
Teresa Galeano-DÃ-az

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2314255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analytical techniques and chemometrics approaches in authenticating and identifying adulteration of paprika powder using fingerprints: A review. Microchemical Journal, 2022, 178, 107382.	2.3	5
2	Untargeted classification for paprika powder authentication using visible – Near infrared spectroscopy (VIS-NIRS). Food Control, 2021, 121, 107564.	2.8	13
3	Non-destructive fluorescence spectroscopy combined with second-order calibration as a new strategy for the analysis of the illegal Sudan I dye in paprika powder. Microchemical Journal, 2020, 154, 104539.	2.3	7
4	Non-destructive Raman spectroscopy as a tool for measuring ASTA color values and Sudan I content in paprika powder. Food Chemistry, 2019, 274, 187-193.	4.2	32
5	Determination of pungency in spicy food by means of excitation-emission fluorescence coupled with second-order chemometric calibration. Journal of Food Composition and Analysis, 2018, 67, 10-18.	1.9	14
6	Antioxidant effects of extra virgin olive oil enriched by myrtle phenolic extracts on iron-mediated lipid peroxidation under intestinal conditions model. Food Chemistry, 2017, 237, 297-304.	4.2	24
7	Determination of Quercetin and Luteolin in Paprika Samples by Voltammetry and Partial Least Squares Calibration. Electroanalysis, 2017, 29, 2757-2765.	1.5	4
8	Front-face fluorescence spectroscopy combined with second-order multivariate algorithms for the quantification of polyphenols in red wine samples. Food Chemistry, 2017, 220, 168-176.	4.2	49
9	Chemometric Discrimination Between Smoked and Non-Smoked Paprika Samples. Quantification of PAHs in Smoked Paprika by Fluorescence-U-PLS/RBL. Food Analytical Methods, 2017, 10, 1128-1137.	1.3	9
10	Combination of Liquid Chromatography with Multivariate Curve Resolution-Alternating Least-Squares (MCR-ALS) in the Quantitation of Polycyclic Aromatic Hydrocarbons Present in Paprika Samples. Journal of Agricultural and Food Chemistry, 2016, 64, 8254-8262.	2.4	20
11	Isocratic LC–DAD–FLD method for the determination of flavonoids in paprika samples by using a rapid resolution column and post-column pH change. Talanta, 2016, 152, 15-22.	2.9	10
12	Fluorescence properties of flavonoid compounds. Quantification in paprika samples using spectrofluorimetry coupled to second order chemometric tools. Food Chemistry, 2016, 196, 1058-1065.	4.2	42
13	Characterization of Spanish Paprika by Multivariate Analysis of Absorption and Fluorescence Spectra. Analytical Letters, 2016, 49, 1184-1197.	1.0	7
14	Monitoring oxidative stability and phenolic compounds composition of myrtle-enriched extra virgin olive during heating treatment by flame, oven and microwave using reversed phase dispersive liquid–liquid microextraction (RP-DLLME)-HPLC-DAD-FLD method. Industrial Crops and Products, 2015, 65, 303-314.	2.5	14
15	Antioxidant capacity of the phenolic fraction and its effect on the oxidative stability of olive oil varieties grown in the southwest of Spain. Grasas Y Aceites, 2014, 65, e004.	0.3	13
16	Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chemistry, 2014, 163, 289-298.	4.2	140
17	Total Phenolic Compounds and Tocopherols Profiles of Seven Olive Oil Varieties Grown in the South-West of Spain. Journal of Oleo Science, 2014, 63, 115-125.	0.6	31
18	New reversed phase dispersive liquid–liquid microextraction method for the determination of phenolic compounds in virgin olive oil by rapid resolution liquid chromathography with ultraviolet–visible and mass spectrometry detection. Journal of Chromatography A, 2013, 1313, 291-301.	1.8	38

#	Article	IF	CITATIONS
19	Novel combination of non-aqueous capillary electrophoresis and multivariate curve resolution-alternating least squares to determine phenolic acids in virgin olive oil. Analytica Chimica Acta, 2013, 763, 11-19.	2.6	24
20	Modelling the size and polydispersity of magnetic hybrid nanoparticles for luminescent sensing of oxygen. Mikrochimica Acta, 2013, 180, 1201-1209.	2.5	2
21	Simple and fast determination of phenolic compounds from different varieties of olive oil by nonaqueous capillary electrophoresis with UV-visible and fluorescence detection. Journal of Separation Science, 2012, 35, 3529-3539.	1.3	21
22	Multiresidue method for the control of pesticide residues in tomatoes and derived products. Analytical Methods, 2012, 4, 2543.	1.3	2
23	Microchip electrophoresis with amperometric detection for a novel determination of phenolic compounds in olive oil. Analyst, The, 2012, 137, 5153.	1.7	24
24	Simple quantification of phenolic compounds present in the minor fraction of virgin olive oil by LC–DAD–FLD. Talanta, 2012, 101, 479-487.	2.9	25
25	Development of a non-aqueous capillary electrophoresis method with UV–visible and fluorescence detection for phenolics compounds in olive oil. Analytical and Bioanalytical Chemistry, 2012, 403, 279-290.	1.9	28
26	Determination of tocopherols in vegetable oil samples by non-aqueous capillary electrophoresis (NACE) with fluorimetric detection. Journal of Food Composition and Analysis, 2012, 25, 24-30.	1.9	32
27	Simultaneous Differential Pulse Adsorptive Stripping Determination of Imipramine and Its Metabolite Desipramine by the PLSâ€1 Multivariate Method. Electroanalysis, 2011, 23, 449-455.	1.5	10
28	Front-face fluorescence spectroscopy: A new tool for control in the wine industry. Journal of Food Composition and Analysis, 2011, 24, 257-264.	1.9	123
29	Determination of Tricyclic Antidepressants in Human Breast Milk by Capillary Electrophoresis. Analytical Sciences, 2010, 26, 699-702.	0.8	17
30	Simultaneous determination of quinolones for veterinary use by high-performance liquid chromatography with electrochemical detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 398-402.	1.2	18
31	Determination of trans-resveratrol in red wine by adsorptive stripping square-wave voltammetry with medium exchange. Food Chemistry, 2010, 122, 1320-1326.	4.2	31
32	Sensitized synchronous fluorimetric determination of trans-resveratrol and trans-piceid in red wine based on their immobilization on nylon membranes. Talanta, 2010, 82, 1733-1741.	2.9	15
33	Development of a nonâ€aqueous electrophoresis method for the simultaneous determination of tricyclic antidepressants in human serum. Electrophoresis, 2009, 30, 1052-1058.	1.3	7
34	Usefulness of Fluorescence Excitationa [^] ?Emission Matrices in Combination with PARAFAC, as Fingerprints of Red Wines. Journal of Agricultural and Food Chemistry, 2009, 57, 1711-1720.	2.4	115
35	Adsorptive stripping square wave voltammetry (Ad-SSWV) accomplished with second-order multivariate calibration. Analytica Chimica Acta, 2008, 618, 131-139.	2.6	50
36	Post-column on-line photochemical derivatization for the direct isocratic-LC-FLD analysis of resveratrol and piceid isomers in wine. Food Chemistry, 2008, 109, 825-833.	4.2	16

#	Article	IF	CITATIONS
37	Determination of piceid by photochemically induced fluorescence and second-derivativeResponse surface methodology for the optimization of a liquid–liquid extraction procedure for its analysis in wine samples. Talanta, 2008, 74, 675-682.	2.9	11
38	Determination of fenthion and fenthion-sulfoxide, in olive oil and in river water, by square-wave adsorptive-stripping voltammetry. Talanta, 2008, 76, 809-814.	2.9	22
39	Square wave adsorptive stripping voltametric determination of the mixture of nalidixic acid and its main metabolite (7-hydroxymethylnalidixic acid) by multivariate methods and artificial neural network. Talanta, 2007, 72, 932-940.	2.9	29
40	lsocratic chromatography of resveratrol and piceid after previous generation of fluorescent photoproducts: Wine analysis without sample preparation. Journal of Separation Science, 2007, 30, 3110-3119.	1.3	15
41	Chemometrics for the resolution of co-eluting peaks of \hat{I}^2 - and \hat{I}^3 -tocopherols in RP-HPLC: Determination in edible oils and dietary supplements. Food Chemistry, 2007, 105, 1583-1590.	4.2	8
42	Determination of resveratrol in wine by photochemically induced second-derivative fluorescence coupled with liquid–liquid extraction. Analytical and Bioanalytical Chemistry, 2007, 387, 1999-2007.	1.9	43
43	Comparative study of different approaches to the determination of robustness for a sensitive-stacking capillary electrophoresis method. Estimation of system suitability test limits from the robustness test. Analytical and Bioanalytical Chemistry, 2007, 389, 541-553.	1.9	5
44	Comparison of Different Fluorimetric Signals for the Simultaneous Multivariate Determination of Tocopherols in Vegetable Oils. Applied Spectroscopy, 2006, 60, 194-202.	1.2	17
45	Determination of copper with 5,5-dimethylcyclohexane-1,2,3-trione 1,2-dioxime 3-thiosemicarbazone in olive oils by adsorptive stripping square wave voltammetry. Food Chemistry, 2006, 96, 156-162.	4.2	33
46	Determination of Dimethoate in Olive Oil by Adsorptive Stripping Square-Wave Voltammetry. Electroanalysis, 2006, 18, 695-702.	1.5	8
47	Response surface methodology in the development of a stacking-sensitive capillary electrophoresis method by field-amplified injection for the analysis of tricyclic antidepressants in the presence of salts. Journal of Separation Science, 2006, 29, 2091-2097.	1.3	11
48	Response surface methodology in the development of a stacking-sensitive capillary electrophoresis method for the analysis of tricyclic antidepressants in human serum. Electrophoresis, 2005, 26, 3518-3527.	1.3	33
49	Characterization of virgin olive oils according to its triglycerides and sterols composition by chemometric methods. Food Control, 2005, 16, 339-347.	2.8	89
50	Simultaneous fluorimetric determination of glyphosate and its metabolite, aminomethylphosphonic acid, in water, previous derivatization with NBD-Cl and by partial least squares calibration (PLS). Talanta, 2005, 65, 7-14.	2.9	32
51	Response surface methodology for the optimisation of flow-injection analysis with in situ solvent extraction and fluorimetric assay of tricyclic antidepressants. Talanta, 2005, 66, 952-960.	2.9	43
52	Voltammetric behavior and determination of tocopherols with partial least squares calibration: analysis in vegetable oil samples. Analytica Chimica Acta, 2004, 511, 231-238.	2.6	49
53	Determination of neutral and cationic herbicides in water by micellar electrokinetic capillary chromatography. Analytica Chimica Acta, 2004, 519, 65-71.	2.6	27
54	Polarography and artificial neural network for the simultaneous determination of nalidixic acid and its main metabolite (7-hydroxymethylnalidixic acid). Talanta, 2004, 62, 357-365.	2.9	15

#	Article	IF	CITATIONS
55	Spectrophotometric and Adsorptive Stripping Square Wave Voltammetric Determination of Iron in Olive Oils, as Complex with 5,5-Dimethylcyclohexane-1,2,3-trione 1,2-Dioxime 3-Thiosemicarbazone (DCDT). Journal of Agricultural and Food Chemistry, 2003, 51, 3743-3747.	2.4	13
56	Simultaneous Fluorometric Determination of Chlorophyllsaandband Pheophytinsaandbin Olive Oil by Partial Least-Squares Calibration. Journal of Agricultural and Food Chemistry, 2003, 51, 6934-6940.	2.4	55
57	SPECTROPHOTOMETRIC DETERMINATION OF THE FUNGICIDE CAPTAN. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2002, 37, 533-540.	0.7	1
58	Determination of sulphamethoxazole by photochemically induced fluorescence in drugs and milk. Talanta, 2002, 57, 1-6.	2.9	18
59	Stopped flow kinetic-spectrophotometric determination of Diquat in waters. Water Research, 2002, 36, 783-787.	5.3	11
60	Resolution of ternary mixtures of nitrofurantoin, furaltadone and furazolidone by partial least-square analysis to the spectrophotometric signals after photo-decomposition. Journal of Pharmaceutical and Biomedical Analysis, 2002, 29, 477-485.	1.4	13
61	Study and determination of the pesticide Imidacloprid by square wave adsorptive stripping voltammetry. Talanta, 2001, 53, 943-949.	2.9	69
62	Voltammetric Study of the Hydrolysis Product of Bendiocarb at the Glassy Carbon Electrode. Mikrochimica Acta, 2001, 137, 135-140.	2.5	9
63	Use of neural networks and diode-array detection to develop an isocratic HPLC method for the analysis of nitrophenol pesticides and related compounds. Chromatographia, 2001, 53, 40-46.	0.7	10
64	Resolution by polarographic techniques of the ternary mixture of captan, captafol and folpet by using PLS calibration and artificial neuronal networks. Computers & Chemistry, 2001, 25, 459-473.	1.2	16
65	Comparison of different methods for the determination of several quinolonic and cinolonic antibiotics in trout muscle tissue by HPLC with fluorescence detection. Chromatographia, 2000, 51, 163-166.	0.7	16
66	Rapid and Sensitive Determination of 4-Nitrophenol, 3-Methyl-4-nitrophenol, 4,6-Dinitro-o-cresol, Parathion-methyl, Fenitrothion, and Parathion-ethyl by Liquid Chromatography with Electrochemical Detection. Journal of Agricultural and Food Chemistry, 2000, 48, 4508-4513.	2.4	77
67	Comparison of Chemometric Methods: Derivative Ratio Spectra and Multivariate Methods (CLS, PCR) Tj ETQq1 1 Phenamifos After Their Extraction into Chloroform. Analyst, The, 1997, 122, 513-517.	0.784314 1.7	rgBT /Overlo 32
68	Determination of nitrofurantoin, furazolidone and furaltadone in milk by high-performance liquid chromatography with electrochemical detection. Journal of Chromatography A, 1997, 764, 243-248.	1.8	55
69	Differential pulse voltammetric determination of fenobucarb at the glassy carbon electrode, after its alkaline hydrolysis to a phenolic product. Electroanalysis, 1997, 9, 952-955.	1.5	13
70	Determination of the chemotherapeutic quinolonic and cinolonic derivatives in urine by high-performance liquid chromatography with ultraviolet and fluorescence detection in series. Journal of Chromatography A, 1997, 787, 119-127.	1.8	18
71	Polarographic behaviour of sulfadiazine, sulfamerazine, sulfamethazine and their mixtures. Use of partial least squares in the resolution of the non-additive signals of these compounds. Analyst, The, 1996, 121, 547.	1.7	47
72	Rapid and Sensitive Determinations of Carbaryl, Carbofuran and Fenobucarb by Liquid Chromatography with Electrochemical Detection. Journal of Liquid Chromatography and Related Technologies, 1996, 19, 2681-2690.	0.5	10

TERESA GALEANO-DÃAZ

#	Article	IF	CITATIONS
73	Abilities of differentiation and partial least squares methods in the analysis by differential pulse polarography Simultaneous determination of furazolidone and furaltadone. Analytica Chimica Acta, 1995, 302, 9-19.	2.6	51
74	Indirect voltammetric determination of carbaryl and carbofuran using partial least squares calibration. Analytica Chimica Acta, 1995, 305, 219-226.	2.6	50
75	Kinetic Determination of Furazolidone and Furaltadone Based on Alkaline Hydrolysis Reaction. Microchemical Journal, 1994, 49, 61-68.	2.3	1
76	Multicomponent determination of the pesticide naptalam and its metabolites in river water, by applying partial least squares calibration to the derivative spectrophotometric signals. Fresenius' Journal of Analytical Chemistry, 1994, 350, 692-701.	1.5	13
77	Resolution of ternary mixtures of nitrofurantoin, furazolidone and furaltadone by application of Partial Least Squares analysis to the differential pulse polarographic signals. Talanta, 1994, 41, 1821-1832.	2.9	30
78	Determination of 1-naphthylamine and the related pesticides, naptalam and antu, in river-water by high-performance liquid chromatography. Application to the study of the degradation processes of naptalam. Analyst, The, 1994, 119, 1151-1155.	1.7	21
79	Rapid Determination of Nitrofurantoin, Furazolidone and Furaltadone in Formulations, Feed and Milk by High Performance Liquid Chromatography. Journal of Liquid Chromatography and Related Technologies, 1994, 17, 457-475.	0.9	10
80	Polarographic behaviour and determination of furaltadone in its formulations, milk and urine by differential-pulse polarography. Analytica Chimica Acta, 1993, 273, 351-359.	2.6	12
81	Rapid Determination of \hat{I}_{\pm} -Endosulfan and \hat{I}^2 -Endosulfan in Formulations and Potatoes by High Performance Liquid Chromatography. Analytical Letters, 1992, 25, 1797-1804.	1.0	7
82	Rapid Determination of Sulfathiazole, Oxytetracycline and Tetracycline in Honey by High-Performance Liquid Chromatography. Analytical Letters, 1990, 23, 607-616.	1.0	41
83	Spectrophotometric determination ofL-ascorbic acid in pharmaceutical preparations, foods and urine by formation of a 2-oximinocyclohexanone thiosemicarbazone-iron(II) complex. Analyst, The, 1988, 113, 1657-1659.	1.7	15
84	Spectrophotometric determination of iron in acids. Analyst, The, 1988, 113, 1341-1342.	1.7	6
85	Spectrophotometric determination of iron by extraction of the iron(II)-5,5-dimethyl-1,2, 3-cyclohexanetrione-1,2-dioxime-3-thiosemicarbazone complex. Talanta, 1987, 34, 655-656.	2.9	5
86	Spectrophotometric determination of manganese with 2-oximinocyclohexanone thiosemicarbazone. Microchemical Journal, 1987, 36, 285-288.	2.3	1
87	Spectrophotometric determination of iron in wines, foods, and minerals with 5,5-dimethyl-1,2,3-cyclohexanetrione 1,2-dioxime 3-thiosemicarbazone. Analytical Chemistry, 1986, 58, 824-827.	3.2	23
88	Study of Cr(VI)-2-oximinodimedone dithiosemicarbazone reaction and simultaneous determination of Cr(VI) and Fe(III). Mikrochimica Acta, 1985, 85, 245-251.	2.5	5
89	Cyclopentane-1,3-dione bis(4-methylthiosemicarbazone) monohydrochloride as a spectrophotometric reagent for the determination of chlorate in perchloric acid medium. Microchemical Journal, 1985, 32, 64-68.	2.3	4
90	1,3-Cyclopentanedione bis(4-methylthiosemicarbazone) monohydrochloride as a spectrophotometric reagent for the determination of lodate in acetic and perchloric acid media. Microchemical Journal, 1985, 31, 256-260.	2.3	9

#	Article	IF	CITATIONS
91	Kinetic determination of copper(II) by its catalytic effect on the atmospheric oxidation of 1,3-cyclopentanedione bis(4-methylthiosemicarbazone) monohydrochloride. Microchemical Journal, 1985, 31, 340-346.	2.3	4
92	Cyclohexane-1, 3-Dionebis(4-Methylthiosemicarbazone) as a Spectrophotometric Reagent for the Determination of Zn (II). Analytical Letters, 1984, 17, 993-1003.	1.0	4
93	Cyclopentane-1,3-dione Bis (4-Methylthiosemicarbazone) Monohydrochloride as a Spectrophotometric Reagent for the Determination of Bromate in Perchloric Acid Medium. Analytical Letters, 1983, 16, 593-599.	1.0	6