Yang Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2313705/publications.pdf

Version: 2024-02-01

863 papers 41,713 citations

102 h-index ⁵⁹⁸⁸ 160 g-index

880 all docs 880 docs citations

880 times ranked 36355 citing authors

#	Article	IF	CITATIONS
1	In Situ Scattering Studies of Crystallization Kinetics in a Phase-Separated Zr–Cu–Fe–Al Bulk Metallic Glass. Acta Metallurgica Sinica (English Letters), 2022, 35, 103-114.	2.9	4
2	Revealing intrinsic and extrinsic piezoelectric contributions in phase coexistence system of PbTiO3-BiScO3. Science China Materials, 2022, 65, 170-178.	6.3	5
3	Large piezoelectricity and potentially activated polarization reorientation around relaxor MPB in complex perovskite. Journal of the European Ceramic Society, 2022, 42, 112-118.	5.7	7
4	Tuning thermal expansion from strong negative to zero to positive in Cu2-Zn P2O7 solid solutions. Scripta Materialia, 2022, 207, 114289.	5.2	6
5	Phase Evolution and Thermal Expansion Behavior of a γ′ Precipitated Ni-Based Superalloy by Synchrotron X-Ray Diffraction. Acta Metallurgica Sinica (English Letters), 2022, 35, 93-102.	2.9	4
6	Temperature-dependent constitutive modeling of a magnesium alloy ZEK100 sheet using crystal plasticity models combined with in situ high-energy X-ray diffraction experiment. Journal of Magnesium and Alloys, 2022, 10, 2801-2816.	11.9	7
7	Magnetostructural transition, magnetocaloric effect and critical exponent analysis in Nd(Co0.8Fe0.2)2 alloy. Journal of Alloys and Compounds, 2022, 895, 162562.	5.5	7
8	Large-strain Lýders-type deformation of B19' martensite in Ni47Ti49Nb2Fe2 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 829, 142136.	5.6	2
9	Local chemical fluctuation mediated ultra-sluggish martensitic transformation in high-entropy intermetallics. Materials Horizons, 2022, 9, 804-814.	12.2	15
10	Folded network and structural transition in molten tin. Nature Communications, 2022, 13, 126.	12.8	6
11	Extreme fast charge aging: Correlation between electrode scale and heterogeneous degradation in Ni-rich layered cathodes. Journal of Power Sources, 2022, 521, 230961.	7.8	15
12	Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries. Chemical Engineering Journal, 2022, 431, 133982.	12.7	38
13	Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nature Communications, 2022, 13, 436.	12.8	29
14	Ultrathin Si Nanosheets Dispersed in Graphene Matrix Enable Stable Interface and High Rate Capability of Anode for Lithiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	67
15	Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing. Journal of Materials Science and Technology, 2022, 116, 246-257.	10.7	8
16	Approaching theoretical specific capacity of iron-rich lithium iron silicate using graphene-incorporation and fluorine-doping. Journal of Materials Chemistry A, 2022, 10, 4006-4014.	10.3	10
17	Interactions between martensitic NiTi shape memory alloy and Nb nanowires in composite wire during tensile deformation. Composites Part B: Engineering, 2022, 234, 109690.	12.0	6
18	A highly distorted ultraelastic chemically complex Elinvar alloy. Nature, 2022, 602, 251-257.	27.8	75

#	Article	IF	CITATIONS
19	Operando Synchrotron Studies of Inhomogeneity during Anode-Free Plating of Li Metal in Pouch Cell Batteries. Journal of the Electrochemical Society, 2022, 169, 020571.	2.9	12
20	Critical cation-anion radius ratio and two-dimensional antiferromagnetism in van der Waals TMPS3 (TM=Mn, Fe, Ni). Journal of Physics Condensed Matter, 2022, , .	1.8	0
21	High-throughput investigation of structural evolution upon solid-state in Cu–Cr–Co combinatorial multilayer thin-film. Materials and Design, 2022, 215, 110455.	7.0	5
22	Large thermal hysteresis in a single-phase NiTiNb shape memory alloy. Scripta Materialia, 2022, 212, 114574.	5.2	9
23	Investigating the Origin of the Enhanced Sodium Storage Capacity of Transition Metal Sulfide Anodes in Etherâ€Based Electrolytes. Advanced Functional Materials, 2022, 32, .	14.9	24
24	Ferroelastic oligocrystalline microwire with unprecedented high-temperature superelastic and shape memory effects. NPG Asia Materials, 2022, 14, .	7.9	2
25	Unblocking Oxygen Charge Compensation for Stabilized Highâ€Voltage Structure in P2â€Type Sodiumâ€lon Cathode. Advanced Science, 2022, 9, e2200498.	11,2	32
26	In-situ synchrotron high energy X-ray diffraction study of spontaneous reorientation of R phase upon cooling in nanocrystalline Ti50Ni45.5Fe4.5 alloy. Rare Metals, 2022, 41, 1948-1954.	7.1	4
27	K ₃ SbS ₄ as a Potassium Superionic Conductor with Low Activation Energy for K–S Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
28	Visualizing Light-Induced Microstrain and Phase Transition in Lead-Free Perovskites Using Time-Resolved X-Ray Diffraction. Journal of the American Chemical Society, 2022, 144, 5335-5341.	13.7	15
29	Construction of polysulfides defense system for greatly improving the long cycle life of metal sulfide anodes for sodium-ion batteries. Journal of Energy Chemistry, 2022, 71, 210-217.	12.9	13
30	K ₃ SbS ₄ as a Potassium Superionic Conductor with Low Activation Energy for K–S Batteries. Angewandte Chemie, 2022, 134, .	2.0	4
31	Effect of laser scanning speed on the microstructure, phase transformation and mechanical property of NiTi alloys fabricated by LPBF. Materials and Design, 2022, 215, 110460.	7.0	30
32	Thermal dynamics of P2-Na0.67Ni0.33Mn0.67O2 cathode materials for sodium ion batteries studied by in situ analysis. Journal of Materials Research, 2022, 37, 1156-1163.	2.6	1
33	Effect of laser hatch spacing on the pore defects, phase transformation and properties of selective laser melting fabricated NiTi shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142965.	5.6	28
34	Unveiling the origins of work-hardening enhancement and mechanical instability in laser shock peened titanium. Acta Materialia, 2022, 229, 117810.	7.9	18
35	In-situ synchrotron-based high energy X-ray diffraction study of the deformation mechanism of \hat{l} -hydrides in a commercially pure titanium. Scripta Materialia, 2022, 213, 114608.	5.2	5
36	High-performance LiNi0.8Mn0.1Co0.1O2 cathode by nanoscale lithium sulfide coating via atomic layer deposition. Journal of Energy Chemistry, 2022, 69, 531-540.	12.9	11

#	Article	IF	CITATIONS
37	Uniting tensile ductility with ultrahigh strength via composition undulation. Nature, 2022, 604, 273-279.	27.8	80
38	Acidâ€inâ€Clay Electrolyte for Wideâ€Temperatureâ€Range and Longâ€Cycle Proton Batteries. Advanced Materials, 2022, 34, e2202063.	21.0	16
39	In situ study on medium-range order evolution during the polyamorphous phase transition in a Pd-Ni-P nanostructured glass. Journal of Materials Science and Technology, 2022, 125, 145-156.	10.7	9
40	Modulating precursor nanosheets for stabilized Ni-rich cathode material for Li-ion batteries. Rare Metals, 2022, 41, 2552-2559.	7.1	19
41	Structure and thermodynamics of calcium rare earth silicate oxyapatites, Ca2RE8(SiO4)6O2 (RE = Pr, T	b,) Ţ <u>j</u> eTQc	q1
42	Crystal Chemistry and Thermodynamics of HREE (Er, Yb) Mixing in a Xenotime Solid Solution. ACS Earth and Space Chemistry, 2022, 6, 1375-1389.	2.7	13
43	Synchrotron X-ray-induced Synthesis of Copper Hydroxide Nitrate Nanoplates on Cu Thin Films in an Ambient Atmosphere. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23342-23347.	8.0	1
44	Transformation of Thermal Expansion from Large Volume Contraction to Nonlinear Strong Negative Thermal Expansion in PbTiO ₃ â€"Bi(Co _{1â€"<i>x</i>} Fe _{<i>x</i>})O ₃ Perovskites. ACS Applied Materials & Diterials & Diterial	8.0	5
45	Plastic anisotropy and twin distributions near the fatigue crack tip of textured Mg alloys from in situ synchrotron X-ray diffraction measurements and multiscale mechanics modeling. Journal of the Mechanics and Physics of Solids, 2022, 165, 104936.	4.8	8
46	Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nature Energy, 2022, 7, 808-817.	39.5	55
47	Atomic structure and Mott nature of the insulating charge density wave phase of 1T-TaS ₂ . Journal of Physics Condensed Matter, 2022, 34, 345401.	1.8	7
48	Origin of structural degradation in Li-rich layered oxide cathode. Nature, 2022, 606, 305-312.	27.8	206
49	Spreading monoclinic boundary network between hexagonal primary grains for high performance Ni-rich cathode materials. Nano Energy, 2022, 100, 107502.	16.0	7
50	Increasing the yield strength while preserving strain hardenability and ductility in a beta titanium alloy exhibiting transformation induced plasticity (TRIP). Scripta Materialia, 2022, 219, 114890.	5.2	11
51	Repurposing the Î, (Al2Cu) phase to simultaneously increase the strength and ductility of an additively manufactured Al–Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143511.	5.6	7
52	The nature of the metamagnetic transition in Heusler alloy Ni44.9Mn43In12.1 studied for magnetic refrigeration application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 283, 115796.	3.5	2
53	Revealing the mode and strain of reversible twinning in B19′ martensite by in situ synchrotron X-ray diffraction. Acta Materialia, 2022, 236, 118131.	7.9	10
54	Constructing O2/O3 homogeneous hybrid stabilizes Li-rich layered cathodes. Energy Storage Materials, 2022, 51, 756-763.	18.0	16

#	Article	IF	Citations
55	Large elastic strains and ductile necking of W nanowires embedded in TiNi matrix. Journal of Materials Science and Technology, 2021, 60, 56-60.	10.7	4
56	An advanced low-cost cathode composed of graphene-coated Na2.4Fe1.8(SO4)3 nanograins in a 3D graphene network for ultra-stable sodium storage. Journal of Energy Chemistry, 2021, 54, 564-570.	12.9	15
57	A Ni-free \hat{I}^2 -Ti alloy with large and stable room temperature super-elasticity. Materials Today Communications, 2021, 26, 101838.	1.9	2
58	A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nature Nanotechnology, 2021, 16, 166-173.	31.5	392
59	Full Concentration Gradientâ€Tailored Liâ€Rich Layered Oxides for Highâ€Energy Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2001358.	21.0	65
60	In-situ synchrotron diffraction study of the localized phase transformation and deformation behavior in NiTi SMA. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140560.	5.6	17
61	Role of tetragonal distortion on domain switching and lattice strain of piezoelectrics by in-situ synchrotron diffraction. Scripta Materialia, 2021, 194, 113627.	5.2	11
62	Highly active and stable Co nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers for aqueous-phase levulinic acid hydrogenation. Green Energy and Environment, 2021, 6, 567-577.	8.7	12
63	High susceptibility to adiabatic shear banding and high dynamic strength in tungsten heavy alloys with a high-entropy alloy matrix. Journal of Alloys and Compounds, 2021, 859, 157796.	5.5	9
64	Lean duplex TRIP steel: Role of ferrite in the texture development, plastic anisotropy, martensitic transformation kinetics, and stress partitioning. Materialia, 2021, 15, 100952.	2.7	21
65	In-situ high energy X-ray diffraction study of microscopic deformation behavior of martensite variant reorientation in NiTi wire. Applied Materials Today, 2021, 22, 100904.	4.3	8
66	Solid-solid phase transition via the liquid in a Pd43Cu27Ni10P20 bulk metallic glass under conventional conditions. Journal of Alloys and Compounds, 2021, 859, 157802.	5.5	5
67	Structural origin of size effect on piezoelectric performance of Pb(Zr,Ti)O3. Ceramics International, 2021, 47, 5256-5264.	4.8	13
68	Enhanced negative thermal expansion of boron-doped Fe43Mn28Ga28.97B0.03 alloy. Journal of Alloys and Compounds, 2021, 857, 157572.	5.5	6
69	Enhanced superelasticity of nanocrystalline NiTi/NiTiNbFe laminar composite. Journal of Alloys and Compounds, 2021, 853, 157309.	5.5	9
70	Dual functionality of over-lithiated NMC for high energy silicon-based lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 12818-12829.	10.3	16
71	Boosted piezoelectricity with excellent thermal stability in tetragonal NaNbO ₃ -based ceramics. Journal of Materials Chemistry A, 2021, 9, 2367-2374.	10.3	12
72	External-Field-Induced Phase Transformation and Associated Properties in a Ni50Mn34Fe3In13 Metamagnetic Shape Memory Wire. Metals, 2021, 11, 309.	2.3	4

#	Article	IF	CITATIONS
73	Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nature Energy, 2021, 6, 277-286.	39.5	255
74	Alloying–realloying enabled high durability for Pt–Pd-3d-transition metal nanoparticle fuel cell catalysts. Nature Communications, 2021, 12, 859.	12.8	137
75	A combinatory ferroelectric compound bridging simple ABO3 and A-site-ordered quadruple perovskite. Nature Communications, 2021, 12, 747.	12.8	62
76	Temperature-Induced Structural Changes in the Liquid GalnSn Eutectic Alloy. Journal of Physical Chemistry C, 2021, 125, 7413-7420.	3.1	8
77	The In Situ Observation of Phase Transformations During Intercritical Annealing of a Medium Manganese Advanced High Strength Steel by High Energy X-Ray Diffraction. Frontiers in Materials, 2021, 8, .	2.4	4
78	Unravel unusual hardening behavior of a Pd–Ni–P metallic glass in its supercooled liquid region. Applied Physics Letters, 2021, 118, .	3.3	4
79	Disorder trapping and formation of antiphase nanodomains in Ni3Sn: In situ observation and high resolution characterization. Scripta Materialia, 2021, 193, 55-58.	5.2	7
80	Local structure memory effects in the polar and nonpolar phases of MoTe2. Physical Review B, 2021, 103, .	3.2	3
81	Temperature-dependent deformation behavior of a CuZr-based bulk metallic glass composite. Journal of Alloys and Compounds, 2021, 858, 158368.	5.5	10
82	Engineering Molecular Polymerization for Templateâ€Free SiO <i>>_×</i> /C Hollow Spheres as Ultrastable Anodes in Lithiumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2101145.	14.9	74
83	In situ monitoring of dislocation, twinning, and detwinning modes in an extruded magnesium alloy under cyclic loading conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 806, 140860.	5.6	11
84	Modulating the Surface Ligand Orientation for Stabilized Anionic Redox in Liâ€Rich Oxide Cathodes. Advanced Energy Materials, 2021, 11, 2003479.	19.5	45
85	Anomalous fast atomic dynamics in bulk metallic glasses. Materials Today Physics, 2021, 17, 100351.	6.0	4
86	Competing Interactions between Mesoscale Length-Scales, Order-Disorder, and Martensitic Transformation in Ferromagnetic Shape Memory Alloys. Acta Materialia, 2021, 206, 116616.	7.9	16
87	Mild water intake orients crystal formation imparting high tolerance on unencapsulated halide perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100395.	5.6	8
88	Dynamic recrystallization of a wrought magnesium alloy: Grain size and texture maps and their application for mechanical behavior predictions. Materials and Design, 2021, 202, 109562.	7.0	41
89	Nanoscale Phase Separation and Large Refrigerant Capacity in Magnetocaloric Material LaFe _{11.5} Si _{1.5} . Chemistry of Materials, 2021, 33, 2837-2846.	6.7	6
90	Insight into the capacity decay mechanism of cycled LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ cathodes via in situ x-ray diffraction. Nanotechnology, 2021, 32, 295701.	2.6	17

#	Article	IF	Citations
91	Simultaneously enhancing piezoelectric performance and thermal depolarization in lead-free (Bi,Na)TiO3-BaTiO3 via introducing oxygen-defect perovskites. Acta Materialia, 2021, 208, 116711.	7.9	32
92	A medium-range structure motif linking amorphous and crystalline states. Nature Materials, 2021, 20, 1347-1352.	27.5	92
93	Lightweight Zr1.2V0.8NbTi Al high-entropy alloys with high tensile strength and ductility. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141234.	5.6	37
94	<i>In situ</i> neutron scattering studies of a liquid–liquid phase transition in the supercooled liquid of a Zr–Cu–Al–Ag glass-forming alloy. Applied Physics Letters, 2021, 118, .	3.3	10
95	In-Situ γ-γ′ Lattice Parameter Evolution and Tertiary Burst Phenomena During Controlled Cooling of Commercial PM Nickel-Base Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2973.	2.2	4
96	Enabling Highâ€Performance NASICONâ€Based Solidâ€State Lithium Metal Batteries Towards Practical Conditions. Advanced Functional Materials, 2021, 31, 2102765.	14.9	32
97	In situ scattering study of multiscale structural evolution during liquid–liquid phase transition in Mg-based metallic glasses. Rare Metals, 2021, 40, 3107-3116.	7.1	9
98	Transferring elastic strain in Mo/Nb/TiNi multilayer nanocomposites by the principle of lattice strain matching. Composites Part B: Engineering, 2021, 215, 108784.	12.0	11
99	Thermal Stability and Lattice Strain Evolution of Highâ€Nbâ€Containing TiAl Alloy under Lowâ€Cycleâ€Fatigue Loading. Advanced Engineering Materials, 2021, 23, 2001337.	3.5	6
100	Micromechanical Behaviors of Fe20Co30Cr25Ni25 High Entropy Alloys with Partially and Completely Recrystallized Microstructures Investigated by In-Situ High-Energy X-ray Diffraction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3674-3683.	2.2	4
101	Engineering of Exciton Spatial Distribution in CdS Nanoplatelets. Nano Letters, 2021, 21, 5201-5208.	9.1	18
102	Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter, 2021, 4, 2013-2026.	10.0	69
103	Role of Lithium Doping in P2-Na _{0.67} Ni _{0.33} Mn _{0.67} O ₂ for Sodium-Ion Batteries. Chemistry of Materials, 2021, 33, 4445-4455.	6.7	56
104	New Insights into the Highâ€Performance Black Phosphorus Anode for Lithium″on Batteries. Advanced Materials, 2021, 33, e2101259.	21.0	41
105	In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nature Communications, 2021, 12, 4235.	12.8	74
106	High-throughput design of high-performance lightweight high-entropy alloys. Nature Communications, 2021, 12, 4329.	12.8	112
107	A Low-Cost Ni–Mn–Ti–B High-Temperature Shape Memory Alloy with Extraordinary Functional Properties. ACS Applied Materials & Interfaces, 2021, 13, 31870-31879.	8.0	15
108	Oxygen addition for improving the strength and plasticity of TiZr-based amorphous alloy composites. Journal of Materials Science and Technology, 2021, 79, 212-221.	10.7	8

#	Article	IF	CITATIONS
109	On temperature and strain-rate dependence of flow serration in HfNbTaTiZr high-entropy alloy. Scripta Materialia, 2021, 200, 113919.	5.2	22
110	Nanocrystalline strain glass TiNiPt and its superelastic behavior. Physical Review B, 2021, 104, .	3.2	13
111	Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy, 2021, 85, 105878.	16.0	116
112	Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science, 2021, 373, 912-918.	12.6	304
113	3D-Printing Damage-Tolerant Architected Metallic Materials with Shape Recoverability via Special Deformation Design of Constituent Material. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39915-39924.	8.0	17
114	Synchrotron x-ray diffraction and crystal plasticity modeling study of martensitic transformation, texture development, and stress partitioning in deep-drawn TRIP steels. Materialia, 2021, 18, 101162.	2.7	11
115	Revealing causes of macroscale heterogeneity in lithium ion pouch cells via synchrotron X-ray diffraction. Journal of Power Sources, 2021, 507, 230253.	7.8	20
116	Electrolytes Polymerizationâ€Induced Cathodeâ€Electrolyteâ€Interphase for High Voltage Lithiumâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2101956.	19.5	39
117	Precipitation and micromechanical behavior of the coherent ordered nanoprecipitation strengthened Al-Cr-Fe-Ni-V high entropy alloy. Acta Materialia, 2021, 216, 117121.	7.9	51
118	Comprehensive Insights into Nucleation, Autocatalytic Growth, and Stripping Efficiency for Lithium Plating in Full Cells. ACS Energy Letters, 2021, 6, 3725-3733.	17.4	13
119	Reaction inhomogeneity coupling with metal rearrangement triggers electrochemical degradation in lithium-rich layered cathode. Nature Communications, 2021, 12, 5370.	12.8	44
120	Quantitative evaluation of thixotropy-governed microfabric evolution in soft clays. Applied Clay Science, 2021, 210, 106157.	5.2	12
121	Step-wise R phase transformation rendering high-stability two-way shape memory effect of a NiTiFe-Nb nanowire composite. Acta Materialia, 2021, 219, 117258.	7.9	10
122	Structural origin for the high piezoelectric performance of (Na0.5Bi0.5)TiO3-BaTiO3-BiAlO3 lead-free ceramics. Acta Materialia, 2021, 218, 117202.	7.9	13
123	Solidification texture, variant selection, and phase fraction in a spot-melt electron-beam powder bed fusion processed Ti-6Al-4V. Additive Manufacturing, 2021, 46, 102136.	3.0	4
124	In-built ultraconformal interphases enable high-safety practical lithium batteries. Energy Storage Materials, 2021, 43, 248-257.	18.0	49
125	<i>In situ</i> determination of the interplay of the structure and domain under a subcoercive field in BiScO ₃ â€"PbTiO ₃ . Inorganic Chemistry Frontiers, 2021, 8, 4415-4422.	6.0	1
126	Stress- and Interface-Compatible Red Phosphorus Anode for High-Energy and Durable Sodium-Ion Batteries. ACS Energy Letters, 2021, 6, 547-556.	17.4	33

#	Article	IF	Citations
127	Atomic-scale constituting stable interface for improved LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ cathodes of lithium-ion batteries. Nanotechnology, 2021, 32, 115401.	2.6	12
128	Shape memory effect in metallic glasses. Matter, 2021, 4, 3327-3338.	10.0	3
129	Spatial and Temporal Analysis of Sodium-lon Batteries. ACS Energy Letters, 2021, 6, 4023-4054.	17.4	62
130	Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nature Communications, 2021, 12, 6024.	12.8	80
131	Superior Highâ€Temperature Strength in a Supersaturated Refractory Highâ€Entropy Alloy. Advanced Materials, 2021, 33, e2102401.	21.0	89
132	Highâ€Voltage and Highâ€Safety Practical Lithium Batteries with Ethylene Carbonateâ€Free Electrolyte. Advanced Energy Materials, 2021, 11, 2102299.	19.5	59
133	Small-scale confined R-phase transformation in Ni47Ti49Fe2-Nb2 alloy. Materialia, 2021, 20, 101262.	2.7	5
134	Spontaneous Strain Buffer Enables Superior Cycling Stability in Single-Crystal Nickel-Rich NCM Cathode. Nano Letters, 2021, 21, 9997-10005.	9.1	58
135	Reentrant glass transition leading to ultrastable metallic glass. Materials Today, 2020, 34, 66-77.	14.2	45
136	Preparation, Structure, and enhanced thermoelectric properties of Sm-doped BiCuSeO oxyselenide. Materials and Design, 2020, 185, 108263.	7.0	29
137	Confined seeds derived sodium titanate/graphene composite with synergistic storage ability toward high performance sodium ion capacitors. Chemical Engineering Journal, 2020, 379, 122418.	12.7	23
138	Magnetic-field-induced strain-glass-to-martensite transition in a Fe-Mn-Ga alloy. Acta Materialia, 2020, 183, 11-23.	7.9	31
139	Chiral Restructuring of Peptide Enantiomers on Gold Nanomaterials. ACS Biomaterials Science and Engineering, 2020, 6, 2612-2620.	5.2	12
140	"Lattice Strain Matchingâ€â€Enabled Nanocomposite Design to Harness the Exceptional Mechanical Properties of Nanomaterials in Bulk Forms. Advanced Materials, 2020, 32, e1904387.	21.0	13
141	Origin of Electronic Modification of Platinum in a Pt ₃ V Alloy and Its Consequences for Propane Dehydrogenation Catalysis. ACS Applied Energy Materials, 2020, 3, 1410-1422.	5.1	41
142	Tuning magnetostriction of Fe–Ga alloys via stress engineering. Journal of Alloys and Compounds, 2020, 822, 153687.	5.5	18
143	Effect of initial microstructure on the micromechanical behavior of Ti-55531 titanium alloy investigated by in-situ high-energy X-ray diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138806.	5.6	25
144	Exotic hysteresis of ferrimagnetic transition in Laves compound TbCo ₂ . Materials Research Letters, 2020, 8, 97-102.	8.7	8

#	Article	IF	Citations
145	<i>In situ</i> and <i>operando</i> investigation of the dynamic morphological and phase changes of a selenium-doped germanium electrode during (de)lithiation processes. Journal of Materials Chemistry A, 2020, 8, 750-759.	10.3	21
146	Integrating Multiredox Centers into One Framework for High-Performance Organic Li-lon Battery Cathodes. ACS Energy Letters, 2020, 5, 224-231.	17.4	59
147	Electric-field-induced structure and domain texture evolution in PbZrO3-based antiferroelectric by in-situ high-energy synchrotron X-ray diffraction. Acta Materialia, 2020, 184, 41-49.	7.9	36
148	Crystal structures and phase relationships in magnetostrictive Tb1 \hat{a} °x Dy x Co2 system. Journal of Physics Condensed Matter, 2020, 32, 135802.	1.8	4
149	Formation of omega phase induced by laser shock peening in Ti-17 alloy. Materials Characterization, 2020, 159, 110017.	4.4	8
150	In-situ observation of an unusual phase transformation pathway with Guinier-Preston zone-like precipitates in Zr-based bulk metallic glasses. Journal of Alloys and Compounds, 2020, 819, 153049.	5.5	9
151	Large room-temperature elastocaloric effect in a bulk polycrystalline Ni-Ti-Cu-Co alloy with low isothermal stress hysteresis. Applied Materials Today, 2020, 21, 100844.	4.3	13
152	Deformation-enhanced hierarchical multiscale structure heterogeneity in a Pd-Si bulk metallic glass. Acta Materialia, 2020, 200, 42-55.	7.9	40
153	High performance Nb/TiNi nanocomposites produced by packaged accumulative roll bonding. Composites Part B: Engineering, 2020, 202, 108403.	12.0	22
154	Local spring effect in titanium-based layered oxides. Energy and Environmental Science, 2020, 13, 4371-4380.	30.8	13
155	Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. Nano Energy, 2020, 78, 105101.	16.0	51
156	In situ investigation of the deformation behaviors of Fe20Co30Cr25Ni25 and Fe20Co30Cr30Ni20 high entropy alloys by high-energy X-ray diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 795, 139936.	5.6	8
157	Design of a V–Ti–Ni alloy with superelastic nano-precipitates. Acta Materialia, 2020, 196, 710-722.	7.9	5
158	Superior strength-ductility synergy by hetero-structuring high manganese steel. Materials Research Letters, 2020, 8, 417-423.	8.7	25
159	Crystal Structure and Atomic Vacancy Optimized Thermoelectric Properties in Gadolinium Selenides. Chemistry of Materials, 2020, 32, 10130-10139.	6.7	36
160	Ultrafast formation of a transient two-dimensional diamondlike structure in twisted bilayer graphene. Physical Review B, 2020, 102, .	3.2	8
161	Evolution of Microstructure, Residual Stress, and Tensile Properties of Additively Manufactured Stainless Steel Under Heat Treatments. Jom, 2020, 72, 4167-4177.	1.9	20
162	Large electromechanical strain and unconventional domain switching near phase convergence in a Pb-free ferroelectric. Communications Physics, 2020, 3, .	5.3	14

#	Article	IF	Citations
163	Structural Distortion Induced by Manganese Activation in a Lithium-Rich Layered Cathode. Journal of the American Chemical Society, 2020, 142, 14966-14973.	13.7	79
164	Architecting a Stable High-Energy Aqueous Al-Ion Battery. Journal of the American Chemical Society, 2020, 142, 15295-15304.	13.7	188
165	In situ and ex situ studies of anomalous eutectic formation in undercooled Ni–Sn alloys. Acta Materialia, 2020, 197, 198-211.	7.9	13
166	Cyclic deformation and lattice strain distribution of high Nb containing TiAl alloy. Materials Science and Technology, 2020, 36, 1507-1515.	1.6	1
167	Latticeâ€Distortionâ€Enhanced Yield Strength in a Refractory Highâ€Entropy Alloy. Advanced Materials, 2020, 32, e2004029.	21.0	121
168	A novel stress-induced martensitic transformation in a single-phase refractory high-entropy alloy. Scripta Materialia, 2020, 189, 129-134.	5.2	23
169	Hierarchy among the crystal lattice, charge density wave, and superconducting orders in transition metal dichalcogenides. Physical Review B, 2020, 102, .	3.2	4
170	Relationship among the Crystal Structure, Texture, and Macroscopic Properties of Tetragonal (Pb,La)(Zr,Ti)O ₃ Ferroelectrics Investigated by In Situ High-Energy Synchrotron Diffraction. Inorganic Chemistry, 2020, 59, 13632-13638.	4.0	4
171	A self-healing liquid metal anode with PEO-Based polymer electrolytes for rechargeable lithium batteries. Applied Materials Today, 2020, 21, 100802.	4.3	14
172	TiO ₂ Nanocrystalâ€Framed Li ₂ TiSiO ₅ Platelets for Lowâ€Voltage Lithium Battery Anode. Advanced Functional Materials, 2020, 30, 2001909.	14.9	25
173	Unraveling magneto-structural coupling of Ni2MnGa alloy under the application of stress and magnetic field using <i>in situ</i> polarized neutron diffraction. Applied Physics Letters, 2020, 117, .	3.3	3
174	Temperature-dependence of superelastic stress in nanocrystalline NiTi with complete transformation capability. Intermetallics, 2020, 127, 106970.	3.9	13
175	Probing the Thermal-Driven Structural and Chemical Degradation of Ni-Rich Layered Cathodes by Co/Mn Exchange. Journal of the American Chemical Society, 2020, 142, 19745-19753.	13.7	122
176	In-situ synchrotron high energy X-ray diffraction study of micro-mechanical behaviour of R phase reorientation in nanocrystalline NiTi alloy. Acta Materialia, 2020, 194, 565-576.	7.9	34
177	Tuning the Kinetics of Zincâ€lon Insertion/Extraction in V ₂ O ₅ by In Situ Polyaniline Intercalation Enables Improved Aqueous Zincâ€lon Storage Performance. Advanced Materials, 2020, 32, e2001113.	21.0	357
178	Regulating the Hidden Solvationâ€konâ€Exchange in Concentrated Electrolytes for Stable and Safe Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 2000901.	19.5	65
179	Formation of a Three-Phase Spiral Structure Due to Competitive Growth of a Peritectic Phase with a Metastable Eutectic. Jom, 2020, 72, 2965-2973.	1.9	3
180	Cryogenic mechanical behaviors of CrMnFeCoNi high-entropy alloy. Materials Science & Department of Cryogenic mechanical behaviors of CrMnFeCoNi high-entropy alloy. Materials Science & Department of Cryogenic mechanics and Processing, 2020, 789, 139579.	5.6	31

#	Article	IF	CITATIONS
181	Observation of High-Frequency Transverse Phonons in Metallic Glasses. Physical Review Letters, 2020, 124, 225902.	7.8	20
182	Exploiting ultra-large linear elasticity over a wide temperature range in nanocrystalline NiTi alloy. Journal of Materials Science and Technology, 2020, 57, 197-203.	10.7	16
183	Magnetocaloric effect in the vicinity of the magnetic phase transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>NdCo</mml:mi><mrcompounds. .<="" 101,="" 2020,="" b,="" physical="" review="" td=""><td>nl:ໝzow>‹</td><td>cmnd:mn>2<</td></mrcompounds.></mml:msub></mml:mrow></mml:math>	nl:ໝ z ow>‹	cm nd: mn>2<
184	Local structure study on magnetostrictive material Tb1â^'xDyxFe2. Journal of Applied Physics, 2020, 127, .	2.5	7
185	Revealing the Structural Evolution and Phase Transformation of O3-Type NaNi _{1/3} Fe _{1/3} Mn _{1/3} O ₂ Cathode Material on Sintering and Cycling Processes. ACS Applied Energy Materials, 2020, 3, 6107-6114.	5.1	19
186	Probing solid-state reaction through microstrain: A case study on synthesis of LiCoO2. Journal of Power Sources, 2020, 469, 228422.	7.8	17
187	Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nature Materials, 2020, 19, 712-718.	27.5	95
188	A strategy to achieve high-strength WNiFe composite-like alloys with low W content by laser melting deposition. Materials and Design, 2020, 190, 108554.	7.0	18
189	Genesis of the periodic lattice distortions in the charge density wave state of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn>e<mml:mn>2</mml:mn></mml:mrow></mml:math> . Physical Review B. 2020, 101	ni>şmml:n	10>â^'
190	Grain size and structure distortion characterization of α-MgAgSb thermoelectric material by powder diffraction*. Chinese Physics B, 2020, 29, 106101.	1.4	1
191	Oxygen Inhomogeneity and Reversibility in Single Crystal LaNiO3â°Î. Crystals, 2020, 10, 557.	2.2	6
192	Consolidating Lithiothermicâ€Ready Transition Metals for Li ₂ Sâ€Based Cathodes. Advanced Materials, 2020, 32, e2002403.	21.0	59
193	Understanding the Reactivity of a Thin Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Solidâ€State Electrolyte toward Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001497.	19.5	49
194	Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety. Nano Energy, 2020, 71, 104643.	16.0	72
195	A chiral switchable photovoltaic ferroelectric 1D perovskite. Science Advances, 2020, 6, eaay4213.	10.3	119
196	Ultralowâ€Strain Znâ€Substituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage. Advanced Functional Materials, 2020, 30, 1910327.	14.9	110
197	Ultralow thermal conductivity from transverse acoustic phonon suppression in distorted crystalline α-MgAgSb. Nature Communications, 2020, 11, 942.	12.8	44
198	Transforming Thermal Expansion from Positive to Negative: The Case of Cubic Magnetic Compounds of (Zr,Nb)Fe ₂ . Journal of Physical Chemistry Letters, 2020, 11, 1954-1961.	4.6	19

#	Article	IF	Citations
199	In-situ investigation via high energy X-ray diffraction of stress-induced(0002)α→(110)β transformation in a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 779, 139154.	5.6	4
200	Boosting the Oxygen Reduction Performance via Tuning the Synergy between Metal Core and Oxide Shell of Metalâ^'Organic Frameworksâ€Derived Co@CoO x. ChemElectroChem, 2020, 7, 1590-1597.	3.4	16
201	Surface Integrity and Oxidation of a Powder Metallurgy Ni-Based Superalloy Treated by Laser Shock Peening. Jom, 2020, 72, 1803-1810.	1.9	6
202	Two-way tuning of structural order in metallic glasses. Nature Communications, 2020, 11, 314.	12.8	29
203	Oxygen octahedral tilt ordering in (Na1/2Bi1/2)TiO3 ferroelectric thin films. Applied Physics Letters, 2020, 116, .	3.3	2
204	The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability. Applied Materials Today, 2020, 19, 100547.	4.3	46
205	Negative thermal expansion and the role of hybridization in perovskite-type PbTiO ₃ -Bi(Cu _{0.5} Ti _{0.5})O ₃ . Inorganic Chemistry Frontiers, 2020, 7, 1190-1195.	6.0	8
206	Antisymmetric linear magnetoresistance and the planar Hall effect. Nature Communications, 2020, 11, 216.	12.8	21
207	Effect of Al substitution on the magnetocaloric properties of Ni-Co-Mn-Sn multifunctional alloys. Intermetallics, 2020, 119, 106706.	3.9	9
208	Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire. Journal of Materials Science and Technology, 2020, 45, 44-48.	10.7	10
209	Strong Negative Thermal Expansion in a Low-Cost and Facile Oxide of Cu ₂ P ₂ O ₇ . Journal of the American Chemical Society, 2020, 142, 3088-3093.	13.7	59
210	A mechanistic study of mesoporous TiO2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 3333-3343.	10.3	32
211	Magnetic transitions and magnetocaloric effect of Gd4Nd1Si2Ge2. Journal of Alloys and Compounds, 2020, 826, 154117.	5. 5	6
212	A Simple Halogen-Free Magnesium Electrolyte for Reversible Magnesium Deposition through Cosolvent Assistance. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10252-10260.	8.0	31
213	Anharmonic lattice dynamics and superionic transition in AgCrSe ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3930-3937.	7.1	73
214	In Situ High-Energy X-Ray Diffraction Studies of Melting, Solidification and Solid-State Transformation of Ni3Sn. MRS Advances, 2020, 5, 1529-1535.	0.9	6
215	Fundamental Insights from a Singleâ€Crystal Sodium Iridate Battery. Advanced Energy Materials, 2020, 10, 1903128.	19.5	9
216	Synergy of Ion Doping and Spiral Array Architecture on Ti ₂ Nb ₁₀ O ₂₉ : A New Way to Achieve Highâ€Power Electrodes. Advanced Functional Materials, 2020, 30, 2002665.	14.9	37

#	Article	IF	CITATIONS
217	An intriguing intermediate state as a bridge between antiferroelectric and ferroelectric perovskites. Materials Horizons, 2020, 7, 1912-1918.	12.2	34
218	Achieving 5.9% elastic strain in kilograms of metallic glasses: Nanoscopic strain engineering goes macro. Materials Today, 2020, 37, 18-26.	14.2	25
219	A practical phosphorus-based anode material for high-energy lithium-ion batteries. Nano Energy, 2020, 74, 104849.	16.0	56
220	Phase transformation and mechanical properties of Ti-(10–30)Zr–3Mo–1Sn alloys. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139172.	5.6	5
221	Linking constituent phase properties to ductility and edge stretchability of two DP 980 steels. Materials Science & DP 980 steels. Processing, 2020, 780, 139176.	5.6	18
222	Investigation of synchrotron X-ray induced oxidation of Ag–Cu thin-film. Materials Letters, 2020, 272, 127843.	2.6	5
223	Influence of defect characteristics on tensile deformation of an additively manufactured stainless steel: Evolutions of texture and intergranular strain. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 791, 139637.	5.6	20
224	Magnetocaloric effect and critical exponent analysis around magnetic phase transition in NdCo2 compound. Journal Physics D: Applied Physics, 2020, 53, 345003.	2.8	11
225	<pre> <mml:math '="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:m< pre=""></mml:m<></mml:msub></mml:mrow></mml:math></pre>	n>4 <td>:mn></td>	:mn>

#	Article	IF	Citations
235	Evaluation of the microstructure and property of TiNi SMA prepared using VIM in BaZrO3 crucible. Vacuum, 2019, 168, 108843.	3.5	9
236	Variation of elastic mechanical properties with texture, porosity, and defect characteristics in laser powder bed fusion 316L stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 763, 138032.	5.6	46
237	Outstanding caloric performances for energy-efficient multicaloric cooling in a Ni-Mn-based multifunctional alloy. Acta Materialia, 2019, 177, 46-55.	7.9	44
238	Unraveling the Origins of the "Unreactive Core―in Conversion Electrodes to Trigger High Sodium-Ion Electrochemistry. ACS Energy Letters, 2019, 4, 2007-2012.	17.4	33
239	High pO2 Floating Zone Crystal Growth of the Perovskite Nickelate PrNiO3. Crystals, 2019, 9, 324.	2.2	15
240	Single Crystal Growth of Relaxor Ferroelectric Ba ₂ PrFeNb ₄ O ₁₅ by the Optical Floating Zone Method. Crystal Growth and Design, 2019, 19, 7249-7256.	3.0	3
241	Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nature Communications, 2019, 10, 4721.	12.8	182
242	Power–Law Feature of Structure in Metallic Glasses. Journal of Physical Chemistry C, 2019, 123, 27868-27874.	3.1	4
243	Effect of Ta on Microstructures and Mechanical Properties of NiTi Alloys. Shape Memory and Superelasticity, 2019, 5, 249-257.	2.2	5
244	Evidence for a short-range chemical order of Ge atoms and its critical role in inducing a giant magnetocaloric effect in Gd5Si1.5Ge2.5. Journal of Alloys and Compounds, 2019, 808, 151751.	5.5	6
245	Lithiated Spinel LiCo _{1–<i>x</i>} Al _{<i>x</i>} O ₂ as a Stable Zero-Strain Cathode. ACS Applied Energy Materials, 2019, 2, 6170-6175.	5.1	17
246	On the unusual amber coloration of nanoporous sol-gel processed Al-doped silica glass: An experimental study. Scientific Reports, 2019, 9, 12474.	3.3	0
247	Hydrogen embrittlement behaviors of additive manufactured maraging steel investigated by in situ high-energy X-ray diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138341.	5.6	13
248	Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy. Materials Research Letters, 2019, 7, 482-489.	8.7	51
249	An inorganic salt reinforced Zn ²⁺ -conducting solid-state electrolyte for ultra-stable Zn metal batteries. Journal of Materials Chemistry A, 2019, 7, 22287-22295.	10.3	62
250	Peierls barrier characteristic and anomalous strain hardening provoked by dynamic-strain-aging strengthening in a body-centered-cubic high-entropy alloy. Materials Research Letters, 2019, 7, 475-481.	8.7	29
251	Development of Fe100-(NiCoMn) magnetostrictive alloys with good mechanical properties. Journal of Alloys and Compounds, 2019, 810, 151931.	5.5	1
252	Engineering medium-range order and polyamorphism in a nanostructured amorphous alloy. Communications Physics, $2019, 2, \ldots$	5.3	24

#	Article	IF	Citations
253	A eutectic dual-phase design towards superior mechanical properties of heusler-type ferromagnetic shape memory alloys. Acta Materialia, 2019, 181, 278-290.	7.9	21
254	An advanced high energy-efficiency rechargeable aluminum-selenium battery. Nano Energy, 2019, 66, 104159.	16.0	39
255	Temperature-Dependent Structural Evolution in Au ₄₄ Ga ₅₆ Liquid Eutectic Alloy. Journal of Physical Chemistry C, 2019, 123, 25209-25219.	3.1	10
256	Giant negative thermal expansion at the nanoscale in the multifunctional material <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">G</mml:mi><mml:msub><mml:mi mathvariant="normal">d</mml:mi><mml:mn>5</mml:mn></mml:msub><mml:msub><mml:msub><mml:msub><mml:mrow><mml:mo>(</mml:mo></mml:mrow></mml:msub><mml:msub><mml:msub><mml:msub><mml:mrow><mml:mo>(</mml:mo></mml:mrow></mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:math>	3.2 mml:mo>	24 <mml:mrow< td=""></mml:mrow<>
257	Large Negative Thermal Expansion Induced by Synergistic Effects of Ferroelectrostriction and Spin Crossover in PbTiO ₃ -Based Perovskites. Chemistry of Materials, 2019, 31, 1296-1303.	6.7	29
258	Identification of Surface Structures in Pt ₃ Cr Intermetallic Nanocatalysts. Chemistry of Materials, 2019, 31, 1597-1609.	6.7	46
259	The Phase Diagram and Exotic Magnetostrictive Behaviors in Spinel Oxide Co(Fe1â^'xAlx)2O4 System. Materials, 2019, 12, 1685.	2.9	7
260	Towards an integrated experimental and computational framework for large-scale metal additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 761, 138057.	5.6	18
261	Colossal Elastocaloric Effect in Ferroelastic Ni-Mn-Ti Alloys. Physical Review Letters, 2019, 122, 255703.	7.8	245
262	Scalable mesoporous silicon microparticles composed of interconnected nanoplates for superior lithium storage. Chemical Engineering Journal, 2019, 375, 121923.	12.7	32
263	In-situ synchrotron high energy X-ray diffraction study of phase transformation of intermetallic Ti3Sn. Materials Letters, 2019, 252, 161-164.	2.6	4
264	Revealing the Atomic Origin of Heterogeneous Liâ€lon Diffusion by Probing Na. Advanced Materials, 2019, 31, e1805889.	21.0	30
265	Enhanced tetragonality and large negative thermal expansion in a new Pb/Bi-based perovskite ferroelectric of (1 â^') Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 262 Td (⟨i⟩x⟨/i⟩)PbTiO⟨sub⟩3⟨/sub⟩–⟨i⟩⟩ Chemistry Frontiers, 2019, 6, 1990-1995.	xBi(Zn	_{1/2<!--</td-->}
266	Thermal Expansion and Magnetostriction of Laves-Phase Alloys: Fingerprints of Ferrimagnetic Phase Transitions. Materials, 2019, 12, 1755.	2.9	2
267	Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature, 2019, 569, 245-250.	27.8	590
268	Kinoform lenses for high photon energies. AIP Conference Proceedings, 2019, , .	0.4	0
269	Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nature Energy, 2019, 4, 484-494.	39.5	345
270	Identification of a Pt ₃ Co Surface Intermetallic Alloy in Pt–Co Propane Dehydrogenation Catalysts. ACS Catalysis, 2019, 9, 5231-5244.	11.2	111

#	Article	lF	Citations
271	Structural behavior of a stuffed derivative of \hat{l} ±-quartz, Mg0.5AlSiO4, at high temperature: an in situ synchrotron XRD study. Physics and Chemistry of Minerals, 2019, 46, 717-725.	0.8	2
272	Long-Range Antiferromagnetic Order in a Rocksalt High Entropy Oxide. Chemistry of Materials, 2019, 31, 3705-3711.	6.7	112
273	Temperature-dependent compression behavior of an Al0.5CoCrCuFeNi high-entropy alloy. Materialia, 2019, 5, 100243.	2.7	16
274	Local lattice distortion mediated formation of stacking faults in Mg alloys. Acta Materialia, 2019, 170, 231-239.	7.9	45
275	Direct observation of MgO formation at cathode electrolyte interface of a spinel MgCo2O4 cathode upon electrochemical Mg removal and insertion. Journal of Power Sources, 2019, 424, 68-75.	7.8	12
276	Methacrylated gelatin-embedded fabrication of 3D graphene-supported Co3O4 nanoparticles for water splitting. Nanoscale, 2019, 11, 6866-6875.	5.6	13
277	Inorganic–organic hybridization induced uniaxial zero thermal expansion in MC ₄ O ₄ (M = Ba, Pb). Chemical Communications, 2019, 55, 4107-4110.	4.1	12
278	Negative Thermal Expansion in (Hf,Ti)Fe ₂ Induced by the Ferromagnetic and Antiferromagnetic Phase Coexistence. Inorganic Chemistry, 2019, 58, 5380-5383.	4.0	14
279	Entropy modeling on serrated flows in carburized steels. Materials Science & Diplomatical Properties, Microstructure and Processing, 2019, 753, 135-145.	5. 6	20
280	Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode. Chemistry of Materials, 2019, 31, 2723-2730.	6.7	114
281	Design and thermomechanical properties of a $\hat{l}^3\hat{E}^1$ precipitate-strengthened Ni-based superalloy with high entropy \hat{l}^3 matrix. Journal of Alloys and Compounds, 2019, 792, 550-560.	5.5	32
282	Negative thermal expansion in cubic FeFe(CN) < sub > 6 < /sub > Prussian blue analogues. Dalton Transactions, 2019, 48, 3658-3663.	3.3	32
283	Stabilizing the Interface between Sodium Metal Anode and Sulfide-Based Solid-State Electrolyte with an Electron-Blocking Interlayer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9672-9678.	8.0	61
284	High-throughput investigation of crystal-to-glass transformation of Ti–Ni–Cu ternary alloy. Scientific Reports, 2019, 9, 19932.	3.3	8
285	Controllable thermal expansion and magnetic structure in Er ₂ (Fe,Co) ₁₄ B intermetallic compounds. Inorganic Chemistry Frontiers, 2019, 6, 3225-3229.	6.0	15
286	Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes. Journal of Materials Chemistry A, 2019, 7, 22248-22256.	10.3	51
287	Lattice distortion in the spin-orbital entangled state in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:m mathvariant="normal">VO<mml:mn>3</mml:mn></mml:m></mml:math> perovskites. Physical Review B, 2019, 100.	sub> <mm 3.2</mm 	ıl:mi
288	Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nature Energy, 2019, 4, 957-968.	39.5	349

#	Article	IF	CITATIONS
289	Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nature Catalysis, 2019, 2, 1124-1131.	34.4	214
290	Lattice dynamics of the hybrid improper ferroelectrics <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow>O<mml:mn>7</mml:mn></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math> . Physical Review B, 2019, 100, .	mo> <mrr 3.2</mrr 	nl:mi>Ca
291	Total-scattering pair-distribution function analysis of zinc from high-energy synchrotron data. Modern Physics Letters B, 2019, 33, 1950410.	1.9	2
292	Mechanistic insight into mineral carbonation and utilization in cement-based materials at solid–liquid interfaces. RSC Advances, 2019, 9, 31052-31061.	3.6	12
293	Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures. Scripta Materialia, 2019, 158, 50-56.	5.2	139
294	On the fast kinetics of B2–L21 ordering in Ni-Co-Mn-In metamagnetic shape memory alloys. Journal of Alloys and Compounds, 2019, 781, 479-489.	5.5	10
295	In-situ visualizing atomic structural evolution during crystallization in ternary Zr Cu Al bulk metallic glasses. Intermetallics, 2019, 105, 173-178.	3.9	10
296	Towards a greater understanding of serrated flows in an Al-containing high-entropy-based alloy. International Journal of Plasticity, 2019, 115, 71-92.	8.8	89
297	Pressureâ€Induced Diels–Alder Reactions in C ₆ H ₆ â€C ₆ F ₆ Cocrystal towards Graphane Structure. Angewandte Chemie - International Edition, 2019, 58, 1468-1473.	13.8	36
298	Solidâ€State Lithium/Selenium–Sulfur Chemistry Enabled via a Robust Solidâ€Electrolyte Interphase. Advanced Energy Materials, 2019, 9, 1802235.	19.5	63
299	Abundant polymorphic transitions in the Al0.6CoCrFeNi high-entropy alloy. Materials Today Physics, 2019, 8, 1-9.	6.0	27
300	Dissolution of Intermetallic Second-Phase Particles in Zircaloy-2 in High-Temperature Steam. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1851-1861.	2.2	0
301	High-energy synchrotron radiation X-ray diffraction measurements during in situ aging of a NiTi-15 at. % Hf high temperature shape memory alloy. Materialia, 2019, 5, 100220.	2.7	6
302	Influence of Sn on martensitic beta Ti alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 764-772.	5.6	20
303	Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity. Applied Physics Letters, 2019, 114, .	3.3	48
304	Effects of composition and crystallographic ordering on the ferromagnetic transition in Ni Co Mn In magnetic shape memoryÂalloys. Acta Materialia, 2019, 166, 630-637.	7.9	8
305	A brittle fracture mechanism in thermally aged duplex stainless steels revealed by in situ high-energy X-ray diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 264-271.	5.6	13
306	Achieving ultra-high bearing strength of tungsten nanoribbons in a transforming metal matrix. Journal of Alloys and Compounds, 2019, 781, 1-7.	5.5	13

#	Article	IF	Citations
307	Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel. Materials and Design, 2019, 164, 107534.	7.0	193
308	Mechanical activation enhanced solid-state synthesis of NaCrO2 cathode material. Materialia, 2019, 5, 100172.	2.7	8
309	Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. Journal of Power Sources, 2019, 412, 336-343.	7.8	109
310	Mechanism-based constitutive modeling of ZEK100 magnesium alloy with crystal plasticity and in-situ HEXRD experiment. International Journal of Plasticity, 2019, 113, 35-51.	8.8	37
311	Slate – A new record for crystal preferred orientation. Journal of Structural Geology, 2019, 125, 319-324.	2.3	13
312	Manipulation of magnetostructural transition and realization of prominent multifunctional magnetoresponsive properties in NiCoMnIn alloys. Physical Review Materials, 2019, 3, .	2.4	10
313	Magnetic field-induced magnetostructural transition and huge tensile superelasticity in an oligocrystalline Ni–Cu–Co–Mn–In microwire. IUCrJ, 2019, 6, 843-853.	2.2	15
314	Effect of $\hat{l}\pm\hat{l}^2$ Forging on Microstructure and Texture Inhomogeneity in a Ti-1023 Forged Disk. Materials Research, 2019, 22, .	1.3	0
315	Structural Correlation to Piezoelectric and Ferroelectric Mechanisms in Rhombohedral Pb(Zr,Ti)O ₃ Ceramics by in-Situ Synchrotron Diffraction. Inorganic Chemistry, 2018, 57, 3002-3007.	4.0	16
316	In-situ synchrotron X-ray diffraction study of dual-step strain variation in laser shock peened metallic glasses. Scripta Materialia, 2018, 149, 112-116.	5.2	4
317	Insight into Caâ€Substitution Effects on O3â€Type NaNi _{1/3} Fe _{1/3} Mn _{1/3} O ₂ Cathode Materials for Sodiumâ€ion Batteries Application. Small, 2018, 14, e1704523.	10.0	97
318	A Fully Sodiated NaVOPO4 with Layered Structure for High-Voltage and Long-Lifespan Sodium-lon Batteries. CheM, 2018, 4, 1167-1180.	11.7	140
319	Effect of Componential Proportion in Bimetallic Electrocatalysts on the Aprotic Lithiumâ€Oxygen Battery Performance. Advanced Energy Materials, 2018, 8, 1703230.	19.5	32
320	$L\tilde{A}\frac{1}{4}$ ders-like martensitic transformation in a Cu/carbon-steel nanocomposite: An in situ synchrotron study. Journal of Alloys and Compounds, 2018, 741, 693-699.	5.5	3
321	Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries. Journal of Power Sources, 2018, 381, 156-163.	7.8	80
322	Reversible Redox Chemistry of Azo Compounds for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2018, 57, 2879-2883.	13.8	159
323	Reversible Redox Chemistry of Azo Compounds for Sodiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 2929-2933.	2.0	33
324	A New Insight into Cross‧ensitivity to Humidity of SnO ₂ Sensor. Small, 2018, 14, e1703974.	10.0	38

#	Article	IF	CITATIONS
325	Role of Reversible Phase Transformation for Strong Piezoelectric Performance at the Morphotropic Phase Boundary. Physical Review Letters, 2018, 120, 055501.	7.8	84
326	Rapid Construction of Fe–Co–Ni Composition-Phase Map by Combinatorial Materials Chip Approach. ACS Combinatorial Science, 2018, 20, 127-131.	3.8	41
327	Influence of Co-doping on the Crystal Structure, Magnetocaloric Properties and Elastic Moduli of the La(Fe, Si)13 Compound. Minerals, Metals and Materials Series, 2018, , 181-190.	0.4	1
328	Microstructure stability and micro-mechanical behavior of as-cast gamma-TiAl alloy during high-temperature low cycle fatigue. Acta Materialia, 2018, 145, 504-515.	7.9	52
329	Structure and Phase Transformation in the Giant Magnetostriction Laves-Phase SmFe ₂ . Inorganic Chemistry, 2018, 57, 689-694.	4.0	23
330	The in-depth residual strain heterogeneities due to an indentation and a laser shock peening for Ti-6Al-4V titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 714, 140-145.	5.6	20
331	Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy. Acta Materialia, 2018, 146, 142-151.	7.9	66
332	Capacity Fading Mechanism of the Commercial 18650 LiFePO ₄ -Based Lithium-Ion Batteries: An in Situ Time-Resolved High-Energy Synchrotron XRD Study. ACS Applied Materials & Diterfaces, 2018, 10, 4622-4629.	8.0	40
333	Phase stability and transformation in a light-weight high-entropy alloy. Acta Materialia, 2018, 146, 280-293.	7.9	131
334	Momentum-resolved observations of the phonon instability driving geometric improper ferroelectricity in yttrium manganite. Nature Communications, 2018, 9, 15.	12.8	30
335	Modifying the Surface of a High-Voltage Lithium-Ion Cathode. ACS Applied Energy Materials, 2018, 1, 2254-2260.	5.1	46
336	Dual Phase Synergy Enabled Large Elastic Strains of Nanoinclusions in a Dislocation Slip Matrix Composite. Nano Letters, 2018, 18, 2976-2983.	9.1	12
337	xmins:mmi= nttp://www.w3.org/1998/Math/Math/Math/Mith > <mmi:mrow> <mmi:mi mathvariant="normal">T <mml:msub> <mml:mi mathvariant="normal">b <mml:mrow> <mml:mn> 1 </mml:mn> <mml:mo> â^' </mml:mo> <mml:mi> x mathvariant="normal">N </mml:mi> <mml:msub> <mml:mi< td=""><td>ıml3n2i > <td>nml3nrow><</td></td></mml:mi<></mml:msub></mml:mrow></mml:mi </mml:msub></mmi:mi </mmi:mrow>	ım l3n2i > <td>nml3nrow><</td>	nm l3 nrow><
338	Simultaneously achieved large reversible elastocaloric and magnetocaloric effects and their coupling in a magnetic shape memory alloy. Acta Materialia, 2018, 151, 41-55.	7.9	120
339	Large spontaneous polarization in polar perovskites of PbTiO ₃ . Inorganic Chemistry Frontiers, 2018, 5, 1277-1281.	6.0	15
340	Localized Symmetry Breaking for Tuning Thermal Expansion in ScF ₃ Nanoscale Frameworks. Journal of the American Chemical Society, 2018, 140, 4477-4480.	13.7	44
341	Structure and reactivity of Pt–In intermetallic alloy nanoparticles: Highly selective catalysts for ethane dehydrogenation. Catalysis Today, 2018, 299, 146-153.	4.4	119
342	Metastable solidification of hypereutectic Co2Si-CoSi composition: Microstructural studies and in-situ observations. Acta Materialia, 2018, 142, 172-180.	7.9	23

#	Article	IF	Citations
343	Substitutional Growth of Methylammonium Lead Iodide Perovskites in Alcohols. Advanced Energy Materials, 2018, 8, 1701726.	19.5	28
344	Temperature effects on the serrated behavior of an Al0.5CoCrCuFeNi high-entropy alloy. Materials Chemistry and Physics, 2018, 210, 20-28.	4.0	52
345	Cryogenic temperature toughening and strengthening due to gradient phase structure. Materials Science & Science & Properties, Microstructure and Processing, 2018, 712, 358-364.	5.6	12
346	Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid. Nano Letters, 2018, 18, 336-346.	9.1	40
347	Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 611-623.	5.6	33
348	Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques. Nano Energy, 2018, 43, 184-191.	16.0	61
349	Crystal plasticity based constitutive modeling of ZEK100 magnesium alloy combined with in-situ HEXRD experiments. Journal of Physics: Conference Series, 2018, 1063, 012031.	0.4	0
350	Transition from antiferromagnetic ground state to robust ferrimagnetic order with Curie temperatures above 420 K in manganese-based antiperovskite-type structures. Journal of Materials Chemistry C, 2018, 6, 13336-13344.	5.5	5
351	Pressure-induced charge density wave phase in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">A</mml:mi><mml:msub><mml:mi mathvariant="normal">g</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mtext>â^²</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math>	3.2 >δ <td>3 ni></td>	3 ni>
352	Electrochemical Performance of NaFeFe(CN) ₆ Prepared by Solid Reaction for Sodium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A3910-A3917.	2.9	27
353	Charge transfer-tuned magnetism in Nd-substituted Gd5Si4. AIP Advances, 2018, 8, .	1.3	6
354	Charge transfer drives anomalous phase transition in ceria. Nature Communications, 2018, 9, 5063.	12.8	48
355	Modifying High-Voltage Olivine-Type LiMnPO ₄ Cathode via Mg Substitution in High-Orientation Crystal. ACS Applied Energy Materials, 2018, 1, 5928-5935.	5.1	20
356	High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nature Communications, 2018, 9, 4063.	12.8	399
357	BCC-Phased PdCu Alloy as a Highly Active Electrocatalyst for Hydrogen Oxidation in Alkaline Electrolytes. Journal of the American Chemical Society, 2018, 140, 16580-16588.	13.7	149
358	Understanding Thermodynamic and Kinetic Contributions in Expanding the Stability Window of Aqueous Electrolytes. CheM, 2018, 4, 2872-2882.	11.7	187
359	Changes in Catalytic and Adsorptive Properties of 2 nm Pt ₃ Mn Nanoparticles by Subsurface Atoms. Journal of the American Chemical Society, 2018, 140, 14870-14877.	13.7	121
360	Temperature-Sensitive Structure Evolution of Lithium–Manganese-Rich Layered Oxides for Lithium-Ion Batteries. Journal of the American Chemical Society, 2018, 140, 15279-15289.	13.7	163

#	Article	IF	CITATIONS
361	Local Chemical Strain in PtFe Alloy Nanoparticles. Inorganic Chemistry, 2018, 57, 10494-10497.	4.0	10
362	On Disrupting the Na ⁺ -lon/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na ⁺ -lon Batteries. Journal of Physical Chemistry C, 2018, 122, 23251-23260.	3.1	55
363	Insights into the Performance Degradation of Oxygen-Type Manganese-Rich Layered Oxide Cathodes for High-Voltage Sodium-Ion Batteries. ACS Applied Energy Materials, 2018, , .	5.1	2
364	Enhanced high-temperature tensile property by gradient twin structure of duplex high-Nb-containing TiAl alloy. Acta Materialia, 2018, 161, 1-11.	7.9	67
365	In-situ investigation of pressure effect on structural evolution and conductivity of Na3SbS4 superionic conductor. Journal of Power Sources, 2018, 401, 111-116.	7.8	26
366	Polarization Mechanisms in P(VDFâ€TrFE) Ferroelectric Thin Films. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800340.	2.4	4
367	Structural investigations of Fe-Ga alloys by high-energy x-ray diffraction. Journal of Alloys and Compounds, 2018, 763, 223-227.	5.5	17
368	In situ high-energy X-ray diffraction investigation of the micromechanical behavior of Fe-0.1C-10Mn-0/2Al steel at room and elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 444-451.	5 . 6	15
369	Appearance of superconductivity at the vacancy order-disorder boundary in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">K</mml:mi><mml:mi></mml:mi></mml:msub><mml:mi>Fe</mml:mi><mn 2018,="" 97<="" b.="" physical="" review="" td=""><td>ոl:::3:2w><</td><td>mက်ီl:mn>2ျ</td></mn></mml:mrow></mml:math>	ո l:::3:2 w><	mက်ီl:mn>2ျ
370	In situ synchrotron X-ray diffraction investigations of the physical mechanism of ultra-low strain hardening in Ti-30Zr-10Nb alloy. Acta Materialia, 2018, 154, 45-55.	7.9	40
371	Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2573-2577.	2.2	6
372	Simultaneous Operando Measurements of the Local Temperature, State of Charge, and Strain inside a Commercial Lithium-Ion Battery Pouch Cell. Journal of the Electrochemical Society, 2018, 165, A1578-A1585.	2.9	39
373	In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2583-2596.	2.2	32
374	Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nature Communications, 2018, 9, 2499.	12.8	79
375	Strongly-coupled quantum critical point in an all-in-all-out antiferromagnet. Nature Communications, 2018, 9, 2953.	12.8	12
376	Structural Evolution of Molybdenum Disulfide Prepared by Atomic Layer Deposition for Realization of Large Scale Films in Microelectronic Applications. ACS Applied Nano Materials, 2018, 1, 4028-4037.	5.0	28
377	Temperature-dependent plastic deformation mechanisms of a Cu/steel transforming nanolamellar composite. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2018, 734, 77-84.	5. 6	4
378	Effect of Annealing on the Structure and Magnetic Properties of CoMnSi. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	5

#	Article	IF	CITATIONS
379	Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys. Applied Physics Letters, 2018, 113, .	3.3	19
380	Conductive nanolamellar Cu/martensite wire with high strength. Materials Letters, 2018, 229, 344-347.	2.6	1
381	Probing Thermal and Chemical Stability of Na _{<i>x</i>} Ni _{1/3} Fe _{1/3} Mn _{1/3} O ₂ Cathode Material toward Safe Sodium-Ion Batteries. Chemistry of Materials, 2018, 30, 4909-4918.	6.7	64
382	Structure Determination of a Surface Tetragonal Pt ₁ Sb ₁ Phase on Pt Nanoparticles. Chemistry of Materials, 2018, 30, 4503-4507.	6.7	26
383	Capacity Fading Mechanism and Improvement of Cycling Stability of the SiO Anode for Lithium-lon Batteries. Journal of the Electrochemical Society, 2018, 165, A2102-A2107.	2.9	22
384	Synchrotron Xâ€Ray and Neutron Diffraction, Total Scattering, and Smallâ€Angle Scattering Techniques for Rechargeable Battery Research. Small Methods, 2018, 2, 1800064.	8.6	72
385	Suppression of crystallization in a Ca-based bulk metallic glass by compression. Journal of Alloys and Compounds, 2018, 765, 595-600.	5.5	1
386	Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur. Scientific Reports, 2018, 8, 4558.	3.3	19
387	Low-Frequency Phonon Driven Negative Thermal Expansion in Cubic GaFe(CN) < sub > 6 < /sub > Prussian Blue Analogues. Inorganic Chemistry, 2018, 57, 10918-10924.	4.0	32
388	Free-Standing Sandwich-Type Graphene/Nanocellulose/Silicon Laminar Anode for Flexible Rechargeable Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 29638-29646.	8.0	63
389	Support-induced morphology and content tailored NiCo2O4 nanostructures on temperature-dependent carbon nanofibers with enhanced pseudocapacitive performance. Electrochimica Acta, 2018, 286, 1-13.	5.2	20
390	Twin Crystal Induced near Zero Thermal Expansion in SnO ₂ Nanowires. Journal of the American Chemical Society, 2018, 140, 7403-7406.	13.7	37
391	Intergranular stress study of TC11 titanium alloy after laser shock peening by synchrotron-based high-energy X-ray diffraction. AIP Advances, 2018, 8, 055126.	1.3	7
392	Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nature Energy, 2018, 3, 936-943.	39.5	531
393	xmins:mmi="http://www.w3.org/1998/Math/Math/Mith/Mith/Mith/Math/Mith/Mith/Mith/Mith/Mith/Mith/Mith/Mi	2.4	12
394	xmlns:mml="http://www.w3.org/1998/Math/Math/M2"> <mml:mrow><mml:mi td="" ="" <=""><td>2.4</td><td>3</td></mml:mi></mml:mrow>	2.4	3
395	mathvariant="normal">r <mml:mn>3</mml:mn> <mml:mi .<="" 2,="" 2018,="" and="" between="" boundary="" domain="" ferroelectrics.="" in="" materials,="" mathvariant="" morphotropic="" phase="" physical="" review="" switching="" synergy="" td="" transformation="" two=""><td>2.4</td><td>5</td></mml:mi>	2.4	5
396	Effects of coating spherical iron oxide nanoparticles. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3621-3626.	2.4	8

#	Article	IF	Citations
397	Tailoring Negative Thermal Expansion in Ferroelectric Sn ₂ P ₂ S ₆ by Lone-Pair Cations. Journal of Physical Chemistry C, 2017, 121, 1832-1837.	3.1	6
398	Insights into the Distinct Lithiation/Sodiation of Porous Cobalt Oxide by in Operando Synchrotron X-ray Techniques and Ab Initio Molecular Dynamics Simulations. Nano Letters, 2017, 17, 953-962.	9.1	30
399	Ru–Fe alloy mediated α-Fe ₂ O ₃ particles on mesoporous carbon nanofibers as electrode materials with superior capacitive performance. RSC Advances, 2017, 7, 6818-6826.	3.6	7
400	Temperature-dependent structure evolution in liquid gallium. Acta Materialia, 2017, 128, 304-312.	7.9	57
401	Zero Thermal Expansion and Semiconducting Properties in PbTiO ₃ –Bi(Co,) Tj ETQq1 1 0.784314	rgBT/Ove	rlock 10 Tf 5
402	Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy. Acta Materialia, 2017, 129, 170-182.	7.9	130
403	Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al 0.3 CoCrFeNi high entropy alloy. Materials and Design, 2017, 121, 254-260.	7.0	287
404	Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries. Nano Energy, 2017, 34, 215-223.	16.0	94
405	Effects of Metal Composition and Ratio on Peptide-Templated Multimetallic PdPt Nanomaterials. ACS Applied Materials & Deptides, 2017, 9, 8030-8040.	8.0	19
406	Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries. Nature Communications, 2017, 8, 14308.	12.8	104
407	Reversible deformation-induced martensitic transformation in AlO.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron-based high-energy X-ray diffraction. Acta Materialia, 2017, 128, 12-21.	7.9	93
408	Structural evolution and dynamical properties of Al2Ag and Al2Cu liquids studied by experiments and ab initio molecular dynamics simulations. Journal of Non-Crystalline Solids, 2017, 459, 160-168.	3.1	11
409	Parasitic Reactions in Nanosized Silicon Anodes for Lithium-lon Batteries. Nano Letters, 2017, 17, 1512-1519.	9.1	122
410	Insights on the origin of the TbGe magnetocaloric effect. Physica B: Condensed Matter, 2017, 513, 72-76.	2.7	0
411	Tunable thermal expansion in framework materials through redox intercalation. Nature Communications, 2017, 8, 14441.	12.8	95
412	A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy, 2017, 34, 188-194.	16.0	84
413	High-Pressure Floating-Zone Growth of Perovskite Nickelate LaNiO ₃ Single Crystals. Crystal Growth and Design, 2017, 17, 2730-2735.	3.0	59
414	Plasticity performance of Al0.5 CoCrCuFeNi high-entropy alloys under nanoindentation. Journal of Iron and Steel Research International, 2017, 24, 390-396.	2.8	8

#	Article	IF	Citations
415	Revealing mechanism responsible for structural reversibility of single-crystal VO2 nanorods upon lithiation/delithiation. Nano Energy, 2017, 36, 197-205.	16.0	65
416	Individual phase constitutive properties of a TRIP-assisted QP980 steel from a combined synchrotron X-ray diffraction and crystal plasticity approach. Acta Materialia, 2017, 132, 230-244.	7.9	79
417	Multi-Component Fe–Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions. ACS Catalysis, 2017, 7, 365-379.	11.2	154
418	Emergent Lowâ€Symmetry Phases and Large Property Enhancements in Ferroelectric KNbO ₃ Bulk Crystals. Advanced Materials, 2017, 29, 1700530.	21.0	26
419	Highâ€Performance High‣oading Lithium–Sulfur Batteries by Low Temperature Atomic Layer Deposition of Aluminum Oxide on Nanophase S Cathodes. Advanced Materials Interfaces, 2017, 4, 1700096.	3.7	22
420	Ferro-Lattice-Distortions and Charge Fluctuations in Superconducting LaO1â°'xFxBiS2. Journal of the Physical Society of Japan, 2017, 86, 054701.	1.6	13
421	Thermal and magnetic hysteresis associated with martensitic and magnetic phase transformations in NiMnInCo Heusler alloy. Journal of Magnetism and Magnetic Materials, 2017, 442, 25-35.	2.3	9
422	Structural Evidence for Strong Coupling between Polarization Rotation and Lattice Strain in Monoclinic Relaxor Ferroelectrics. Chemistry of Materials, 2017, 29, 5767-5771.	6.7	36
423	Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy and Environmental Science, 2017, 10, 1677-1693.	30.8	143
424	Polymorphism in a high-entropy alloy. Nature Communications, 2017, 8, 15687.	12.8	192
425	Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–SÂbatteries. Nature Energy, 2017, 2, .	39.5	349
426	Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys. Acta Materialia, 2017, 134, 236-248.	7.9	145
427	NiTi-Enabled Composite Design for Exceptional Performances. Shape Memory and Superelasticity, 2017, 3, 67-81.	2.2	6
428	In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix. Acta Materialia, 2017, 130, 297-309.	7.9	49
429	Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses. Nature Communications, 2017, 8, 14679.	12.8	109
430	Charting the relationship between phase type-surface area-interactions between the constituent atoms and oxygen reduction activity of Pd–Cu nanocatalysts inside fuel cells by in operando high-energy X-ray diffraction. Journal of Materials Chemistry A, 2017, 5, 7355-7365.	10.3	14
431	Novel elastic deformation mechanism in multifunctional Ti–Nb alloy. Materials Letters, 2017, 186, 378-381.	2.6	1
432	Fabrication, microstructure and mechanical properties of W NiTi composites. Journal of Alloys and Compounds, 2017, 695, 1976-1983.	5.5	12

#	Article	IF	Citations
433	Probing the Release and Uptake of Water in α-MnO ₂ Â <i>x</i> H ₂ O. Chemistry of Materials, 2017, 29, 1507-1517.	6.7	31
434	Tensile properties of a novel W-NiTi heavy alloy with transforming matrix. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 683, 103-109.	5.6	8
435	Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy. Journal of Power Sources, 2017, 341, 114-121.	7.8	23
436	The evolution of microstructure and microhardness in a biomedical Ti–35Nb–7Zr–5Ta alloy. Journal of Materials Science, 2017, 52, 3062-3073.	3.7	18
437	Local structure and controllable thermal expansion in the solid solution (Mn _{1â°'x} Ni _x)ZrF ₆ . Inorganic Chemistry Frontiers, 2017, 4, 343-347.	6.0	12
438	Colossal Volume Contraction in Strong Polar Perovskites of Pb(Ti,V)O ₃ . Journal of the American Chemical Society, 2017, 139, 14865-14868.	13.7	55
439	Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in Highâ€Ni Layered Oxide Cathodes. Advanced Materials, 2017, 29, 1606715.	21.0	127
440	Investigations of deformation-induced \hat{l} \hat{l} phase transformation in zirconium hydride by in situ high-energy X-ray diffraction. Acta Materialia, 2017, 140, 168-175.	7.9	30
441	Temperature-dependent micromechanical behavior of medium-Mn transformation-induced-plasticity steel studied by in situ synchrotron X-ray diffraction. Acta Materialia, 2017, 141, 294-303.	7.9	104
442	Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. Nature Communications, 2017, 8, 627.	12.8	110
443	Energy Storage: Highâ€Performance Highâ€Loading Lithium–Sulfur Batteries by Low Temperature Atomic Layer Deposition of Aluminum Oxide on Nanophase S Cathodes (Adv. Mater. Interfaces 17/2017). Advanced Materials Interfaces, 2017, 4, .	3.7	2
444	Multiscale structures of Zr-based binary metallic glasses and the correlation with glass forming ability. Progress in Natural Science: Materials International, 2017, 27, 482-486.	4.4	14
445	Isotropic Zero Thermal Expansion and Local Vibrational Dynamics in (Sc,Fe)F ₃ . Inorganic Chemistry, 2017, 56, 10840-10843.	4.0	16
446	Excess Li-lon Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance. Nano Letters, 2017, 17, 6018-6026.	9.1	53
447	Versatile NiO/mesoporous carbon nanodisks: controlled synthesis from hexagon shaped heterobimetallic metal–organic frameworks. Nanoscale, 2017, 9, 11851-11857.	5.6	9
448	Liquid-to-liquid crossover in the Galn eutectic alloy. Physical Review B, 2017, 95, .	3.2	21
449	Ultrastable Amorphous Sb ₂ Se ₃ Film. Journal of Physical Chemistry B, 2017, 121, 8188-8194.	2.6	17
450	Structural responses of metallic glasses under neutron irradiation. Scientific Reports, 2017, 7, 16739.	3.3	28

#	Article	IF	CITATIONS
451	Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox. Nature Energy, 2017, 2, 963-971.	39.5	140
452	Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles. Nano Letters, 2017, 17, 7892-7896.	9.1	34
453	Neutron and x-ray scattering study of phonon dispersion and diffuse scattering in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:m athvariant="normal">O<mml:mn>3</mml:mn><mml:mtext>â^3</mml:mtext><mml:mi>mathvariant="normal">O</mml:mi><mml:mi><mml:mn>3</mml:mn></mml:mi></mml:m></mml:mrow>. Physical Review B,</mml:mrow></mml:math>		
454	In-situ studies of large magnetostriction in DyCo2 compound by synchrotron-based high-energy X-ray diffraction. Journal of Alloys and Compounds, 2017, 724, 1030-1036.	5.5	2
455	Tuning Li-Ion Diffusion in α-LiMn _{1–<i>x</i>} Fe _{<i>x</i>} PO ₄ Nanocrystals by Antisite Defects and Embedded β-Phase for Advanced Li-Ion Batteries. Nano Letters, 2017, 17, 4934-4940.	9.1	38
456	Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials. Physical Review Letters, 2017, 119, 017601.	7.8	95
457	Cation–Eutectic Transition <i>via</i> Sublattice Melting in CulnP ₂ S ₆ /ln _{4/3} P ₂ S ₆ van der Waals Layered Crystals. ACS Nano, 2017, 11, 7060-7073.	14.6	54
458	Preparation and characterization of high Curie-temperature piezoelectric ceramics in a new Bi-based perovskite of $(1 \ \hat{a}^{-2} \ x)$ PbTiO3-xBi(Zn1/2Hf1/2)O3. Inorganic Chemistry Frontiers, 2017, 4, 1352-1355.	6.0	5
459	Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 680, 13-20.	5.6	16
460	High performance lithium-manganese-rich cathode material with reduced impurities. Nano Energy, 2017, 31, 247-257.	16.0	25
461	Platinum–nickel nanowire catalysts with composition-tunable alloying and faceting for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 12557-12568.	10.3	45
462	In-Situ and First Principles Characterization of Alpha-Manganese Oxide (MnO2). ECS Meeting Abstracts, 2017, , .	0.0	0
463	Preparation of Porous Carbon-Manganese Dioxide Nanocomposite as a Supercapacitor Electrode. International Journal of Electrochemical Science, 2016, 11, 10706-10714.	1.3	4
464	Deformation of a super-elastic NiTiNb alloy with controllable stress hysteresis. Applied Physics Letters, 2016, 108, .	3.3	4
465	Hydration and Thermal Expansion in Anatase Nanoparticles. Advanced Materials, 2016, 28, 6894-6899.	21.0	23
466	Phase coexistence and domain configuration in Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy. Applied Physics Letters, 2016, 108, .	3.3	24
467	Anomalous magnetoelastic behaviour near morphotropic phase boundary in ferromagnetic Tb1-xNdxCo2system. Applied Physics Letters, 2016, 109, 052904.	3.3	6
468	Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy. Applied Physics Letters, 2016, 108, .	3.3	84

#	Article	IF	CITATIONS
469	Tunable thermal expansion and magnetism in Zr-doped ScF3. Applied Physics Letters, 2016, 109, .	3.3	22
470	Anomalous expansion of Nb nanowires in a NiTi matrix under high pressure. Applied Physics Letters, 2016, 109, 161903.	3.3	1
471	Insight into the Capacity Fading Mechanism of Amorphous Se ₂ S ₅ Confined in Micro/Mesoporous Carbon Matrix in Ether-Based Electrolytes. Nano Letters, 2016, 16, 2663-2673.	9.1	83
472	Uniformly dispersed FeO x atomic clusters by pulsed arc plasma deposition: An efficient electrocatalyst for improving the performance of Li–O2 battery. Nano Research, 2016, 9, 1913-1920.	10.4	16
473	A new strategy to mitigate the initial capacity loss of lithium ion batteries. Journal of Power Sources, 2016, 324, 150-157.	7.8	84
474	Nanostructured Black Phosphorus/Ketjenblack–Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. Nano Letters, 2016, 16, 3955-3965.	9.1	246
475	Is alpha-V2O5 a cathode material for Mg insertion batteries?. Journal of Power Sources, 2016, 323, 44-50.	7.8	108
476	Determining Individual Phase Flow Properties in a Quench and Partitioning Steel with In Situ High-Energy X-Ray Diffraction and Multiphase Elasto-Plastic Self-Consistent Method. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5733-5749.	2.2	34
477	Structural and magnetic properties of morphotropic phase boundary involved Tb1â^'xGdxFe2 compounds. Journal of Alloys and Compounds, 2016, 680, 177-181.	5.5	8
478	Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies. Nanoscale, 2016, 8, 10749-10767.	5.6	26
479	Composition Tunability and (111)-Dominant Facets of Ultrathin Platinum–Gold Alloy Nanowires toward Enhanced Electrocatalysis. Journal of the American Chemical Society, 2016, 138, 12166-12175.	13.7	127
480	Evolution of residual stress, free volume, and hardness in the laser shock peened Ti-based metallic glass. Materials and Design, 2016, 111, 473-481.	7.0	22
481	Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes. Journal of Power Sources, 2016, 334, 213-220.	7.8	18
482	Shear-Coupled Grain Growth and Texture Development in a Nanocrystalline Ni-Fe Alloy during Cold Rolling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6632-6644.	2.2	16
483	Synthesis of Birnessite in the Presence of Phosphate, Silicate, or Sulfate. Inorganic Chemistry, 2016, 55, 10248-10258.	4.0	31
484	The Distortionâ€Adjusted Change of Thermal Expansion Behavior of Cubic Magnetic Semiconductor (Sc) Tj ETQc	10 0 0 rgB ⁻	Г/Qyerlock 1
485	In Operando XRD and TXM Study on the Metastable Structure Change of NaNi _{1/3} Fe _{1/3} Mn _{1/3} O ₂ under Electrochemical Sodiumâ€ion Intercalation. Advanced Energy Materials, 2016, 6, 1601306.	19.5	147
486	Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials. ACS Nano, 2016, 10, 8645-8659.	14.6	58

#	Article	IF	Citations
487	Pd–In intermetallic alloy nanoparticles: highly selective ethane dehydrogenation catalysts. Catalysis Science and Technology, 2016, 6, 6965-6976.	4.1	119
488	Self-Similar Random Process and Chaotic Behavior In Serrated Flow of High Entropy Alloys. Scientific Reports, 2016, 6, 29798.	3.3	21
489	Local Structural Distortion Induced Uniaxial Negative Thermal Expansion in Nanosized Semimetal Bismuth. Advanced Science, 2016, 3, 1600108.	11.2	26
490	Giant Polarization and High Temperature Monoclinic Phase in a Lead-Free Perovskite of Bi(Zn _{0.5} Ti _{0.5} O ₃ -BiFeO ₃ . Inorganic Chemistry, 2016, 55, 9513-9516.	4.0	14
491	Tuning of Thermal Stability in Layered Li(Ni _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>})O ₂ . Journal of the American Chemical Society, 2016, 138, 13326-13334.	13.7	178
492	Exploring Pore Formation of Atomic Layer-Deposited Overlayers by <i>in Situ</i> Wide-Angle X-ray Scattering. Chemistry of Materials, 2016, 28, 7082-7087.	6.7	21
493	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>Pb</mml:mi><mml:mo stretchy="false">(<mml:mi>Zr</mml:mi><mml:mo>,</mml:mo><mml:mi>Ti</mml:mi><mml:mo) e<="" td="" tj=""><td>τζά⁸1 1 0.</td><td>784314 rg</td></mml:mo)></mml:mo </mml:mrow>	τ ζ ά ⁸ 1 1 0.	784314 rg
494	Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF ₆ (M = Ca, Mn, Fe, Co, Ni, and Zn). Journal of the American Chemical Society, 2016, 138, 14530-14533.	13.7	89
495	Two 3D zinc-bpe frameworks constructed from 2-carboxyl/sulfo-terephthalate: Crystal structures and luminescent properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2016, 42, 338-344.	1.0	1
496	High strength W/TiNi micro-laminated composite with transformation-mediated ductility. Materials and Design, 2016, 106, 415-419.	7.0	19
497	A magnesium–sodium hybrid battery with high operating voltage. Chemical Communications, 2016, 52, 8263-8266.	4.1	48
498	High-energy x-ray scattering studies of battery materials. MRS Bulletin, 2016, 41, 460-465.	3 . 5	8
499	Synchrotron high energy X-ray diffraction study of microstructure evolution of severely cold drawn NiTi wire during annealing. Acta Materialia, 2016, 115, 35-44.	7.9	63
500	Achieving Superior Two-Way Actuation by the Stress-Coupling of Nanoribbons and Nanocrystalline Shape Memory Alloy. ACS Applied Materials & Shape Memory Access Applied Materials & Shape Memory Access Ac	8.0	10
501	Experimental investigation of the ordering pathway in a Ni-33Âat.%Cr alloy. Acta Materialia, 2016, 115, 372-384.	7.9	42
502	Fabrication of ultrafine manganese oxide-decorated carbon nanofibers for high-performance electrochemical capacitors. Electrochimica Acta, 2016, 211, 524-532.	5.2	13
503	New Insights into the Negative Thermal Expansion: Direct Experimental Evidence for the "Guitar-String―Effect in Cubic ScF ₃ . Journal of the American Chemical Society, 2016, 138, 8320-8323.	13.7	115
504	Versatile nickel–tungsten bimetallics/carbon nanofiber catalysts for direct conversion of cellulose to ethylene glycol. Green Chemistry, 2016, 18, 3949-3955.	9.0	36

#	Article	IF	Citations
505	Investigation of deformation twinning under complex stress states in a rolled magnesium alloy. Journal of Alloys and Compounds, 2016, 683, 619-633.	5.5	27
506	Sodium Ion Transport Mechanisms in Antiperovskite Electrolytes Na ₃ OBr and Na ₄ OI ₂ : An <i>in Situ</i> Neutron Diffraction Study. Inorganic Chemistry, 2016, 55, 5993-5998.	4.0	68
507	Stress-induced phase transformation in a Ti–17Nb–1Cr alloy. Materials Research Letters, 2016, 4, 161-167.	8.7	9
508	Magnetic field-induced changes of lattice parameters and thermal expansion behavior of the CoMnSi compound. Journal of Materials Science, 2016, 51, 1896-1902.	3.7	6
509	Sequence-Dependent Structure/Function Relationships of Catalytic Peptide-Enabled Gold Nanoparticles Generated under Ambient Synthetic Conditions. Journal of the American Chemical Society, 2016, 138, 540-548.	13.7	84
510	Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering. Nano Letters, 2016, 16, 715-720.	9.1	50
511	In-situ studies of low-field large magnetostriction in Tb1â^'xDyxFe2 compounds by synchrotron-based high-energy x-ray diffraction. Journal of Alloys and Compounds, 2016, 658, 372-376.	5.5	13
512	Understanding Pt Nanoparticle Anchoring on Graphene Supports through Surface Functionalization. ACS Catalysis, 2016, 6, 2642-2653.	11.2	172
513	Probing cation intermixing in Li ₂ SnO ₃ . RSC Advances, 2016, 6, 31559-31564.	3.6	10
514	A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts. Green Chemistry, 2016, 18, 3558-3566.	9.0	62
515	Retaining Large and Adjustable Elastic Strains of Kilogram-Scale Nb Nanowires. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 2917-2922.	8.0	21
516	Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-Edge X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 831-840.	3.1	146
517	Observation of magnetic-field-induced transformation in MnCo0.78Fe0.22Ge alloys with colossal strain output and large magnetocaloric effect. Journal of Magnetism and Magnetic Materials, 2016, 406, 179-183.	2.3	9
518	In-situ investigation of stress-induced martensitic transformation in Ti–Nb binary alloys with low Young's modulus. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 442-448.	5.6	50
519	Preparation of TiO 2 –reduced graphene oxide–Pd nanocomposites for phenol photocatalytic degradation. Ceramics International, 2016, 42, 1339-1344.	4.8	16
520	Load transfer in phase transforming matrix–nanowire composite revealing the significant load carrying capacity of the nanowires. Materials and Design, 2016, 89, 721-726.	7.0	13
521	Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction. Nano Energy, 2016, 19, 522-531.	16.0	66
522	Low-Overpotential Li-O2 Battery: An Application of Nanostructured Cathode Architecture By Atomic Layer Deposition. ECS Meeting Abstracts, 2016, , .	0.0	0

#	Article	IF	Citations
523	In Searching for Electrolyte Compatible with NaMnO2 Cathode Material in Sodium Ion Battery. ECS Meeting Abstracts, 2016, , .	0.0	1
524	Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with <i>in situ</i> tunability. Review of Scientific Instruments, 2015, 86, 093901.	1.3	7
525	Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect. Scientific Reports, 2015, 5, 8892.	3.3	16
526	Stress transfer during different deformation stages in a nano-precipitate-strengthened Ni-Ti shape memory alloy. Applied Physics Letters, 2015, 107, .	3.3	9
527	Theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena. Npj Computational Materials, $2015,1,.$	8.7	17
528	Highâ€Curie <i>â€</i> Temperature Ferromagnetism in (Sc,Fe)F ₃ Fluorides and its Dependence on Chemical Valence. Advanced Materials, 2015, 27, 4592-4596.	21.0	25
529	Reversible Modulation of Surface Plasmons in Gold Nanoparticles Enabled by Surface Redox Chemistry. Angewandte Chemie - International Edition, 2015, 54, 8948-8951.	13.8	20
530	A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess. Scientific Reports, 2015, 5, 8357.	3.3	23
531	Silver chlorobromide nanocubes with significantly improved uniformity: synthesis and assembly into photonic crystals. Journal of Materials Chemistry C, 2015, 3, 58-65.	5.5	24
532	Effect of Calcination Conditions on Porous Reduced Titanium Oxides and Oxynitrides via a Preceramic Polymer Route. Inorganic Chemistry, 2015, 54, 2802-2808.	4.0	14
533	Structure Identification of Two-Dimensional Colloidal Semiconductor Nanocrystals with Atomic Flat Basal Planes. Nano Letters, 2015, 15, 4477-4482.	9.1	68
534	Direct Synthetic Control over the Size, Composition, and Photocatalytic Activity of Octahedral Copper Oxide Materials: Correlation Between Surface Structure and Catalytic Functionality. ACS Applied Materials & Diterfaces, 2015, 7, 13238-13250.	8.0	34
535	Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses. Intermetallics, 2015, 67, 132-137.	3.9	6
536	Phase Transformations and Formation of Ultra-Fine Microstructure During Hydrogen Sintering and Phase Transformation (HSPT) Processing of Ti-6Al-4V. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5546-5560.	2,2	34
537	Discovery of a ã€^2 1 0〉-fiber texture in medical-grade metastable beta titanium wire. Acta Materialia, 2015, 87, 390-398.	7.9	12
538	Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogenâ€Doped Carbon Composites For Highâ€Performance Lithium–Sulfur Battery Cathodes. Angewandte Chemie - International Edition, 2015, 54, 4325-4329.	13.8	686
539	High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na _{0.8} Ni _{0.4} Ti _{0.6} O ₂ . Energy and Environmental Science, 2015, 8, 1237-1244.	30.8	215
540	Gd5(Si,Ge)4 thin film displaying large magnetocaloric and strain effects due to magnetostructural transition. Applied Physics Letters, 2015, 106, .	3.3	27

#	Article	IF	CITATIONS
541	A generalized method for high throughput in-situ experiment data analysis: An example of battery materials exploration. Journal of Power Sources, 2015, 279, 246-251.	7.8	11
542	Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nature Communications, 2015, 6, 6127.	12.8	201
543	Insights from the Lattice-Strain Evolution on Deformation Mechanisms in Metallic-Glass-Matrix Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2431-2442.	2.2	23
544	In situ high-energy synchrotron X-ray diffraction revealing precipitation reaction kinetics of silver ions with mixed halide ions. Journal of Materials Chemistry C, 2015, 3, 7492-7498.	5.5	8
545	Solid-Solution CrCoCuFeNi High-Entropy Alloy Thin Films Synthesized by Sputter Deposition. Materials Research Letters, 2015, 3, 203-209.	8.7	127
546	Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni–Mn–Ga multifunctional alloy. Journal Physics D: Applied Physics, 2015, 48, 265304.	2.8	13
547	Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts. ACS Nano, 2015, 9, 5082-5092.	14.6	96
548	A nano lamella NbTi–NiTi composite with high strength. Materials Science & Direction A: Structural Materials: Properties, Microstructure and Processing, 2015, 633, 121-124.	5.6	12
549	Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt–Ru nanoalloy catalysts. Nanoscale, 2015, 7, 8122-8134.	5.6	19
550	In Situ High-Energy X-Ray Diffraction Study of Load Partitioning in Nb/NiTi Nanocomposite Plate. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3271-3275.	2.2	2
551	Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1860-1877.	2.2	11
552	Evolution of Intergranular Stresses in a Martensitic and an Austenitic NiTi Wire During Loading–Unloading Tensile Deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2476-2490.	2,2	7
553	Large Photovoltage and Controllable Photovoltaic Effect in PbTiO ₃ â€Bi(Ni _{2/3+<i>x</i>} Nb _{1/3â€"<i>x</i>})O _{3â€"} <i><sub 1,="" 1400051.<="" 2015,="" advanced="" electronic="" ferroelectrics.="" materials,="" td=""><td>>fka/sub><</td><td>:/i56</td></sub></i>	>fka/sub><	:/i56
554	The migration mechanism of transition metal ions in LiNi _{0.5} Mn _{1.5} O ₄ . Journal of Materials Chemistry A, 2015, 3, 13031-13038.	10.3	20
555	Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery. Nanotechnology, 2015, 26, 164003.	2.6	25
556	In situ high-energy synchrotron X-ray diffraction studies and first principles modeling of α-MnO ₂ electrodes in Li–O ₂ and Li-ion coin cells. Journal of Materials Chemistry A, 2015, 3, 7389-7398.	10.3	43
557	On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments. Nanoscale, 2015, 7, 17902-17922.	5.6	24
558	Stability of Catalyzed Magnesium Hydride Nanocrystalline During Hydrogen Cycling. Part II: Microstructure Evolution. Journal of Physical Chemistry C, 2015, 119, 22272-22280.	3.1	25

#	Article	IF	Citations
559	PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries. Nano Energy, 2015, 18, 253-264.	16.0	89
560	Identifying the Atomic-Level Effects of Metal Composition on the Structure and Catalytic Activity of Peptide-Templated Materials. ACS Nano, 2015, 9, 11968-11979.	14.6	28
561	Deformation behavior of Nb nanowires in TiNiCu shape memory alloy matrix. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 646, 52-56.	5.6	11
562	Morphotropic phase boundary and magnetoelastic behaviour in ferromagnetic Tb1â^'xGdxFe2 system. Applied Physics Letters, 2015, 106, .	3.3	24
563	Deformation of a Ti-Nb alloy containing \hat{l}_{\pm} "-martensite and omega phases. Applied Physics Letters, 2015, 106, .	3.3	34
564	Strain-induced dimensionality crossover of precursor modulations in Ni2MnGa. Applied Physics Letters, 2015, 106, 021910.	3.3	3
565	Superelasticity by reversible variants reorientation in a Ni–Mn–Ga microwire with bamboo grains. Acta Materialia, 2015, 99, 373-381.	7.9	44
566	Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy. Journal of Alloys and Compounds, 2015, 647, 1081-1085.	5.5	54
567	Dynamic Lithium Intercalation/Deintercalation in 18650 Lithium Ion Battery by Time-Resolved High Energy Synchrotron X-Ray Diffraction. Journal of the Electrochemical Society, 2015, 162, A2195-A2200.	2.9	17
568	Effects of Temperature on Serrated Flows of Al0.5CoCrCuFeNi High-Entropy Alloy. Jom, 2015, 67, 2314-2320.	1.9	47
569	New Insights into the Performance Degradation of Fe-Based Layered Oxides in Sodium-Ion Batteries: Instability of Fe ³⁺ /Fe ⁴⁺ Redox in α-NaFeO ₂ . Chemistry of Materials, 2015, 27, 6755-6764.	6.7	162
570	Birnessite-Type MnO ₂ Nanosheets with Layered Structures Under High Pressure: Elimination of Crystalline Stacking Faults and Oriented Laminar Assembly. Small, 2015, 11, 300-305.	10.0	41
571	An in-situ, high-energy X-ray diffraction study of the thermal stability of delithiated LiVPO4F. Journal of Power Sources, 2015, 273, 1250-1255.	7.8	18
572	An experimental study of the (Ti–6Al–4V)–xH phase diagram using in situ synchrotron XRD and TGA/DSC techniques. Acta Materialia, 2015, 84, 29-41.	7.9	78
573	New route toward integrating large nickel nanocrystals onto mesoporous carbons. Applied Catalysis B: Environmental, 2015, 165, 94-102.	20.2	21
574	Effect of heat treatment temperature on nitinol wire. Applied Physics Letters, 2014, 105, .	3.3	8
575	Insight into Sulfur Reactions in Li–S Batteries. ACS Applied Materials & amp; Interfaces, 2014, 6, 21938-21945.	8.0	120
576	Bi-O covalency in PbTiO3-BilnO3 with enhanced ferroelectric properties: Synchrotron radiation diffraction and first-principles study. Applied Physics Letters, 2014, 104, .	3.3	13

#	Article	IF	Citations
577	Evolution of structure in Na0.5Bi0.5TiO3 single crystals with BaTiO3. Applied Physics Letters, 2014, 105,	3.3	28
578	Gallium Sulfide–Singleâ€Walled Carbon Nanotube Composites: Highâ€Performance Anodes for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2014, 24, 5435-5442.	14.9	102
579	<i>In situ</i> synchrotron X-ray diffraction study of deformation behavior and load transfer in a Ti2Ni-NiTi composite. Applied Physics Letters, 2014, 105, .	3.3	14
580	Reactive spark plasma sintering (SPS) of nitride reinforced titanium alloy composites. Journal of Alloys and Compounds, 2014, 617, 933-945.	5.5	47
581	Novel Ti ₃ Sn based high damping material with high strength. Materials Research Innovations, 2014, 18, S4-584-S4-587.	2.3	2
582	In situ synchrotron investigation of the deformation behavior of nanolamellar Ti5Si3/TiNi composite. Scripta Materialia, 2014, 78-79, 53-56.	5.2	21
583	Electrically Conductive Ultrananocrystalline Diamondâ€Coated Natural Graphiteâ€Copper Anode for New Long Life Lithiumâ€Ion Battery. Advanced Materials, 2014, 26, 3724-3729.	21.0	51
584	Grain size effect on the R-phase transformation of nanocrystalline NiTi shape memory alloys. Journal of Materials Science, 2014, 49, 4643-4647.	3.7	35
585	Kinetics of Magnetoelastic Twin-Boundary Motion in Ferromagnetic Shape-Memory Alloys. Physical Review Letters, 2014, 112, .	7.8	13
586	Average and local atomic-scale structure in BaZr _{<i>x</i>} Ti _{1â^'<i>x</i>} O ₃ (<i>x</i> = 0.10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and Raman spectroscopy. Journal of Physics Condensed Matter, 2014, 26, 065901.	1.8	103
587	Brownmillerite Ca2Co2O5: Synthesis, Stability, and Re-entrant Single Crystal to Single Crystal Structural Transitions. Chemistry of Materials, 2014, 26, 7172-7182.	6.7	33
588	Paving the Way for Using Li ₂ S Batteries. ChemSusChem, 2014, 7, 2457-2460.	6.8	24
589	Heterobimetallic Metal–Organic Framework as a Precursor to Prepare a Nickel/Nanoporous Carbon Composite Catalyst for 4â€Nitrophenol Reduction. ChemCatChem, 2014, 6, 3084-3090.	3.7	27
590	Failure Study of Commercial LiFePO ₄ Cells in over-Discharge Conditions Using Electrochemical Impedance Spectroscopy. Journal of the Electrochemical Society, 2014, 161, A620-A632.	2.9	52
591	A distinct atomic structure–catalytic activity relationship in 3–10 nm supported Au particles. Nanoscale, 2014, 6, 532-538.	5.6	26
592	Unexpected High-Temperature Stability of \hat{l}^2 -Zn ₄ Sb ₃ Opens the Door to Enhanced Thermoelectric Performance. Journal of the American Chemical Society, 2014, 136, 1497-1504.	13.7	115
593	Migration of Mn cations in delithiated lithium manganese oxides. Physical Chemistry Chemical Physics, 2014, 16, 20697-20702.	2.8	22
594	A XANES study of LiVPO4F: a factor analysis approach. Physical Chemistry Chemical Physics, 2014, 16, 3254.	2.8	19

#	Article	IF	Citations
595	Li–Se battery: absence of lithium polyselenides in carbonate based electrolyte. Chemical Communications, 2014, 50, 5576-5579.	4.1	155
596	Quantitative determination of fragmentation kinetics and thermodynamics of colloidal silver nanowires by in situ high-energy synchrotron X-ray diffraction. Nanoscale, 2014, 6, 365-370.	5.6	19
597	Molecularâ€Level Insights into the Reactivity of Siloxaneâ€Based Electrolytes at a Lithiumâ€Metal Anode. ChemPhysChem, 2014, 15, 2077-2083.	2.1	9
598	Facile route fabrication of nickel based mesoporous carbons with high catalytic performance towards 4-nitrophenol reduction. Green Chemistry, 2014, 16, 2273.	9.0	102
599	Hydrogen Storage Properties of Magnesium Hydride with V-Based Additives. Journal of Physical Chemistry C, 2014, 118, 21778-21784.	3.1	34
600	GeO ₂ â€"SnCoC Composite Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 3960-3967.	3.1	30
601	In situ diffraction of highly dispersed supported platinum nanoparticles. Catalysis Science and Technology, 2014, 4, 3053-3063.	4.1	42
602	Probing Thermally Induced Decomposition of Delithiated Li _{1.2â€"<i>x</i>} Ni _{0.15} Mn _{0.55} Co _{0.1} O ₂ by in Situ High-Energy X-ray Diffraction. ACS Applied Materials & Decomposition of Delithiated LiO _{0.1} O _{0.1<!--</td--><td>8.0</td><td>47</td>}	8.0	47
603	Differentiating allotropic LiCoO2/Li2Co2O4: A structural and electrochemical study. Journal of Power Sources, 2014, 271, 97-103.	7.8	24
604	Zero Thermal Expansion and Ferromagnetism in Cubic Sc _{1–<i>x</i>} M _{<i>x</i>} F ₃ (M = Ga, Fe) over a Wide Temperature Range. Journal of the American Chemical Society, 2014, 136, 13566-13569.	13.7	144
605	High-energy X-ray diffuse scattering studies on deformation-induced spatially confined martensitic transformations in multifunctional Ti–24Nb–4Zr–8Sn alloy. Acta Materialia, 2014, 81, 476-486.	7.9	29
606	Goss Texture Evolution of Grain Oriented Silicon Steel by High-Energy X-ray Diffraction. Acta Metallurgica Sinica (English Letters), 2014, 27, 530-533.	2.9	2
607	<i>In Situ</i> X-ray Near-Edge Absorption Spectroscopy Investigation of the State of Charge of All-Vanadium Redox Flow Batteries. ACS Applied Materials & Type 1792 (1998). All-Vanadium Redox Flow Batteries. ACS Applied Materials & Type 1998 (1998). All-Vanadium Redox Flow Batteries. ACS Applied Materials & Type 1998 (1998). All-Vanadium Redox Flow Batteries. ACS Applied Materials & Type 1998 (1998). All-Vanadium Redox Flow Batteries. ACS Applied Materials & Type 1998 (1998). All-Vanadium Redox Flow Batteries. ACS Applied Materials & Type 1998 (1998). All-Vanadium Redox Flow Batteries. ACS Applied Materials & Type 1998 (1998). All-Vanadium Redox Flow Batteries. ACS Applied Materials & Type 1998 (1998). All-Vanadium Redox Flow Batteries. ACS Applied Materials & Type 1998 (1998). All-Vanadium Redox Flow Batteries. ACS Applied Materials & Type 1998 (1998). All-Vanadium Redox Flow Batteries. ACS Applied Materials & Type 1998 (1998). All-Vanadium Redox Flow Batteries. ACS Applied Materials & Type 1998 (1998). All-Vanadium Redox Flow Batteries. ACS Applied Materials & Type 1998 (1998). All-Vanadium Redox Flow Batteries. According to the Page 1998 (1998). All-Vanadium Redox Flow Batteries. All-Vanadium Redox Flow Batteries (1998). All-V	8.0	37
608	Improved cyclability of a lithium–sulfur battery using POP–Sulfur composite materials. RSC Advances, 2014, 4, 27518-27521.	3.6	25
609	Solving the nanostructure problem: exemplified on metallic alloy nanoparticles. Nanoscale, 2014, 6, 10048-10061.	5. 6	32
610	Insights into the Phase Formation Mechanism of [0.5Li _{0.5} Mn _{0.5} O ₂] Battery Materials. Journal of the Electrochemical Society, 2014, 161, A1-A5.	2.9	40
611	Layered P2/O3 Intergrowth Cathode: Toward High Power Naâ€lon Batteries. Advanced Energy Materials, 2014, 4, 1400458.	19.5	191
612	Ordered Structure and Thermal Expansion in Tungsten Bronze Pb ₂ K _{0.5} Li _{0.5} Nb ₅ O ₁₅ . Inorganic Chemistry, 2014, 53, 9174-9180.	4.0	26

#	Article	IF	CITATIONS
613	High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithium-ion batteries. Journal of Power Sources, 2014, 263, 7-12.	7.8	15
614	Covalent heterogenization of discrete bis (8-quinolinolato) dioxomolybdenum (VI) and dioxotungsten (VI) complexes by a metal-template/metal-exchange method: Cyclooctene epoxidation catalysts with enhanced performances. Journal of Molecular Catalysis A, 2014, 392, 134-142.	4.8	3
615	In situ X-ray diffraction study of dehydrogenation of MgH2 with Ti-based additives. International Journal of Hydrogen Energy, 2014, 39, 5868-5873.	7.1	32
616	Influence of Annealing and Pre-Straining on the Coupling Effect of a TiNi-Nb Nanowire Composite. Materials Science Forum, 2014, 787, 307-312.	0.3	2
617	An Ultrastable Anode for Longâ€Life Roomâ€Temperature Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 8963-8969.	13.8	126
618	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">LaSrVO</mml:mi></mml:mrow><mml:mn>4</mml:mn></mml:msub></mml:math>: A candidate for the spin-orbital liquid state. Physical Review B, 2014, 89, .</pre>	3.2	9
619	Thermodynamic Destabilization of Magnesium Hydride Using Mg-Based Solid Solution Alloys. Journal of Physical Chemistry C, 2014, 118, 11526-11535.	3.1	55
620	Local strain matching between Nb nanowires and a phase transforming NiTi matrix in an in-situ composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 610, 6-9.	5.6	16
621	Formation of Li2MnO3 investigated by in situ synchrotron probes. Journal of Power Sources, 2014, 266, 341-346.	7.8	20
622	Rate-Dependent, Li-Ion Insertion/Deinsertion Behavior of LiFePO ₄ Cathodes in Commercial 18650 LiFePO ₄ Cells. ACS Applied Materials & Substitution (1888) and Substitution (1888)	8.0	57
623	Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction. Acta Materialia, 2014, 76, 342-354.	7.9	53
624	The Structural Evolution of V2O5 Nanocystals during Electrochemical Cycling Studied Using In operando Synchrotron Techniques. Electrochimica Acta, 2014, 136, 318-322.	5.2	17
625	High damping NiTi/Ti3Sn in situ composite with transformation-mediated plasticity. Materials & Design, 2014, 63, 460-463.	5.1	17
626	A novel multifunctional NiTi/Ag hierarchical composite. Scientific Reports, 2014, 4, 5267.	3.3	19
627	Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix. Scientific Reports, 2014, 4, 6753.	3.3	18
628	New route toward building active ruthenium nanoparticles on ordered mesoporous carbons with extremely high stability. Scientific Reports, 2014, 4, 4540.	3.3	38
629	Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li–O2 batteries. Physical Chemistry Chemical Physics, 2013, 15, 5572.	2.8	76
630	Synthesis of Porous Carbon Supported Palladium Nanoparticle Catalysts by Atomic Layer Deposition: Application for Rechargeable Lithium–O ₂ Battery. Nano Letters, 2013, 13, 4182-4189.	9.1	184

#	Article	IF	CITATIONS
631	Low-field large magnetostriction in DyCo2 due to field-induced rearrangement of tetragonal variants. Applied Physics Letters, 2013, 103, 111903.	3.3	13
632	In situ high-energy X-ray diffraction studies of deformation-induced phase transformation in Ti-based amorphous alloy composites containing ductile dendrites. Acta Materialia, 2013, 61, 5008-5017.	7.9	56
633	Examining Hysteresis in Composite <i>xx</i> Li ₂ MnO ₃ ·(1– <i>x</i>)LiMO ₂ Cathode Structures. Journal of Physical Chemistry C, 2013, 117, 6525-6536.	3.1	234
634	Stress induced martensite transformation in Co–28Cr–6Mo alloy during room temperature deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 580, 209-216.	5.6	30
635	In Situ Small-Angle X-ray Scattering from Pd Nanoparticles Formed by Thermal Decomposition of Organo-Pd Catalyst Precursors Dissolved in Hydrocarbons. Journal of Physical Chemistry C, 2013, 117, 22627-22635.	3.1	16
636	Direct evidence of correlations between relaxor behavior and polar nano-regions in relaxor ferroelectrics: A case study of lead-free piezoelectrics Na0.5Bi0.5TiO3- <i>x</i> %BaTiO3. Applied Physics Letters, 2013, 103, .	3.3	50
637	A Transforming Metal Nanocomposite with Large Elastic Strain, Low Modulus, and High Strength. Science, 2013, 339, 1191-1194.	12.6	241
638	In Situ Synchrotron Xâ€Ray Techniques for Realâ€Time Probing of Colloidal Nanoparticle Synthesis. Particle and Particle Systems Characterization, 2013, 30, 399-419.	2.3	65
639	Evolution of lattice strain and phase transformation of \hat{l}^2 III Ti alloy during room temperature cyclic tension. Acta Materialia, 2013, 61, 6830-6842.	7.9	20
640	Study of Thermal Decomposition of Li _{1â€x} (Ni _{1/3} O _{1/3} \Using Inâ€Situ Highâ€Energy Xâ€Ray Diffraction. Advanced Energy Materials, 2013, 3, 729-736.	19.5	48
641	Atomic pair distribution functions analysis of disordered low-Z materials. Physical Chemistry Chemical Physics, 2013, 15, 8544.	2.8	37
642	Mechanisms related to different generations of $\hat{I}^3\hat{a}\in^2$ precipitation during continuous cooling of a nickel base superalloy. Acta Materialia, 2013, 61, 280-293.	7.9	111
643	The Effect of Oxygen Crossover on the Anode of a Li–O ₂ Battery using an Etherâ€Based Solvent: Insights from Experimental and Computational Studies. ChemSusChem, 2013, 6, 51-55.	6.8	231
644	In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery. Journal of Power Sources, 2013, 230, 32-37.	7.8	91
645	Influence of short time anneal on recoverable strain of beta III titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 172-179.	5.6	14
646	First-order magnetostructural transformation in Fe doped Mn–Co–Ge alloys. Journal of Alloys and Compounds, 2013, 577, 486-490.	5.5	32
647	<2 1 0> Texture in two cold-drawn beta Ti alloys. Scripta Materialia, 2013, 68, 518-521.	5.2	8
648	Large enhancements of magnetic anisotropy in oxide-free iron nanoparticles. Journal of Magnetism and Magnetic Materials, 2013, 331, 156-161.	2.3	22

#	Article	IF	CITATIONS
649	In-Situ Annealing Study of Transformation of $\hat{l}\pm$ and \hat{l}^3 Texture of Interstitial-Free Steel Sheet by High-Energy X-Ray Diffraction. Journal of Iron and Steel Research International, 2013, 20, 38-41.	2.8	14
650	Atomic-scale mechanisms of tension–compression asymmetry in a metallic glass. Acta Materialia, 2013, 61, 1843-1850.	7.9	31
651	In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: application for rechargeable Li–O2 batteries. Energy and Environmental Science, 2013, 6, 519.	30.8	175
652	Unusual Transformation from Strong Negative to Positive Thermal Expansion in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>PbTiO</mml:mi><mml:mn></mml:mn></mml:msub><mml:mtext mathvariant="normal">â^²</mml:mtext><mml:msub><mml:mi>BiFeO</mml:mi><mml:mn>3</mml:mn>3</mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msu< td=""><td>7.8 sub><td>102 l:math>Pero</td></td></mml:msu<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:math>	7.8 sub> <td>102 l:math>Pero</td>	102 l:math>Pero
653	New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. Nature Communications, 2013, 4, 1513.	12.8	115
654	Heterogeneous in-situ nanostructure contributes to the thermoelectric performance of Zn4Sb3. Applied Physics Letters, 2013, 102, 163902.	3.3	16
655	Dy <mml:math inline"="" xmins:mml="http://www.w3.org/1998/Math/Math/Math/Nil
display="><mml:msub><mml:mrow /><mml:mrow><mml:mn>1</mml:mn><mml:mo>a^*</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mrow </mml:msub> xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< td=""><td><‡∩2ml:ma</td><td>th>Tb<mml:< td=""></mml:<></td></mml:mrow<></mml:msub></mml:math>	< ‡∩2 ml:ma	t h >Tb <mml:< td=""></mml:<>
656	Interface coherency strain relaxation due to plastic deformation in single crystal Ni-base superalloys. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2013, 568, 83-87.	5.6	7
657	Giant Enhancement and Anomalous Thermal Hysteresis of Saturation Moment in Magnetic Nanoparticles Embedded in Multiwalled Carbon Nanotubes. Nano Letters, 2013, 13, 2993-2996.	9.1	4
658	Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: application for rechargeable Li–O2 batteries. RSC Advances, 2013, 3, 8276.	3.6	54
659	Hydrogen sorption in orthorhombic Mg hydride at ultra-low temperature. International Journal of Hydrogen Energy, 2013, 38, 8328-8341.	7.1	36
660	(De)Lithiation Mechanism of Li/SeS _{<i>x</i>} (<i>x</i> > = 0–7) Batteries Determined by in Situ Synchrotron X-ray Diffraction and X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2013, 135, 8047-8056.	13.7	332
661	In-situ high-energy synchrotron X-ray diffraction study of micromechanical behavior of multiple phases in Ni47Ti44Nb9 shape memory alloy. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 458-465.	5. 6	26
662	Effect of the metallic glass volume fraction on the mechanical properties of Zr-based metallic glass reinforced with porous W composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 152-158.	5.6	7
663	Failure Investigation of LiFePO ₄ Cells in Over-Discharge Conditions. Journal of the Electrochemical Society, 2013, 160, A793-A804.	2.9	71
664	A Study of High-Voltage LiNi _{0.5} Mn _{1.5} O ₄ and High-Capacity Li _{1.5} Ni _{0.25} Mn _{0.75} O _{2.5} Blends. Journal of the Electrochemical Society, 2013, 160, A1079-A1083.	2.9	14
665	Mechanically alloyed composite anode materials based on SiO–SnxFeyCz for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4376.	10.3	24
666	Synthesis, Characterization, and Structural Modeling of Highâ€Capacity, Dual Functioning MnO ₂ Electrode/Electrocatalysts for Liâ€O ₂ Cells. Advanced Energy Materials, 2013, 3, 75-84.	19.5	111

#	Article	IF	CITATIONS
667	In situisothermal crystallisation of Zr48Cu36Al8Ag8bulk metallic glass based on pair distribution function analyses. Materials Research Innovations, 2013, 17, 89-93.	2.3	3
668	Electromechanical responses of Cu strips. Journal of Applied Physics, 2013, 113, .	2.5	7
669	Electrochemical Study and Material Characterization of <i>>x</i> >SiO · (1- <i>>x</i>)Sn ₃₀ Co ₃₀ C ₄₀ Composite Anode Material for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A882-A887.	2.9	8
670	Enhancing glass-forming ability via frustration of nano-clustering in alloys with a high solvent content. Scientific Reports, 2013, 3, 1983.	3.3	31
671	Incommensurate antiferromagnetism in a pure spin system via cooperative organization of local and itinerant moments. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3287-3292.	7.1	29
672	New intrinsic mechanism on gum-like superelasticity of multifunctional alloys. Scientific Reports, 2013, 3, 2156.	3. 3	57
673	Texture evolution during nitinol martensite detwinning and phase transformation. Applied Physics Letters, 2013, 103, .	3.3	27
674	A Novel Stretchable Coaxial NiTiâ€Sheath/Cuâ€Core Composite with High Strength and High Conductivity. Advanced Materials, 2013, 25, 1199-1202.	21.0	18
675	Nanostructured Nb reinforced NiTi shape memory alloy composite with high strength and narrow hysteresis. Applied Physics Letters, 2013, 102, 231905.	3.3	13
676	Transition in superelasticity for Ni _{55â^x} Co _x Fe ₁₈ Ga ₂₇ alloys due to strain glass transition. Europhysics Letters, 2012, 98, 46004.	2.0	32
677	Ambient-stable tetragonal phase in silver nanostructures. Nature Communications, 2012, 3, 971.	12.8	119
678	Superelastic memory effect in <i>in-situ</i> NbTi-nanowire-NiTi nanocomposite. Applied Physics Letters, 2012, 101, .	3.3	6
679	<i>In situ</i> X-ray diffraction study of deformation behavior in a Fe/NiTi composite. Applied Physics Letters, 2012, 101, .	3.3	7
680	Failure Investigation of LiFePO ₄ Cells under Overcharge Conditions. ECS Transactions, 2012, 41, 1-12.	0.5	7
681	High-resolution Transmission Electron Microscopy Study of Compositional Effects on the Atomic Structure of Multiferroic PbTi1-xFexO3 Nanopowders. Microscopy and Microanalysis, 2012, 18, D§pani89ff-centering of Cr <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>0.4</td><td>0</td></mml:math>	0.4	0
682	display="inline"> <mml:msup><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msup> ions and short-range magneto-electric clusters in CdCr <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> S <mml:math< td=""><td>3.2</td><td>28</td></mml:math<>	3.2	28
683	/> <mml:mn>2</mml:mn> S		

#	Article	IF	Citations
685	New Anode Material Based on SiO–Sn _{<i>x</i>} Co _{<i>y</i>} C _{<i>z</i>} for Lithium Batteries. Chemistry of Materials, 2012, 24, 4653-4661.	6.7	50
686	Failure Investigation of LiFePO ₄ Cells under Overcharge Conditions. Journal of the Electrochemical Society, 2012, 159, A678-A687.	2.9	66
687	Insight into the local structure of barium indate oxide-ion conductors: An X-ray total scattering study. Dalton Transactions, 2012, 41, 50-53.	3.3	19
688	Noncrystallographic Atomic Arrangement Driven Enhancement of the Catalytic Activity of Au Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 26668-26673.	3.1	9
689	Role of Support–Nanoalloy Interactions in the Atomic-Scale Structural and Chemical Ordering for Tuning Catalytic Sites. Journal of the American Chemical Society, 2012, 134, 15048-15060.	13.7	89
690	Morphological and Crystalline Evolution of Nanostructured MnO ₂ and Its Application in Lithiumâ€"Air Batteries. ACS Nano, 2012, 6, 8067-8077.	14.6	266
691	Structural coherence and ferroelectric order in nanosized multiferroic YMnO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review B, 2012, 86, .	3.2	10
692	Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Materials, 2012, 11, 942-947.	27.5	921
693	Changes in the atomic structure through glass transition observed by X-ray scattering. Intermetallics, 2012, 23, 111-115.	3.9	4
694	Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. Journal of Power Sources, 2012, 218, 21-27.	7.8	378
695	Early Stage Formation of Iron Oxyhydroxides during Neutralization of Simulated Acid Mine Drainage Solutions. Environmental Science & Environmental Sci	10.0	74
696	Real-Time Probing of the Synthesis of Colloidal Silver Nanocubes with Time-Resolved High-Energy Synchrotron X-ray Diffraction. Journal of Physical Chemistry C, 2012, 116, 11842-11847.	3.1	38
697	A magnetoelectric multiglass state in multiferroic YbFe2O4. Journal of Applied Physics, 2012, 111, 07D902.	2.5	13
698	A synchrotron X-ray diffraction study on the phase transformation kinetics and texture evolution of a TRIP steel subjected to torsional loading. Acta Materialia, 2012, 60, 6703-6713.	7.9	47
699	Direct Synthesis of Bimetallic Pd3Ag Nanoalloys from Bulk Pd3Ag Alloy. Inorganic Chemistry, 2012, 51, 13281-13288.	4.0	7
700	Thermal transformation of \hat{l} -MnO2 nanoflowers studied by in-situ TEM. Science China Chemistry, 2012, 55, 2346-2352.	8.2	12
701	Atomic-Scale Mechanisms of the Glass-Forming Ability in Metallic Glasses. Physical Review Letters, 2012, 109, 105502.	7.8	103
702	Reply to comment on †Molecular arrangement in water: random but not quite†M. Journal of Physics Condensed Matter, 2012, 24, 338002.	1.8	1

#	Article	IF	CITATIONS
703	Ultrahigh electromechanical response in $(1\hat{a}^*\langle i\rangle \times \langle i\rangle)$ (Na0.5Bi0.5)TiO3- $\langle i\rangle \times \langle i\rangle$ BaTiO3 single-crystals via polarization extension. Journal of Applied Physics, 2012, 111, .	2.5	55
704	Molecular arrangement in water: random but not quite. Journal of Physics Condensed Matter, 2012, 24, 155102.	1.8	32
705	Enhanced Electron Extraction from Template-Free 3D Nanoparticulate Transparent Conducting Oxide (TCO) Electrodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4419-4427.	8.0	46
706	High-Energy Synchrotron X-Ray Diffraction and Its Application to InÂSitu Structural Phase-Transition Studies in Complex Sample Environments. Jom, 2012, 64, 140-149.	1.9	36
707	High-Energy Synchrotron X-Ray Diffraction for InÂSitu Study of Phase Transformation in Shape-Memory Alloys. Jom, 2012, 64, 150-160.	1.9	6
708	InÂSitu Three-Dimensional Reciprocal-Space Mapping of Diffuse Scattering Intensity Distribution and Data Analysis for Precursor Phenomenon in Shape-Memory Alloy. Jom, 2012, 64, 167-173.	1.9	7
709	Facile synthesis of gamma-MnS hierarchical nanostructures with high photoluminescence. Ceramics International, 2012, 38, 875-881.	4.8	17
710	Pressure-Induced Isostructural Phase Transition and Correlation of FeAs Coordination with the Superconducting Properties of 111-Type Na _{1–<i>x</i>} FeAs. Journal of the American Chemical Society, 2011, 133, 7892-7896.	13.7	55
711	Structure of Lithium Peroxide. Journal of Physical Chemistry Letters, 2011, 2, 2483-2486.	4.6	53
712	Multi-scale study of thermal stability of lithiated graphite. Energy and Environmental Science, 2011, 4, 4023.	30.8	140
713	Atomic migration and bonding characteristics during a glass transition investigated using as-cast Zr-Cu-Al. Physical Review B, 2011, 83, .	3.2	19
714	Three-dimensional structure of multicomponent (Na ₂ O>sub>0.35[(P ₂ O>sub>5) _{1 a^*<i>x</i>>(i>x>} (B ₂ O>sub>3) _{<i>x</i>>}] _{O.65} glasses by high-energy x-ray diffraction and constrained reverse Monte Carlo simulations. Journal of Physics	1.8	8
715	Condensed Matter, 2011, 23, 035403. Solid state synthesis of LiFePO4 studied by in situ high energy X-ray diffraction. Journal of Materials Chemistry, 2011, 21, 5604. High-pressure synthesis and physical properties of perovskite and post-perovskite Ca <mml:math< td=""><td>6.7</td><td>49</td></mml:math<>	6.7	49
716	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mi></mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo><mml:mi>x</mml:mi></mml:mo></mml:mrow></mml:msub><mml:mi>x</mml:mi><mml:mi>x<mml:msub><mml:msub><mml:msub><mml:msub></mml:msub></mml:msub></mml:msub></mml:msub><td><td>rowy </td></td></mml:mi></mml:mrow>	<td>rowy </td>	rowy
717	xmlns:mml="http://www.w3.o. Physical Review B, 2011, 83, . Nanoscale phase separation in coated Ag nanoparticles. Nanoscale, 2011, 3, 4220.	5.6	4
718	Neutron spectroscopy of magnesium dihydride. Journal of Alloys and Compounds, 2011, 509, S599-S603.	5.5	13
719	Giant Moment Enhancement of Magnetic Nanoparticles Embedded in Multi-Walled Carbon Nanotubes: Consistent with Ultrahigh Temperature Superconductivity. , 2011 , , .		O
720	An in situ high-energy X-ray diffraction study of micromechanical behavior of Zr-based metallic glass reinforced porous W matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 344-348.	5.6	10

#	Article	IF	CITATIONS
721	Radial distribution of martensitic phase transformation in a metastable stainless steel under torsional deformation: A synchrotron X-ray diffraction study. Materials Letters, 2011, 65, 3013-3015. Exchange field on the rare earth Sm <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>2.6</td><td>10</td></mml:math>	2.6	10
722	display="inline"> <mml:msup><mml:mrow ><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:mrow </mml:msup> in a single crystal perovskite SmMnO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical	3.2	42
723	Synchrotron X-Ray Diffraction Study of Texture Evolution in 904L Stainless Steel under Dynamic Shock Compression. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 81-88.	2.2	3
724	Structural Transitions and Magnetic Properties of Ni50Mn36.7ln13.3 Particles with Amorphous-Like Phase. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3062-3070.	2.2	6
725	Multipleâ€6tep Phase Transformation in Silver Nanoplates Under High Pressure. Small, 2011, 7, 606-611.	10.0	43
726	Singleâ€Crystal Silicon Membranes with High Lithium Conductivity and Application in Lithiumâ€Air Batteries. Advanced Materials, 2011, 23, 4947-4952.	21.0	46
727	Plasmonic/Magnetic Bifunctional Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 3158-3163.	13.8	111
728	Li insertion in ball-milled graphitic carbon studied by total x-ray diffraction. Journal of Physics Condensed Matter, 2011, 23, 435003.	1.8	18
729	Spin-state transitions in PrCoO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> studied with neutron powder diffraction. Physical Review B, 2011, 84, .	3.2	14
730	Large internal stress-assisted twin-boundary motion in Ni2MnGa ferromagnetic shape memory alloy. Applied Physics Letters, 2011, 99, .	3.3	5
731	The ultrahigh mechanical energy-absorption capability evidenced in a high-strength NbTi/NiTi nanocomposite, Applied Physics Letters, 2011, 99 Spin and orbital ordering in Yommi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	3.3	29
732	display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow></mml:msub> <mml:msub><mml:mrow></mml:mrow><mml:mi>x</mml:mi></mml:msub> <td>>3.2</td> <td>ath>La<mml: 25</mml: </td>	>3.2	ath>La <mml: 25</mml:
733	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /-xmml. Phase-stress partition and stress-induced martensitic transformation in NbTi/NiTi nanocomposite. Applied Physics Letters, 2011, 99, 084103.</mml:mrow </mml:msub>	3.3	23
734	Understanding the role played by Fe on the tuning of magnetocaloric effect in Tb5Si2Ge2. Applied Physics Letters, 2011, 98, .	3.3	18
735	Evolution of microstructure in a nickel-based superalloy as a function of ageing time. Philosophical Magazine Letters, 2011, 91, 483-490.	1.2	4
736	Magnetic-field-driven reversal phase transition in highly textured and self-accommodated martensites of Ni–Co–Mn–In composite. Journal of Strain Analysis for Engineering Design, 2011, 46, 607-613.	1.8	0
737	Local structural investigation of SmFeAsO _{1 â^'<i>x</i>} F _{<i>x</i>} high temperature superconductors. Journal of Physics Condensed Matter, 2011, 23, 272201.	1.8	7
738	Solid dye-sensitized solar cells prepared through a counter strategy for filling of solid hole transporter. Journal of Renewable and Sustainable Energy, 2011, 3, 063101.	2.0	4

#	Article	IF	CITATIONS
739	Giant magnetic moment enhancement of nickel nanoparticles embedded in multiwalled carbon nanotubes. Physical Review B, 2010, 82, .	3.2	16
740	Origin of diffuse scattering in relaxor ferroelectrics. Physical Review B, 2010, 81, .	3.2	53
741	Response of nanoparticle structure to different types of surface environments: Wide-angle x-ray scattering and molecular dynamics simulations. Physical Review B, 2010, 81, .	3.2	29
742	In-situ studies of stress- and magnetic-field-induced phase transformation in a polymer-bonded Ni–Co–Mn–In composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3561-3571.	5.6	22
743	Texture crossover: Trace from multiple grains to a subgrain. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 3-10.	5.6	8
744	The effects of texture and extension twinning on the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B. Materials Science & Direction A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7057-7067.	5.6	170
745	In-Situ High-Energy X-Ray Diffuse-Scattering Study of the Phase Transition of Ni2MnGa Single Crystal under High Magnetic Field. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1269-1275.	2.2	1
746	Formation of Deformation Textures in Face-Centered-Cubic Materials Studied by In-Situ High-Energy X-Ray Diffraction and Self-Consistent Model. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1246-1254.	2.2	6
747	Predicting Fracture Toughness of TRIP 800 Using Phase Properties Characterized by In-Situ High-Energy X-Ray Diffraction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1261-1268.	2.2	5
748	Evidence of two-length-scale kinetics of R-phase transformation by high-energy X-ray diffraction. Scripta Materialia, 2010, 62, 617-620.	5.2	2
749	Low-temperature shear banding for a Cu-based bulk-metallic glass. Scripta Materialia, 2010, 63, 871-874.	5. 2	45
750	Low Temperature Deformation Detwinningâ€"A Reverse Mode of Twinning. Advanced Engineering Materials, 2010, 12, 906-911.	3.5	21
751	Development of plastic Ti-based bulk-metallic-glass-matrix composites by controlling the microstructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7752-7756.	5.6	37
752	Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation. Acta Materialia, 2010, 58, 429-438.	7.9	181
753	Thermal behaviors of Al-based amorphous alloys bearing nanocrystalline In particles. Acta Materialia, 2010, 58, 6267-6275.	7.9	9
754	From Threeâ€Dimensional Flowerâ€Like αâ€Ni(OH) ₂ Nanostructures to Hierarchical Porous NiO Nanoflowers: Microwaveâ€Assisted Fabrication and Supercapacitor Properties. Journal of the American Ceramic Society, 2010, 93, 3560-3564.	3.8	188
755	Competing magnetic ground states in the A-site layer-ordered manganite La1â^'xBa1+xMn2O6. Physical Review B, 2010, 81, .	3.2	0
	Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth		

756 perovskites<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mr

#	Article	IF	Citations
757	Origin of magnetic freezing in pyrochloreY2Mo2O7. Physical Review B, 2010, 82, .	3.2	15
758	Invited Article: High-pressure techniques for condensed matter physics at low temperature. Review of Scientific Instruments, 2010, 81, 041301.	1.3	43
7 59	Resolving ensembled microstructural information of bulk-metallic-glass-matrix composites using synchrotron x-ray diffraction. Applied Physics Letters, 2010, 97, 171910.	3.3	10
760	Strain-induced dimensionality crossover and associated pseudoelasticity in the premartensitic phase of Ni2MnGa. Applied Physics Letters, 2010, 97, 171905.	3.3	12
761	PbSe quantum dots: Finite, off-stoichiometric, and structurally distorted. Physical Review B, 2010, 81, .	3.2	48
762	Nanophase Evolution at Semiconductor/Electrolyte Interface in Situ Probed by Time-Resolved High-Energy Synchrotron X-ray Diffraction. Nano Letters, 2010, 10, 3747-3753.	9.1	22
763	Size-Dependent Amorphization of Nanoscale <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold">Y</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="bold">O</mml:mi><mml:mo>3</mml:mo></mml:msub></mml:math> at High Pressure.	7.8	100
764	Orbital hybridization inRVO3perovskites: A high-pressure study. Physical Review B, 2009, 80, .	3.2	29
765	Deformation Crossover: From Nano- to Mesoscale. Physical Review Letters, 2009, 103, 035502.	7.8	51
766	Evidence for preferential rearrangements of martensite variants by magnetic field in antiferromagnetic CoO crystal. Applied Physics Letters, 2009, 95, 051914.	3.3	7
767	The effect of hydrogen charging on Ln-based amorphous materials. Applied Physics Letters, 2009, 95, 241901.	3.3	8
768	Simultaneous reductions of dislocation and twin densities with grain growth during cold rolling in a nanocrystalline Ni–Fe alloy. Scripta Materialia, 2009, 60, 317-320.	5.2	50
769	A General Approach to First Order Phase Transitions and the Anomalous Behavior of Coexisting Phases in the Magnetic Case. Advanced Functional Materials, 2009, 19, 942-949.	14.9	15
770	Magnetic Fieldâ€Induced Phase Transformation in NiMnColn Magnetic Shapeâ€Memory Alloys—A New Actuation Mechanism with Large Work Output. Advanced Functional Materials, 2009, 19, 983-998.	14.9	384
771	High Plasticity and Substantial Deformation in Nanocrystalline NiFe Alloys Under Dynamic Loading. Advanced Materials, 2009, 21, 5001-5004.	21.0	44
772	An in situ high-energy X-ray diffraction study of micromechanical behavior of multiple phases in advanced high-strength steels. Acta Materialia, 2009, 57, 3965-3977.	7.9	181
773	Stress and Strain Partitioning of Ferrite and Martensite during Deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1383-1387.	2.2	98
774	Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Separation and Purification Technology, 2009, 68, 312-319.	7.9	476

#	Article	IF	Citations
775	Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water. Bioresource Technology, 2009, 100, 4139-4146.	9.6	142
776	Microstructure evolution during cold rolling in a nanocrystalline Ni–Fe alloy determined by synchrotron X-ray diffraction. Acta Materialia, 2009, 57, 4988-5000.	7.9	72
777	Coexistence of the spin-density wave and superconductivity in Ba _{1â^'x} K _x Fe ₂ As ₂ . Europhysics Letters, 2009, 85, 17006.	2.0	315
778	Atomic-Scale Structure of Biogenic Materials by Total X-ray Diffraction: A Study of Bacterial and Fungal MnO _{<i>x</i>} . ACS Nano, 2009, 3, 441-445.	14.6	43
779	Three-dimensional structure of fast ion conducting 0.5Li2S+0.5[(1â°'x)GeS2+xGeO2] glasses from high-energy X-ray diffraction and reverse Monte Carlo simulations. Journal of Non-Crystalline Solids, 2009, 355, 430-437.	3.1	10
780	Coupled structural/magnetocrystalline anisotropy transitions in the doped perovskite cobaltite <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Pr</mml:mtext></mml:mrow><mml:mrow> Physical Review B, 2009, 79, .</mml:mrow></mml:msub></mml:mrow></mml:math>	> <3;2 > <mml:m< td=""><td>n>¹⁵/mml:m</td></mml:m<>	n> ¹⁵ /mml:m
781	Size, Shape, and Internal Atomic Ordering of Nanocrystals by Atomic Pair Distribution Functions: A Comparative Study of γ-Fe ₂ O ₃ Nanosized Spheres and Tetrapods. Journal of the American Chemical Society, 2009, 131, 14264-14266.	13.7	59
782	New Sequences of Phase Transition in Ni-Mn-Ga Ferromagnetic Shape Memory Nanoparticles. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 466-469.	2.2	22
783	Advanced Micromechanical Model for Transformation-Induced Plasticity Steels with Application of In-Situ High-Energy X-Ray Diffraction Method. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 3089-3096.	2.2	39
784	In-Situ High-Energy X-Ray Diffuse-Scattering Study of the Phase Transition in a Ni2MnGa Ferromagnetic Shape-Memory Crystal. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 3184-3190.	2.2	4
785	In situ high-energy X-ray studies of magnetic-field-induced phase transition in a ferromagnetic shape memory Ni–Co–Mn–In alloy. Acta Materialia, 2008, 56, 913-923.	7.9	42
786	Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading. International Journal of Plasticity, 2008, 24, 1440-1456.	8.8	58
787	Martensitic and magnetic transformation in Ni–Mn–Ga–Co ferromagnetic shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 473, 213-218.	5.6	53
788	Origin of morphotropic phase boundaries in ferroelectrics. Nature, 2008, 451, 545-548.	27.8	759
789	Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field. Materials Letters, 2008, 62, 47-50.	2.6	100
790	Heat capacity of α-AlH ₃ and α-AlD ₃ at temperatures up to 1000 K. Journal of Physics Condensed Matter, 2008, 20, 275204.	1.8	10
791	Effect of nanoscale confinement on the $\hat{l}^2\hat{a}^{,i}$ t phase transition in Ag2Se. Journal of Applied Physics, 2008, 103, 016105.	2.5	4
792	Structural coherence and ferroelectricity decay in submicron- and nano-sized perovskites. Physical Review B, 2008, 78, .	3.2	67

#	Article	IF	CITATIONS
793	The <i>In Situ </i> Study on the Micro-Structural Characters of IF Steel at Early Stage of Recrystallization Using High-Energy X-Ray. Materials Science Forum, 2008, 575-578, 972-977.	0.3	O
794	Plasticity of bulk metallic glasses improved by controlling the solidification condition. Journal of Materials Research, 2008, 23, 941-948.	2.6	44
795	<i>In situ</i> neutron diffraction study of micromechanical interactions and phase transformation in Ni–Mn–Ga alloy under uniaxial and hydrostatic stress. Journal of Physics Condensed Matter, 2008, 20, 104256.	1.8	2
796	Magnetic switching and phase competition in the multiferroic antiferromagnet <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow>Physical Review B, 2008, 78, .</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	> ^{3, 2} mml:mı	n≯1
797	Volume dependence of the magnetic coupling in LaFe13â^'xSix based compounds. Applied Physics Letters, 2008, 92, .	3.3	28
798	Direct evidence of detwinning in polycrystalline Ni–Mn–Ga ferromagnetic shape memory alloys during deformation. Journal of Applied Physics, 2008, 104, 103519.	2.5	9
799	Frustrated Superexchange Interaction Versus Orbital Order in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LaVO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> Crystal Physical Review Letters. 2008. 100. 046401.	.7.8	22
800	Strain-Dependent Deformation Behavior in Nanocrystalline Metals. Physical Review Letters, 2008, 101, 015502.	7.8	58
801	Measurements of textures and stresses in Ni2MnGa ferromagnetic shape-memory alloys. Journal of Neutron Research, 2007, 15, 193-197.	1.1	O
802	Microscopic structure and dynamics of molten Se50Te50 alloys. Journal of Chemical Physics, 2007, 127, 144707.	3.0	3
803	Nanoscale defect clusters in metallic glasses. Journal of Physics Condensed Matter, 2007, 19, 376217.	1.8	3
804	Zero Thermal Expansion in a Nanostructured Inorganic-Organic Hybrid Crystal. Physical Review Letters, 2007, 99, 215901.	7.8	37
805	Superexchange Interaction in Orbitally Fluctuating <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>R</mml:mi><mml:msub><mhl:mi>VO</mhl:mi><mhl:mn>3</mhl:mn>< Physical Review Letters, 2007, 99, 156401.</mml:msub></mml:math>	⟨7mml:ma	th⁵.
806	Three-dimensional structure of CdX (X=Se,Te) nanocrystals by total x-ray diffraction. Journal of Applied Physics, 2007, 102, 044304.	2.5	17
807	Structural transition of ferromagnetic Ni2MnGa nanoparticles. Journal of Applied Physics, 2007, 101, 063530.	2.5	48
808	The Study on the Microstructure Characters of Pure Iron during Cold Rolling by High Energy X-Ray Diffraction. Materials Science Forum, 2007, 561-565, 889-892.	0.3	1
809	Preferred orientation of anorthite deformed experimentally in Newtonian creep. Earth and Planetary Science Letters, 2007, 264, 188-207.	4.4	58
810	PbZr1â^'xTixO3by soft synthesis: Structural aspects. Physical Review B, 2007, 76, .	3.2	7

#	Article	IF	CITATIONS
811	Order and dynamics of intrinsic nanoscale inhomogeneities in manganites. Physical Review B, 2007, 76, .	3.2	51
812	Preferred orientation and elastic anisotropy in shales. Geophysics, 2007, 72, D33-D40.	2.6	87
813	Atomic-scale structure of nanocrystalline CeO2–ZrO2oxides by total x-ray diffraction and pair distribution function analysis. Journal of Physics Condensed Matter, 2007, 19, 156205.	1.8	20
814	Titania Polymorphs by Soft Chemistry:Â Is There a Common Structural Pattern?. Chemistry of Materials, 2007, 19, 2512-2518.	6.7	57
815	Atomic-Scale Structure of Nanocrystals by High-Energy X-ray Diffraction and Atomic Pair Distribution Function Analysis:  Study of FexPd100-x(x= 0, 26, 28, 48) Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 714-720.	3.1	61
816	Orbital Fluctuations and Orbital Flipping in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>R</mml:mi><mml:msub><mml:mi>VO</mml:mi><mml:mn>3</mml:mn></mml:msub><td>> <td>ath³1 Perovski</td></td></mml:math>	> <td>ath³1 Perovski</td>	ath³1 Perovski
817	Magnetic Interactions in the Geometrically Frustrated Triangular Lattice Antiferromagnet <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CuFeO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2007, 99, 157201.	7.8	85
818	Direct evidence on magnetic-field-induced phase transition in a NiCoMnIn ferromagnetic shape memory alloy under a stress field. Applied Physics Letters, 2007, 90, 101917.	3.3	34
819	A study on intergranular strain evolution in nanostructured Ni-Fe alloys. Journal of Neutron Research, 2007, 15, 289-291.	1.1	0
820	Atomic-Scale Structure of Nanocrystalline $BaxSr1-xTiO3(x=1,0.5,0)$ by X-ray Diffraction and the Atomic Pair Distribution Function Technique. Chemistry of Materials, 2006, 18, 814-821.	6.7	96
821	Examining the oxygen isotope and magnetic field effect on phase separation in Sm0.5Sr0.5MnO3. Journal of Applied Physics, 2006, 100, 103520.	2.5	10
822	Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnetCuFeO2. Physical Review B, 2006, 73, .	3.2	181
823	Interplay between the local structural disorder and the length of structural coherence in stabilizing the cubic phase in nanocrystalline ZrO2. Solid State Communications, 2006, 138, 279-284.	1.9	13
824	Tracing Memory in Polycrystalline Ferromagnetic Shape-Memory Alloys. Advanced Materials, 2006, 18, 2392-2396.	21.0	32
825	Pressure-induced long-range magnetic ordering in cobalt oxide. Physical Review B, 2006, 74, .	3.2	16
826	Orientation-dependent grain growth in a bulk nanocrystalline alloy during the uniaxial compressive deformation. Applied Physics Letters, 2006, 88, 171914.	3.3	67
827	Uniaxial tensile plastic deformation of a bulk nanocrystalline alloy studied by a high-energy x-ray diffraction technique. Applied Physics Letters, 2006, 89, 101918.	3.3	41
828	Determining thermal diffuse scattering of vanadium with x-ray transmission scattering. Applied Physics Letters, 2006, 88, 061903.	3.3	3

#	Article	IF	Citations
829	Structure of gold nanoparticles suspended in water studied by x-ray diffraction and computer simulations. Physical Review B, 2005, 72, .	3.2	109
830	Unconventional magnetic transitions in the mineral clinoatacamite Cu2Cl(OH)3. Physical Review B, 2005, 71, .	3.2	97
831	Structure of nanocrystalline GaN from X-ray diffraction, Rietveld and atomic pair distribution function analyses. Journal of Materials Chemistry, 2005, 15, 4654.	6.7	47
832	Atomic-scale structure of nanocrystallineZrO2prepared by high-energy ball milling. Physical Review B, 2005, 71, .	3.2	62
833	Magnetic-field-induced structural homogeneity of a phase-separated manganite. Applied Physics Letters, 2004, 84, 4538-4540.	3.3	4
834	Analysis and simulation of the structure of nanoparticles that undergo a surface-driven structural transformation. Journal of Chemical Physics, 2004, 120, 11785-11795.	3.0	40
835	Structure of Nanocrystalline Alkali Metal Manganese Oxides by the Atomic Pair Distribution Function Technique. Journal of Physical Chemistry B, 2004, 108, 14956-14963.	2.6	25
836	Structural, electronic, and magneto-optical properties of YVO3. Physical Review B, 2004, 69, .	3.2	59
837	Structure of Exfoliated Titanate Nanosheets Determined by Atomic Pair Distribution Function Analysis. Chemistry of Materials, 2004, 16, 5153-5157.	6.7	26
838	Evidence for orbital ordering inLaCoO3. Physical Review B, 2003, 67, .	3.2	222
839	Orbital-ordering-induced phase transition inLaVO3andCeVO3. Physical Review B, 2003, 67, .	3.2	61
840	Neutron diffraction, x-ray diffraction, and specific heat studies of orbital ordering in YVO3. Physical Review B, 2002, 65, .	3.2	107
841	Electrical transport and optical properties of the incommensurate intergrowth compounds (SbS)1.15(TiS2)n with n \hat{A} 1 and 2. Journal of Physics Condensed Matter, 2002, 14, 8011-8023.	1.8	4
842	Optical and magneto-optical study of orbital and spin ordering transitions in YVO3. Physica B: Condensed Matter, 2002, 312-313, 783-784.	2.7	3
843	Neutron scattering study of H2 adsorption in single-walled carbon nanotubes. Applied Physics Letters, 2001, 79, 3684-3686.	3.3	61
844	Transition between Orbital Orderings in YVO3. Physical Review Letters, 2001, 87, 245501.	7.8	120
845	Two-dimensional Raman-near infrared heterospectral correlation spectroscopy studies of the specific interactions in partially miscible blends of poly(methyl methacrylate) and poly(4-vinylphenol). AIP Conference Proceedings, 2000, , .	0.4	1
846	Magnetic properties of YVO3 single crystals. Physical Review B, 2000, 62, 6577-6586.	3.2	148

#	Article	IF	Citations
847	Temperature-induced magnetization reversal in a YVO3 single crystal. Nature, 1998, 396, 441-444.	27.8	276
848	(3 + 2)-Dimensional superspace approach to the structure of the stage-2 misfit layer compound (SbS)1.15(TiS2)2. Acta Crystallographica Section B: Structural Science, 1996, 52, 389-397.	1.8	10
849	Vacancies and electron localization in the incommensurate intergrowth compound (La0.95Se)1.21VSe2. Acta Crystallographica Section B: Structural Science, 1996, 52, 398-405.	1.8	25
850	(3 + 2)-Dimensional superspace approach to the structure of the incommensurate intergrowth compound: (SbS)1.15TiS2. Acta Crystallographica Section B: Structural Science, 1995, 51, 275-287.	1.8	15
851	Photoelectron spectroscopy study of the electronic structure of the incommensurate intergrowth compounds (SbS)1.15(TiS2)nwith n=1,2. Journal of Physics Condensed Matter, 1995, 7, 5949-5958.	1.8	8
852	Intergrain flux-pinning in relation to structural phase transformation and tweed formation in YBa2(Cu1-xFex)3O7-y and NdBa2(Cu1-xFex)3O7-y. Physica C: Superconductivity and Its Applications, 1992, 199, 414-424.	1.2	9
853	Coexistence of antiferromagnetism and superconductivity in YBa2 (Cu1â^xFex) 3O7 only for xaround 0.10. Physical Review B, 1989, 39, 12290-12292.	3.2	3
854	Separate paramagnetism and superconductivity in YBa2Cu3Oz. Applied Physics Letters, 1988, 53, 1007-1009.	3.3	3
855	Neutron-diffraction study ofNdBa2Cu3O7+xwithx=0.06ÂandÂ0.18. Physical Review B, 1988, 38, 11861-11864.	3.2	15
856	Structure of the high-TcsuperconductorBa2YCu3Oxat750 \hat{A}° C using neutron diffraction. Physical Review B, 1988, 37, 5845-5847.	3.2	2
857	Superconductivity in the new high-Tc superconductors RBa ₂ Cu ₃ O _{9-y} (R=Y, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb). Chinese Physics Letters, 1987, 4, 437-440.	3.3	4
858	Structure of the high-TcsuperconductorBa2YCu3O7+xabove (124 K) and below (71 K)Tcby neutron diffraction. Physical Review B, 1987, 36, 8810-8812.	3.2	17
859	Crystal structure of the high-TcsuperconductorBa2YCu3O7+xusing neutron diffraction. Physical Review B, 1987, 36, 5599-5601.	3.2	27
860	Nanostructured Graphenes and Metal Oxides for Fuel Cell and Battery Applications. Advanced Materials Research, 0, 705, 126-131.	0.3	2
861	Effect of Ni/Ti Ratio and Ta Content on NiTiTa Alloys. Shape Memory and Superelasticity, 0, , 1.	2.2	6
862	Anomalous High-Temperature Strengthening of an Al _{0.5} CoCrCuFeNi Dual-Phase High-Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0
863	Synchrotron Xâ€Rayâ€Driven Nitrogen Reduction on an AgCu Thin Film. Small, 0, , 2202720.	10.0	0