
77	General relativistic <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>N</mml:mi></mml:math> -body simulations in the weak field limit. Physical Review D, 2013, 88, .	4.7	78
78	Explosive particle production in non-commutative inflation. Journal of High Energy Physics, 2013, 2013, 1.	4.7	6
79	Stability of Horndeski vector-tensor interactions. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 064-064.	5.4	77
80	The CLASSgal code for relativistic cosmological large scale structure. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 044-044.	5.4	136
81	Magnetic fields from inflation: The CMB temperature anisotropies. Physical Review D, 2013, 88, .	4.7	31
82	Comment on "Origin of Cosmic Magnetic Fields― Physical Review Letters, 2013, 111, 229001.	7.8	6
83	Back reaction from walls. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 036-036.	5.4	14
84	The Kolmogorov-Smirnov test for the CMB. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 2012, 009-009.	5.4	4
85	Vector and tensor contributions to the luminosity distance. Physical Review D, 2012, 86, .	4.7	20
86	New method for the Alcock-Paczyński test. Physical Review D, 2012, 86, .	4.7	35
87	Do the cosmological observational data prefer phantom dark energy?. Physical Review D, 2012, 86, .	4.7	40
88	Magnetic fields from inflation: The transition to the radiation era. Physical Review D, 2012, 86, .	4.7	31
89	Mode spectrum of the electromagnetic field in open universe models. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2705-2710.	4.4	15
90	Testing superstring theories with gravitational waves. Physical Review D, 2011, 84, .	4.7	24

RUTH DURRER

#	Article	IF	CITATIONS
91	Analytic approach to baryon acoustic oscillations. Physical Review D, 2011, 84, .	4.7	9
92	Effects of biasing on the galaxy power spectrum at large scales. Physical Review D, 2011, 83, .	4.7	18
93	What do we really know about dark energy?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 5102-5114.	3.4	34
94	The local B-polarization of the CMB: A very sensitive probe of cosmic defects. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 695, 26-29.	4.1	22
95	Can slow roll inflation induce relevant helical magnetic fields?. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 037-037.	5.4	121
96	A large scale coherent magnetic field: interactions with free streaming particles and limits from the CMB. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 017-017.	5.4	20
97	Observational constraints on scalar field models of dark energy with barotropic equation of state. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 004-004.	5.4	16
98	What galaxy surveys really measure. Physical Review D, 2011, 84, .	4.7	351
99	On infrared and ultraviolet divergences of cosmological perturbations. Physical Review D, 2011, 83, .	4.7	35
100	Model-independent cosmological constraints from the CMB. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 023-023.	5.4	59
101	Gravitational waves from cosmological phase transitions. Journal of Physics: Conference Series, 2010, 222, 012021.	0.4	15
102	Dark energy and modified gravity. , 2010, , 48-91.		9
103	Detection of gravitational waves from the QCD phase transition with pulsar timing arrays. Physical Review D, 2010, 82, .	4.7	98
104	CMB anisotropies from acausal scaling seeds. Physical Review D, 2009, 79, .	4.7	8
105	Can the observed large scale magnetic fields be seeded by helical primordial fields?. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 001-001.	5.4	46
106	Gravitational waves from self-ordering scalar fields. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 005-005.	5.4	61
107	Graviton production in brane worlds by the dynamical Casimir effect. , 2009, , .		Ο
108	Adiabatic renormalization of inflationary perturbations. Physical Review D, 2009, 80, .	4.7	36

#	Article	IF	CITATIONS
109	Interactions of cosmological gravitational waves and magnetic fields. Physical Review D, 2009, 79, .	4.7	7
110	Graviton production in noninflationary cosmology. Physical Review D, 2009, 79, .	4.7	9
111	General properties of the gravitational wave spectrum from phase transitions. Physical Review D, 2009, 79, .	4.7	188
112	Graviton production in anti-deÂSitter braneworld cosmology: A fully consistent treatment of the boundary condition. Physical Review D, 2009, 79, .	4.7	1
113	The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 024-024.	5.4	303
114	Astrophysical Cosmology. , 2009, , 203-299.		1
115	Next Challenges. , 2009, , 429-501.		Ο
116	The Evolution of the Universe. , 2009, , 27-38.		0
117	Cosmic microwave backgrond. , 2009, , .		Ο
118	Dark energy and dark gravity: theory overview. General Relativity and Gravitation, 2008, 40, 301-328.	2.0	224
119	Editorial on the GRG special issue on dark energy. General Relativity and Gravitation, 2008, 40, 219-220.	2.0	6
120	Generalized Einstein-Aether theories and the Solar System. Physical Review D, 2008, 77, .	4.7	22
121	Testing Lorentz invariance violation with Wilkinson Microwave Anisotropy Probe five year data. Physical Review D, 2008, 78, .	4.7	52
122	Is cosmology compatible with blue gravity waves?. Physical Review D, 2008, 77, .	4.7	15
123	Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach. Physical Review D, 2008, 77, .	4.7	222
124	Dynamical Casimir Effect in Braneworlds. Physical Review Letters, 2007, 99, 071601.	7.8	29
125	Microlensing modulation by quadrupole variation. Physical Review D, 2007, 75, .	4.7	4
126	Dynamical Casimir effect for gravitons in bouncing braneworlds. Physical Review D, 2007, 76, .	4.7	17

#	Article	IF	CITATIONS
127	Cosmic magnetic fields and the CMB. New Astronomy Reviews, 2007, 51, 275-280.	12.8	39
128	No-Go Theorem fork-Essence Dark Energy. Physical Review Letters, 2006, 97, 081303.	7.8	87
129	Gravitational waves from stochastic relativistic sources: Primordial turbulence and magnetic fields. Physical Review D, 2006, 74, .	4.7	186
130	Constraining gravitino dark matter with the cosmic microwave background. Physical Review D, 2006, 73, .	4.7	30
131	Frequency of gravitational waves. Physical Review D, 2006, 74, .	4.7	18
132	Fluctuations of the luminosity distance. Physical Review D, 2006, 73, .	4.7	154
133	Dipole of the Luminosity Distance: A Direct Measure of H(z). Physical Review Letters, 2006, 96, 191302.	7.8	100
134	ASTRONOMY: Is the Mystery of Cosmic Magnetic Fields Solved?. Science, 2006, 311, 787-788.	12.6	4
135	COSMOLOGICAL INSTABILITIES FROM VECTOR PERTURBATIONS IN BRANEWORLDS. , 2006, , .		0
136	LIMITING BRANEWORLDS WITH THE BINARY PULSAR. , 2006, , .		0
137	TESTING THE PARADIGM OF ADIABATICITY. , 2006, , .		0
138	Braneworlds. AIP Conference Proceedings, 2005, , .	0.4	14
139	Tachyonic perturbations inAdS5orbifolds. Physical Review D, 2005, 71, .	4.7	6
140	On graviton production in braneworld cosmology. Physical Review D, 2005, 72, .	4.7	16
141	Limits on stochastic magnetic fields: A defense of our paper. Physical Review D, 2005, 72, .	4.7	12
142	Testing extra dimensions with the binary pulsar. Classical and Quantum Gravity, 2004, 21, 2127-2137.	4.0	15
143	Cosmic microwave background and helical magnetic fields: The tensor mode. Physical Review D, 2004, 69, .	4.7	121
144	Cosmological perturbations and the transition from contraction to expansion. Physical Review D, 2003, 67, .	4.7	63

RUTH DURRER

#	Article	IF	CITATIONS
145	Primordial magnetic fields and causality. Journal of Cosmology and Astroparticle Physics, 2003, 2003, 010-010.	5.4	163
146	Acoustic Peaks and Dips in the Cosmic Microwave Background Power Spectrum: Observational Data and Cosmological Constraints. Astrophysical Journal, 2003, 583, 33-48.	4.5	29
147	Bias and the Power Spectrum beyond the Turnover. Astrophysical Journal, 2003, 585, L1-L4.	4.5	28
148	Adiabatic perturbations in pre-big bang models: Matching conditions and scale invariance. Physical Review D, 2002, 66, .	4.7	112
149	Cosmic structure formation with topological defects. Physics Reports, 2002, 364, 1-81.	25.6	143
150	Physics of Cosmic Microwave Background Anisotropies and Primordial Fluctuations. Space Science Reviews, 2002, 100, 3-14.	8.1	2
151	Physics of Cosmic Microwave Background Anisotropies and Primordial Fluctuations. Space Sciences Series of ISSI, 2002, , 3-14.	0.0	0
152	CMB signatures of a primordial magnetic field. AIP Conference Proceedings, 2001, , .	0.4	6
153	Cosmological parameters from complementary observations of the Universe. Monthly Notices of the Royal Astronomical Society, 2001, 324, 560-572.	4.4	12
154	Cosmic Microwave Background Anisotropies with Mixed Isocurvature Perturbations. Physical Review Letters, 2001, 87, 231301.	7.8	58
155	Gravitational wave production: A strong constraint on primordial magnetic fields. Physical Review D, 2001, 65, .	4.7	142
156	Dynamical instabilities of the Randall-Sundrum model. Physical Review D, 2001, 64, .	4.7	11
157	Biasing in Gaussian Random Fields and Galaxy Correlations. Astrophysical Journal, 2000, 531, L1-L4.	4.5	17
158	Anisotropic `hairs' in string cosmology. Classical and Quantum Gravity, 2000, 17, 2597-2603.	4.0	19
159	Kalb-Ramond axion production in anisotropic string cosmologies. Physical Review D, 2000, 62, .	4.7	10
160	Skewness as a probe of non-Gaussian initial conditions. Physical Review D, 2000, 62, .	4.7	28
161	Cosmic Microwave Background Anisotropies and Extra Dimensions in String Cosmology. Physical Review Letters, 1999, 83, 4464-4467.	7.8	30
162	Are there static textures?. Physical Review D, 1999, 59, .	4.7	3

RUTH DURRER

#	Article	IF	CITATIONS
163	Topological defects in cosmology. New Astronomy Reviews, 1999, 43, 111-156.	12.8	33
164	Dynamics of Pairwise Motions. Astrophysical Journal, 1999, 518, L25-L28.	4.5	45
165	Cosmic microwave background anisotropies from scaling seeds: Generic properties of the correlation functions. Physical Review D, 1998, 57, R3199-R3203.	4.7	30
166	Angular projections of fractal sets. Europhysics Letters, 1997, 40, 491-496.	2.0	11
167	Cosmic microwave background anisotropies induced by global scalar fields: The largeNlimit. Physical Review D, 1997, 55, R4516-R4520.	4.7	21
168	Microwave background anisotropies from scaling seed perturbations. Physical Review D, 1997, 56, 4480-4493.	4.7	30
169	Cosmic Microwave Background Anisotropies from Scaling Seeds: Fit to Observational Data. Physical Review Letters, 1997, 79, 5198-5201.	7.8	20
170	Anisotropies in the cosmic microwave background: Theoretical foundations. International Journal of Theoretical Physics, 1997, 36, 2469-2487.	1.2	1
171	Calculation of the large-N limit of CMB anisotropies induced by global scalar fields. International Journal of Theoretical Physics, 1997, 36, 2489-2501.	1.2	1
172	Dunkle Materie im Universum. Physik in Unserer Zeit, 1997, 28, 16-21.	0.0	3
173	Doppler Peaks in the Angular Power Spectrum of the Cosmic Microwave Background: A Fingerprint of Topological Defects. Physical Review Letters, 1996, 76, 579-582.	7.8	58
174	Large-scale structure formation with global topological defects. Physical Review D, 1996, 53, 5394-5410.	4.7	31
175	The oscillating universe: an alternative to inflation. Classical and Quantum Gravity, 1996, 13, 1069-1087.	4.0	36
176	Structure Formation in the Universe from Texture Induced Fluctuations. Physical Review Letters, 1995, 74, 1701-1704.	7.8	9
177	Structure Formation with Global Texture1. Annals of the New York Academy of Sciences, 1995, 759, 688-691.	3.8	0
178	Global Field Dynamics and Cosmological Structure Formation. NATO ASI Series Series B: Physics, 1995, , 255-281.	0.2	0
179	Light deflection in perturbed Friedmann universes. Physical Review Letters, 1994, 72, 3301-3304.	7.8	18
180	Microwave anisotropies from texture-seeded structure formation. Physical Review D, 1994, 49, 681-691.	4.7	17

#	Article	IF	CITATIONS
181	New contribution to cosmological perturbations of some inflationary models. Physical Review D, 1994, 50, 6115-6122.	4.7	7
182	General relativistic textures and their interactions with matter and radiation. Nuclear Physics B, 1992, 368, 527-553.	2.5	12
183	Cosmology in the Laboratory: Defect Dynamics in Liquid Crystals. Science, 1991, 251, 1336-1342.	12.6	595
184	General relativistic collapse of textures. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 259, 48-52.	4.1	11
185	Gauge-invariant cosmological perturbation theory with seeds. Physical Review D, 1990, 42, 2533-2540.	4.7	57
186	The cosmological constant and galaxy formation. Monthly Notices of the Royal Astronomical Society, 1990, 242, 221-223.	4.4	7
187	Antipodal microwave. Astrophysical Journal, 1990, 356, 49.	4.5	3
188	Gravitational angular momentum radiation of cosmic strings. Nuclear Physics B, 1989, 328, 238-271.	2.5	26
189	CMB anisotropies. , 0, , 134-175.		0
190	CMB polarization and the total angular momentum approach. , 0, , 176-209.		0
191	Lensing and the CMB. , 0, , 278-303.		0
192	The CMB spectrum. , 0, , 304-325.		0
193	2 Cosmological Perturbation Theory. Lecture Notes in Physics, 0, , 31-69.	0.7	20