
Javier de Felipe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/231363/publications.pdf Version: 2024-02-01

INVIED DE FELIDE

#	Article	IF	CITATIONS
1	Strong and reliable synaptic communication between pyramidal neurons in adult human cerebral cortex. Cerebral Cortex, 2023, 33, 2857-2878.	2.9	21
2	Linking Brain Structure, Activity, and Cognitive Function through Computation. ENeuro, 2022, 9, ENEURO.0316-21.2022.	1.9	22
3	A Deep Learning-Based Workflow for Dendritic Spine Segmentation. Frontiers in Neuroanatomy, 2022, 16, 817903.	1.7	6
4	Microanatomical study of pyramidal neurons in the contralesional somatosensory cortex after experimental ischemic stroke. Cerebral Cortex, 2022, , .	2.9	3
5	Single-Neuron Labeling in Fixed Tissue and Targeted Volume Electron Microscopy. Frontiers in Neuroanatomy, 2022, 16, 852057.	1.7	1
6	Structural Analysis of Human and Mouse Dendritic Spines Reveals a Morphological Continuum and Differences across Ages and Species. ENeuro, 2022, 9, ENEURO.0039-22.2022.	1.9	12
7	Pyramidal cell axon initial segment in Alzheimer´s disease. Scientific Reports, 2022, 12, .	3.3	7
8	A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex. Nature Communications, 2022, 13, .	12.8	30
9	A museum for Cajal's Legacy. Lancet Neurology, The, 2021, 20, 25.	10.2	1
10	Three-dimensional analysis of synaptic organization in the hippocampal CA1Âfield in Alzheimer's disease. Brain, 2021, 144, 553-573.	7.6	38
11	3D Ultrastructural Study of Synapses in the Human Entorhinal Cortex. Cerebral Cortex, 2021, 31, 410-425.	2.9	15
12	Pre-Embedding Immunostaining of Brain Tissue and Three-Dimensional Imaging with FIB-SEM. Neuromethods, 2021, , 285-302.	0.3	1
13	High levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus. Scientific Reports, 2021, 11, 3736.	3.3	19
14	Variation in Pyramidal Cell Morphology Across the Human Anterior Temporal Lobe. Cerebral Cortex, 2021, 31, 3592-3609.	2.9	18
15	Metabolic Changes in Brain Slices over Time: a Multiplatform Metabolomics Approach. Molecular Neurobiology, 2021, 58, 3224-3237.	4.0	6
16	3D Analysis of the Synaptic Organization in the Entorhinal Cortex in Alzheimer's Disease. ENeuro, 2021, 8, ENEURO.0504-20.2021.	1.9	13
17	Three-Dimensional Synaptic Organization of Layer III of the Human Temporal Neocortex. Cerebral Cortex, 2021, 31, 4742-4764.	2.9	27
18	Dendritic spines are lost in clusters in Alzheimer's disease. Scientific Reports, 2021, 11, 12350.	3.3	18

#	Article	IF	CITATIONS
19	Brain connectomics: From Cajal to present. , 2021, , .		0
20	Neuronal excitation/inhibition imbalance: core element of a translational perspective on Alzheimer pathophysiology. Ageing Research Reviews, 2021, 69, 101372.	10.9	90
21	3D segmentation of neuronal nuclei and cell-type identification using multi-channel information. Expert Systems With Applications, 2021, 183, 115443.	7.6	1
22	3D Synaptic Organization of the Rat CA1 and Alterations Induced by Cocaine Self-Administration. Cerebral Cortex, 2021, 31, 1927-1952.	2.9	3
23	Neuron Class and Target Variability in the Three-Dimensional Localization of SK2 Channels in Hippocampal Neurons as Detected by Immunogold FIB-SEM. Frontiers in Neuroanatomy, 2021, 15, 781314.	1.7	3
24	Differential Structure of Hippocampal CA1 Pyramidal Neurons in the Human and Mouse. Cerebral Cortex, 2020, 30, 730-752.	2.9	49
25	Differential expression of secretagogin immunostaining in the hippocampal formation and the entorhinal and perirhinal cortices of humans, rats, and mice. Journal of Comparative Neurology, 2020, 528, 523-541.	1.6	11
26	Size, Shape, and Distribution of Multivesicular Bodies in the Juvenile Rat Somatosensory Cortex: A 3D Electron Microscopy Study. Cerebral Cortex, 2020, 30, 1887-1901.	2.9	6
27	Effect of Phosphorylated Tau on Cortical Pyramidal Neuron Morphology during Hibernation. Cerebral Cortex Communications, 2020, 1, tgaa018.	1.6	3
28	Neuronize v2: Bridging the Gap Between Existing Proprietary Tools to Optimize Neuroscientific Workflows. Frontiers in Neuroanatomy, 2020, 14, 585793.	1.7	5
29	Comparing basal dendrite branches in human and mouse hippocampal CA1 pyramidal neurons with Bayesian networks. Scientific Reports, 2020, 10, 18592.	3.3	11
30	Estimation of the number of synapses in the hippocampus and brain-wide by volume electron microscopy and genetic labeling. Scientific Reports, 2020, 10, 14014.	3.3	39
31	A community-based transcriptomics classification and nomenclature of neocortical cell types. Nature Neuroscience, 2020, 23, 1456-1468.	14.8	183
32	Neuroanatomical signature of superâ€egeing: Structural brain study of youthful episodic memory in people over the age of 80. Alzheimer's and Dementia, 2020, 16, e041915.	0.8	1
33	Area-Specific Synapse Structure in Branched Posterior Nucleus Axons Reveals a New Level of Complexity in Thalamocortical Networks. Journal of Neuroscience, 2020, 40, 2663-2679.	3.6	39
34	Calbindin immunostaining in the CA1 hippocampal pyramidal cell layer of the human and mouse: A comparative study. Journal of Chemical Neuroanatomy, 2020, 104, 101745.	2.1	7
35	Volume Electron Microscopy Study of the Relationship Between Synapses and Astrocytes in the Developing Rat Somatosensory Cortex. Cerebral Cortex, 2020, 30, 3800-3819.	2.9	24
36	Three-dimensional synaptic organization of the human hippocampal CA1 field. ELife, 2020, 9, .	6.0	37

#	Article	lF	CITATIONS
37	Ultrastructural, Molecular and Functional Mapping of GABAergic Synapses on Dendritic Spines and Shafts of Neocortical Pyramidal Neurons. Cerebral Cortex, 2019, 29, 2771-2781.	2.9	34
38	Classification of GABAergic interneurons by leading neuroscientists. Scientific Data, 2019, 6, 221.	5.3	15
39	InTool Explorer: An Interactive Exploratory Analysis Tool for Versatile Visualizations of Neuroscientific Data. Frontiers in Neuroanatomy, 2019, 13, 28.	1.7	3
40	Phospho-Tau Changes in the Human CA1 During Alzheimer's Disease Progression. Journal of Alzheimer's Disease, 2019, 69, 277-288.	2.6	29
41	Slow-Wave Activity in the S1HL Cortex Is Contributed by Different Layer-Specific Field Potential Sources during Development. Journal of Neuroscience, 2019, 39, 8900-8915.	3.6	10
42	Subregional Density of Neurons, Neurofibrillary Tangles and Amyloid Plaques in the Hippocampus of Patients With Alzheimer's Disease. Frontiers in Neuroanatomy, 2019, 13, 99.	1.7	32
43	The Golgi Apparatus of Neocortical Glial Cells During Hibernation in the Syrian Hamster. Frontiers in Neuroanatomy, 2019, 13, 92.	1.7	2
44	27-Hydroxycholesterol Induces Aberrant Morphology and Synaptic Dysfunction in Hippocampal Neurons. Cerebral Cortex, 2019, 29, 429-446.	2.9	45
45	Metabolomic Study of Hibernating Syrian Hamster Brains: In Search of Neuroprotective Agents. Journal of Proteome Research, 2019, 18, 1175-1190.	3.7	25
46	3D Electron Microscopy Study of Synaptic Organization of the Normal Human Transentorhinal Cortex and Its Possible Alterations in Alzheimer's Disease. ENeuro, 2019, 6, ENEURO.0140-19.2019.	1.9	48
47	Three-dimensional analysis of synapses in the transentorhinal cortex of Alzheimer's disease patients. Acta Neuropathologica Communications, 2018, 6, 20.	5.2	49
48	Quantitative 3D Ultrastructure of Thalamocortical Synapses from the "Lemniscal―Ventral Posteromedial Nucleus in Mouse Barrel Cortex. Cerebral Cortex, 2018, 28, 3159-3175.	2.9	59
49	A Method for the Symbolic Representation of Neurons. Frontiers in Neuroanatomy, 2018, 12, 106.	1.7	5
50	Towards a supervised classification of neocortical interneuron morphologies. BMC Bioinformatics, 2018, 19, 511.	2.6	17
51	Editorial: Why Have Cortical Layers? What Is the Function of Layering? Do Neurons in Cortex Integrate Information Across Different Layers?. Frontiers in Neuroanatomy, 2018, 12, 78.	1.7	3
52	Modifications of the axon initial segment during the hibernation of the Syrian hamster. Brain Structure and Function, 2018, 223, 4307-4321.	2.3	6
53	Regional Diversity in the Postsynaptic Proteome of the Mouse Brain. Proteomes, 2018, 6, 31.	3.5	38
54	Architecture of the Mouse Brain Synaptome. Neuron, 2018, 99, 781-799.e10.	8.1	167

#	Article	IF	CITATIONS
55	Selective effects of Δ9-tetrahydrocannabinol on medium spiny neurons in the striatum. PLoS ONE, 2018, 13, e0200950.	2.5	13
56	Neuroanatomy from Mesoscopic to Nanoscopic Scales: An Improved Method for the Observation of Semithin Sections by High-Resolution Scanning Electron Microscopy. Frontiers in Neuroanatomy, 2018, 12, 14.	1.7	5
57	MultiMap: A Tool to Automatically Extract and Analyse Spatial Microscopic Data From Large Stacks of Confocal Microscopy Images. Frontiers in Neuroanatomy, 2018, 12, 37.	1.7	6
58	Human Cortical Pyramidal Neurons: From Spines to Spikes via Models. Frontiers in Cellular Neuroscience, 2018, 12, 181.	3.7	102
59	A Study of Amyloid-β and Phosphotau in Plaques and Neurons in the Hippocampus of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2018, 64, 417-435.	2.6	54
60	Volume electron microscopy of the distribution of synapses in the neuropil of the juvenile rat somatosensory cortex. Brain Structure and Function, 2018, 223, 77-90.	2.3	51
61	A Quantitative Study on the Distribution of Mitochondria in the Neuropil of the Juvenile Rat Somatosensory Cortex. Cerebral Cortex, 2018, 28, 3673-3684.	2.9	39
62	3D morphology-based clustering and simulation of human pyramidal cell dendritic spines. PLoS Computational Biology, 2018, 14, e1006221.	3.2	24
63	Study of the Size and Shape of Synapses in the Juvenile Rat Somatosensory Cortex with 3D Electron Microscopy. ENeuro, 2018, 5, ENEURO.0377-17.2017.	1.9	53
64	Patterns of Dendritic Basal Field Orientation of Pyramidal Neurons in the Rat Somatosensory Cortex. ENeuro, 2018, 5, ENEURO.0142-18.2018.	1.9	4
65	Ratâ€strain dependent changes of dendritic and spine morphology in the hippocampus after cocaine selfâ€administration. Addiction Biology, 2017, 22, 78-92.	2.6	13
66	High plasticity of axonal pathology in Alzheimer's disease mouse models. Acta Neuropathologica Communications, 2017, 5, 14.	5.2	48
67	Metabolomics and neuroanatomical evaluation of post-mortem changes in the hippocampus. Brain Structure and Function, 2017, 222, 2831-2853.	2.3	55
68	Phospho-Tau Accumulation and Structural Alterations of the Golgi Apparatus of Cortical Pyramidal Neurons in the P301S Tauopathy Mouse Model. Journal of Alzheimer's Disease, 2017, 60, 651-661.	2.6	8
69	Dendritic-branching angles of pyramidal neurons of the human cerebral cortex. Brain Structure and Function, 2017, 222, 1847-1859.	2.3	10
70	Neuroanatomy and Global Neuroscience. Neuron, 2017, 95, 14-18.	8.1	7
71	Morphometric alterations of Golgi apparatus in Alzheimer's disease are related to tau hyperphosphorylation. Neurobiology of Disease, 2017, 97, 11-23.	4.4	24
72	Changes in neocortical and hippocampal microglial cells during hibernation. Brain Structure and Function, 2017, 223, 1881-1895.	2.3	8

#	Article	IF	CITATIONS
73	[P1–222]: STUDY OF THE SYNAPSES IN THE MEDIAL SUPERFICIAL LAYER OF HIPPOCAMPAL CA1 IN ALZHEIMER DISEASE. Alzheimer's and Dementia, 2017, 13, P328.	'S.8	0
74	[P2–189]: RELATIONSHIP BETWEEN PHOSPHOâ€TAU ACCUMULATION AND STRUCTURAL ALTERATIONS OF NEURONAL GOLGI APPARATUS IN ALZHEIMER'S DISEASE PATIENTS AND P301S TAUOPATHY MOUSE MODEL. Alzheimer's and Dementia, 2017, 13, P678.	0.8	0
75	GSK-3β Overexpression Alters the Dendritic Spines of Developmentally Generated Granule Neurons in the Mouse Hippocampal Dentate Gyrus. Frontiers in Neuroanatomy, 2017, 11, 18.	1.7	17
76	Influence of cerebral blood vessel movements on the position of perivascular synapses. PLoS ONE, 2017, 12, e0172368.	2.5	4
77	Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons. PLoS ONE, 2017, 12, e0180400.	2.5	9
78	Neocortical Microcircuits. , 2017, , 3-22.		0
79	Phospho-Tau and Cognitive Decline in Alzheimer's Disease. Commentary: Tau in physiology and pathology. Frontiers in Neuroanatomy, 2016, 10, 44.	1.7	2
80	Comments and General Discussion on "The Anatomical Problem Posed by Brain Complexity and Size: A Potential Solution― Frontiers in Neuroanatomy, 2016, 10, 60.	1.7	13
81	Editorial: Neuroanatomy for the XXIst Century. Frontiers in Neuroanatomy, 2016, 10, 70.	1.7	1
82	Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex. PLoS ONE, 2016, 11, e0165915.	2.5	1
83	Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex. Journal of Comparative Neurology, 2016, 524, 2567-2576.	1.6	4
84	A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron Microscopic Images of the Brain. Neuroinformatics, 2016, 14, 235-250.	2.8	22
85	Comment on "Principles of connectivity among morphologically defined cell types in adult neocortexâ€: Science, 2016, 353, 1108-1108.	12.6	24
86	Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons. Neuroinformatics, 2016, 14, 453-464.	2.8	3
87	Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells. Cerebral Cortex, 2016, 26, 4282-4298.	2.9	53
88	Decreased adult neurogenesis in hibernating Syrian hamster. Neuroscience, 2016, 333, 181-192.	2.3	21
89	PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits. Scientific Reports, 2016, 6, 24626.	3.3	122
90	Specific cytoarchitectureal changes in hippocampal subareas in daDREAM mice. Molecular Brain, 2016, 9, 22.	2.6	22

#	Article	IF	CITATIONS
91	Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex. Cerebral Cortex, 2016, 26, 2811-2822.	2.9	29
92	Protocols for Monitoring the Development of Tau Pathology in Alzheimer's Disease. Methods in Molecular Biology, 2016, 1303, 143-160.	0.9	3
93	Unique membrane properties and enhanced signal processing in human neocortical neurons. ELife, 2016, 5, .	6.0	154
94	The dendritic spine story: an intriguing process of discovery. Frontiers in Neuroanatomy, 2015, 9, 14.	1.7	55
95	FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons. Frontiers in Neuroanatomy, 2015, 9, 60.	1.7	66
96	The anatomical problem posed by brain complexity and size: a potential solution. Frontiers in Neuroanatomy, 2015, 9, 104.	1.7	59
97	A univocal definition of the neuronal soma morphology using Gaussian mixture models. Frontiers in Neuroanatomy, 2015, 9, 137.	1.7	11
98	Changes in the Golgi Apparatus of Neocortical and Hippocampal Neurons in the Hibernating Hamster. Frontiers in Neuroanatomy, 2015, 9, 157.	1.7	19
99	The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex. Frontiers in Neural Circuits, 2015, 9, 44.	2.8	138
100	The Effects of Cocaine Self-Administration on Dendritic Spine Density in the Rat Hippocampus Are Dependent on Genetic Background. Cerebral Cortex, 2015, 25, 56-65.	2.9	38
101	Schedule-induced polydipsia is associated with increased spine density in dorsolateral striatum neurons. Neuroscience, 2015, 300, 238-245.	2.3	18
102	Bayesian Network Classifiers for Categorizing Cortical GABAergic Interneurons. Neuroinformatics, 2015, 13, 193-208.	2.8	19
103	Classifying GABAergic interneurons with semi-supervised projected model-based clustering. Artificial Intelligence in Medicine, 2015, 65, 49-59.	6.5	14
104	Reconstruction and Simulation of Neocortical Microcircuitry. Cell, 2015, 163, 456-492.	28.9	1,258
105	Selective presence of a giant saccular organelle in the axon initial segment of a subpopulation of layer V pyramidal neurons. Brain Structure and Function, 2015, 220, 869-884.	2.3	11
106	Spatial distribution of neurons innervated by chandelier cells. Brain Structure and Function, 2015, 220, 2817-2834.	2.3	41
107	Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus. Brain Structure and Function, 2015, 220, 2387-2399.	2.3	101
108	PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons. Frontiers in Neuroanatomy, 2015, 9, 159.	1.7	9

#	Article	IF	CITATIONS
109	Structural plasticity in hippocampal cells related to the facilitative effect of intracranial self-stimulation on a spatial memory task Behavioral Neuroscience, 2015, 129, 720-730.	1.2	12
110	The Influence of Synaptic Size on AMPA Receptor Activation: A Monte Carlo Model. PLoS ONE, 2015, 10, e0130924.	2.5	26
111	The influence of James and Darwin on Cajal and his research into the neuron theory and evolution of the nervous system. Frontiers in Neuroanatomy, 2014, 8, 1.	1.7	129
112	Selective alterations of neurons and circuits related to early memory loss in Alzheimerââ,¬â"¢s disease. Frontiers in Neuroanatomy, 2014, 8, 38.	1.7	72
113	Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis. Frontiers in Neuroanatomy, 2014, 8, 85.	1.7	49
114	Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty. Frontiers in Computational Neuroscience, 2014, 8, 150.	2.1	12
115	DREAM Controls the On/Off Switch of Specific Activity-Dependent Transcription Pathways. Molecular and Cellular Biology, 2014, 34, 877-887.	2.3	41
116	Cellular Components of Nervous Tissue. , 2014, , 3-21.		4
117	Haptically Assisted Connection Procedure for the Reconstruction of Dendritic Spines. IEEE Transactions on Haptics, 2014, 7, 486-498.	2.7	1
118	Bayesian network modeling of the consensus between experts: An application to neuron classification. International Journal of Approximate Reasoning, 2014, 55, 3-22.	3.3	20
119	Musical Representation of Dendritic Spine Distribution: A New Exploratory Tool. Neuroinformatics, 2014, 12, 341-53.	2.8	6
120	Alterations of the microvascular network in the sclerotic hippocampus of patients with temporal lobe epilepsy. Epilepsy and Behavior, 2014, 38, 48-52.	1.7	13
121	Random Positions of Dendritic Spines in Human Cerebral Cortex. Journal of Neuroscience, 2014, 34, 10078-10084.	3.6	15
122	The death of Cajal and the end of scientific romanticism and individualism. Trends in Neurosciences, 2014, 37, 525-527.	8.6	6
123	Three-Dimensional Spatial Distribution of Synapses in the Neocortex: A Dual-Beam Electron Microscopy Study. Cerebral Cortex, 2014, 24, 1579-1588.	2.9	68
124	Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas. Scientific Reports, 2014, 4, 5909.	3.3	14
125	Segmentation of neuronal nuclei based on clump splitting and a two-step binarization of images. Expert Systems With Applications, 2013, 40, 6521-6530.	7.6	42
126	Age-Based Comparison of Human Dendritic Spine Structure Using Complete Three-Dimensional Reconstructions. Cerebral Cortex, 2013, 23, 1798-1810.	2.9	123

#	Article	IF	CITATIONS
127	Cajal and the discovery of a new artistic world. Progress in Brain Research, 2013, 203, 201-220.	1.4	12
128	New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 2013, 14, 202-216.	10.2	707
129	Dense and Overlapping Innervation of Pyramidal Neurons by Chandelier Cells. Journal of Neuroscience, 2013, 33, 1907-1914.	3.6	78
130	GSK-3β overexpression causes reversible alterations on postsynaptic densities and dendritic morphology of hippocampal granule neurons in vivo. Molecular Psychiatry, 2013, 18, 451-460.	7.9	117
131	Alzheimer disease-like cellular phenotype of newborn granule neurons can be reversed in GSK-3β-overexpressing mice. Molecular Psychiatry, 2013, 18, 395-395.	7.9	6
132	Changes in tau phosphorylation in hibernating rodents. Journal of Neuroscience Research, 2013, 91, 954-962.	2.9	19
133	The Synapse: Differences Between Men and Women. Research and Perspectives in Endocrine Interactions, 2013, , 43-57.	0.2	0
134	The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer's disease. Brain, 2013, 136, 1913-1928.	7.6	117
135	Synaptic Changes in the Dentate Gyrus of APP/PS1 Transgenic Mice Revealed by Electron Microscopy. Journal of Neuropathology and Experimental Neurology, 2013, 72, 386-395.	1.7	39
136	FIB/SEM Technology and Alzheimer's Disease: Three-Dimensional Analysis of Human Cortical Synapses. Journal of Alzheimer's Disease, 2013, 34, 995-1013.	2.6	52
137	Cellular Components of Nervous Tissue. , 2013, , 41-59.		2
138	Machine Learning Approach for the Outcome Prediction of Temporal Lobe Epilepsy Surgery. PLoS ONE, 2013, 8, e62819.	2.5	45
139	A Machine Learning Method for the Prediction of Receptor Activation in the Simulation of Synapses. PLoS ONE, 2013, 8, e68888.	2.5	6
140	Going to School to Sculpt the Brain. Frontiers for Young Minds, 2013, 1, .	0.8	0
141	Neuronize: a tool for building realistic neuronal cell morphologies. Frontiers in Neuroanatomy, 2013, 7, 15.	1.7	27
142	Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis. Frontiers in Neuroanatomy, 2013, 7, 20.	1.7	33
143	3D segmentations of neuronal nuclei from confocal microscope image stacks. Frontiers in Neuroanatomy, 2013, 7, 49.	1.7	17
144	Semi-supervised Projected Clustering for Classifying GABAergic Interneurons. Lecture Notes in Computer Science, 2013, , 156-165.	1.3	0

#	Article	IF	CITATIONS
145	Facilitation of AMPA Receptor Synaptic Delivery as a Molecular Mechanism for Cognitive Enhancement. PLoS Biology, 2012, 10, e1001262.	5.6	43
146	Colocalization of Â-actinin and Synaptopodin in the Pyramidal Cell Axon Initial Segment. Cerebral Cortex, 2012, 22, 1648-1661.	2.9	24
147	Dyrk1A Influences Neuronal Morphogenesis Through Regulation of Cytoskeletal Dynamics in Mammalian Cortical Neurons. Cerebral Cortex, 2012, 22, 2867-2877.	2.9	84
148	The neocortical column. Frontiers in Neuroanatomy, 2012, 6, 22.	1.7	45
149	Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nature Medicine, 2012, 18, 1087-1094.	30.7	423
150	Effects of Amyloid-β Plaque Proximity on the Axon Initial Segment of Pyramidal Cells. Journal of Alzheimer's Disease, 2012, 29, 841-852.	2.6	27
151	Three-Dimensional Analysis of Spiny Dendrites Using Straightening and Unrolling Transforms. Neuroinformatics, 2012, 10, 391-407.	2.8	5
152	Developmental Expression of Kv Potassium Channels at the Axon Initial Segment of Cultured Hippocampal Neurons. PLoS ONE, 2012, 7, e48557.	2.5	38
153	Tau Phosphorylation by GSK3 in Different Conditions. International Journal of Alzheimer's Disease, 2012, 2012, 1-7.	2.0	89
154	Cortical White Matter: Beyond the Pale. Frontiers in Neuroanatomy, 2012, 5, 67.	1.7	10
155	Cortical GABAergic Neurons: Stretching It. Frontiers in Neuroanatomy, 2012, 6, 16.	1.7	1
156	In vitro maturation of the cisternal organelle in the hippocampal neuron's axon initial segment. Molecular and Cellular Neurosciences, 2011, 48, 104-116.	2.2	30
157	A Stereological Study of Synapse Number in the Epileptic Human Hippocampus. Frontiers in Neuroanatomy, 2011, 5, 8.	1.7	27
158	Espina: A Tool for the Automated Segmentation and Counting of Synapses in Large Stacks of Electron Microscopy Images. Frontiers in Neuroanatomy, 2011, 5, 18.	1.7	64
159	The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity. Frontiers in Neuroanatomy, 2011, 5, 29.	1.7	381
160	Goodbye Ted (An Obituary for Edward G. Jones). Frontiers in Neuroanatomy, 2011, 5, 44.	1.7	1
161	Introducing the Human Brain Project. Procedia Computer Science, 2011, 7, 39-42.	2.0	118
162	Abnormal Tau Phosphorylation in the Thorny Excrescences of CA3 Hippocampal Neurons in Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 26, 683-698.	2.6	44

#	Article	IF	CITATIONS
163	Models and Simulation of 3D Neuronal Dendritic Trees Using Bayesian Networks. Neuroinformatics, 2011, 9, 347-369.	2.8	20
164	Layerâ€specific alterations to CA1 dendritic spines in a mouse model of Alzheimer's disease. Hippocampus, 2011, 21, 1037-1044.	1.9	53
165	FAST INTERACTIVE QUANTIFICATION OF SYNAPSES IN THE CEREBRAL CORTEX. International Journal on Artificial Intelligence Tools, 2011, 20, 239-252.	1.0	2
166	Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. Frontiers in Neuroanatomy, 2011, 5, 2.	1.7	95
167	Aromatase expression in the normal and epileptic human hippocampus. Brain Research, 2010, 1315, 41-52.	2.2	52
168	Differential distribution of neurons in the gyral white matter of the human cerebral cortex. Journal of Comparative Neurology, 2010, 518, 4740-4759.	1.6	47
169	Cortical white matter: beyond the pale remarks, main conclusions and discussion. Frontiers in Neuroanatomy, 2010, 4, 4.	1.7	14
170	Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients. Frontiers in Neuroanatomy, 2010, 4, 20.	1.7	23
171	Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11567-11572.	7.1	93
172	GABAergic complex basket formations in the human neocortex. Journal of Comparative Neurology, 2010, 518, 4917-4937.	1.6	27
173	From the Connectome to the Synaptome: An Epic Love Story. Science, 2010, 330, 1198-1201.	12.6	148
174	Cortical GABAergic neurons: stretching it remarks, main conclusions and discussion. Frontiers in Neuroanatomy, 2010, 4, 7.	1.7	11
175	Cajal's Place in the History of Neuroscience. , 2009, , 497-507.		2
176	Diminished perisomatic GABAergic terminals on cortical neurons adjacent to amyloid plaques. Frontiers in Neuroanatomy, 2009, 3, 28.	1.7	105
177	Morphology and Distribution of Chandelier Cell Axon Terminals in the Mouse Cerebral Cortex and Claustroamygdaloid Complex. Cerebral Cortex, 2009, 19, 41-54.	2.9	51
178	Widespread Changes in Dendritic Spines in a Model of Alzheimer's Disease. Cerebral Cortex, 2009, 19, 586-592.	2.9	111
179	Proximity of excitatory and inhibitory axon terminals adjacent to pyramidal cell bodies provides a putative basis for nonsynaptic interactions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9878-9883.	7.1	27
180	Morphological alterations to neurons of the amygdala and impaired fear conditioning in a transgenic mouse model of Alzheimer's disease. Journal of Pathology, 2009, 219, 41-51.	4.5	54

#	Article	IF	CITATIONS
181	Counting synapses using FIB/SEM microscopy: a true revolution for ultrastructural volume reconstruction. Frontiers in Neuroanatomy, 2009, 3, 18.	1.7	167
182	Alterations of the Microvascular Network in Sclerotic Hippocampi From Patients With Epilepsy. Journal of Neuropathology and Experimental Neurology, 2009, 68, 939-950.	1.7	29
183	Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience, 2008, 9, 557-568.	10.2	1,314
184	Morphine self-administration effects on the structure of cortical pyramidal cells in addiction-resistant rats. Brain Research, 2008, 1230, 61-72.	2.2	17
185	Hippocampal Sclerosis: Histopathology Substrate and Magnetic Resonance Imaging. Seminars in Ultrasound, CT and MRI, 2008, 29, 2-14.	1.5	40
186	Gender differences in human cortical synaptic density. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14615-14619.	7.1	170
187	The neuroanatomist's dream, the problems and solutions, and the ultimate aim. Frontiers in Neuroscience, 2008, 2, 10-12.	2.8	10
188	The Distribution of Chandelier Cell Axon Terminals that Express the GABA Plasma Membrane Transporter GAT-1 in the Human Neocortex. Cerebral Cortex, 2007, 17, 2060-2071.	2.9	48
189	Non-synaptic dendritic spines in neocortex. Neuroscience, 2007, 145, 464-469.	2.3	155
190	Chronic cocaine treatment alters dendritic arborization in the adult motor cortex through a CB1 cannabinoid receptor–dependent mechanism. Neuroscience, 2007, 146, 1536-1545.	2.3	25
191	Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus. Neuroscience, 2007, 149, 131-143.	2.3	121
192	Macroanatomy and Microanatomy of the Temporal Lobe. Seminars in Ultrasound, CT and MRI, 2007, 28, 404-415.	1.5	12
193	Specializations of the Cortical Microstructure of Humans. , 2007, , 167-190.		8
194	Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Frontiers in Neuroscience, 2007, 1, 131-143.	2.8	444
195	Cation-Chloride Cotransporters and GABA-ergic Innervation in the Human Epileptic Hippocampus. Epilepsia, 2007, 48, 663-673.	5.1	134
196	Distribution of neurons expressing tyrosine hydroxylase in the human cerebral cortex. Journal of Anatomy, 2007, 211, 212-222.	1.5	38
197	Cell specificity of altered cation–chloride cotransporter expression and GABAergic innervation in the epileptic cerebral cortex. Future Neurology, 2007, 2, 383-387.	0.5	0
198	Double-bouquet cells in the monkey and human cerebral cortex with special reference to areas 17 and 18. Progress in Brain Research, 2006, 154, 15-32.	1.4	47

#	Article	IF	CITATIONS
199	Density and morphology of dendritic spines in mouse neocortex. Neuroscience, 2006, 138, 403-409.	2.3	125
200	Aromatase expression in the human temporal cortex. Neuroscience, 2006, 138, 389-401.	2.3	132
201	Brain plasticity and mental processes: Cajal again. Nature Reviews Neuroscience, 2006, 7, 811-817.	10.2	103
202	Correlation of transcriptome profile with electrical activity in temporal lobe epilepsy. Neurobiology of Disease, 2006, 22, 374-387.	4.4	72
203	Specializations of the granular prefrontal cortex of primates: Implications for cognitive processing. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 26-35.	2.0	134
204	The Effects of Morphine Self-Administration on Cortical Pyramidal Cell Structure in Addiction-Prone Lewis Rats. Cerebral Cortex, 2006, 17, 238-249.	2.9	36
205	Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2920-2925.	7.1	150
206	Dendritic Size of Pyramidal Neurons Differs among Mouse Cortical Regions. Cerebral Cortex, 2006, 16, 990-1001.	2.9	102
207	Pyramidal cell specialization in the occipitotemporal cortex of the vervet monkey. NeuroReport, 2005, 16, 967-970.	1.2	19
208	Double bouquet cell in the human cerebral cortex and a comparison with other mammals. Journal of Comparative Neurology, 2005, 486, 344-360.	1.6	115
209	Specialization in pyramidal cell structure in the sensoryâ€motor cortex of the Chacma baboon (<i>Papio) Tj ETQo Discoveries in Molecular, Cellular, and Evolutionary Biology, 2005, 286A, 854-865.</i>	1 1 0.784 2.0	314 rgBT /O 14
210	Regional specialization in pyramidal cell structure in the limbic cortex of the vervet monkey (Cercopithecus pygerythrus): an intracellular injection study of the anterior and posterior cingulate gyrus. Experimental Brain Research, 2005, 167, 315-323.	1.5	14
211	Pyramidal cell specialization in the occipitotemporal cortex of the Chacma baboon (Papio ursinus). Experimental Brain Research, 2005, 167, 496-503.	1.5	14
212	Catecholaminergic Innervation of Pyramidal Neurons in the Human Temporal Cortex. Cerebral Cortex, 2005, 15, 1584-1591.	2.9	38
213	Alterations in the phenotype of neocortical pyramidal cells in the Dyrk1A+/â^' mouse. Neurobiology of Disease, 2005, 20, 115-122.	4.4	94
214	Specialization in pyramidal cell structure in the cingulate cortex of the Chacma baboon (Papio) Tj ETQq0 0 0 rgB comparative notes on the macaque and vervet monkeys. Neuroscience Letters, 2005, 387, 130-135.	[/Overlocl 2.1	R 10 Tf 50 14 12
215	Vesicular glutamate transporter 1 immunostaining in the normal and epileptic human cerebral cortex. Neuroscience, 2005, 134, 59-68.	2.3	27
216	Specialization in pyramidal cell structure in the sensory-motor cortex of the vervet monkey (Cercopethicus pygerythrus). Neuroscience, 2005, 134, 1057-1068.	2.3	13

#	Article	IF	CITATIONS
217	A Study of Pyramidal Cell Structure in the Cingulate Cortex of the Macaque Monkey with Comparative Notes on Inferotemporal and Primary Visual Cortex. Cerebral Cortex, 2004, 15, 64-73.	2.9	83
218	Microanatomy of the dysplastic neocortex from epileptic patients. Brain, 2004, 128, 158-173.	7.6	73
219	Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Brain, 2004, 127, 45-64.	7.6	194
220	Synaptology of the proximal segment of pyramidal cell basal dendrites. European Journal of Neuroscience, 2004, 19, 771-776.	2.6	8
221	CA1 Hippocampal Neuronal Loss in Familial Alzheimer's Disease Presenilinâ€1 E280A Mutation Is Related to Epilepsy. Epilepsia, 2004, 45, 751-756.	5.1	65
222	On dendrites in Down syndrome and DS murine models: a spiny way to learn. Progress in Neurobiology, 2004, 74, 111-126.	5.7	124
223	Perisomatic glutamatergic axon terminals: a novel feature of cortical synaptology revealed by vesicular glutamate transporter 1 immunostaining. Neuroscience, 2004, 123, 547-556.	2.3	34
224	Cortical Microanatomy and Human Brain Disorders: Epilepsy. Cortex, 2004, 40, 232-233.	2.4	12
225	Lack of thyroid hormone receptor $\hat{l}\pm 1$ is associated with selective alterations in behavior and hippocampal circuits. Molecular Psychiatry, 2003, 8, 30-38.	7.9	104
226	Postnatal development of the vesicular gaba transporter in rat cerebral cortex. Neuroscience, 2003, 117, 337-346.	2.3	80
227	Localization of KCNQ5 in the normal and epileptic human temporal neocortex and hippocampal formation. Neuroscience, 2003, 120, 353-364.	2.3	65
228	Different Populations of Tyrosine-hydroxylase-immunoreactive Neurons Defined by Differential Expression of Nitric Oxide Synthase in the Human Temporal Cortex. Cerebral Cortex, 2003, 13, 297-307.	2.9	34
229	Alterations of Neocortical Pyramidal Cell Phenotype in the Ts65Dn Mouse Model of Down Syndrome: Effects of Environmental Enrichment. Cerebral Cortex, 2003, 13, 758-764.	2.9	136
230	Spaceflight Induces Changes in the Synaptic Circuitry of the Postnatal Developing Neocortex. Cerebral Cortex, 2002, 12, 883-891.	2.9	37
231	PSA-NCAM Immunoreactivity in Chandelier Cell Axon Terminals of the Human Temporal Cortex. Cerebral Cortex, 2002, 12, 617-624.	2.9	36
232	Chapter 10 Spine distribution in cortical pyramidal cells: a common organizational principle across species. Progress in Brain Research, 2002, 136, 109-133.	1.4	62
233	Sesquicentenary of the birthday of Santiago Ramón y Cajal, the father of modern neuroscience. Trends in Neurosciences, 2002, 25, 481-484.	8.6	46
234	Chapter 17 Cortical interneurons: from Cajal to 2001. Progress in Brain Research, 2002, 136, 215-238.	1.4	168

#	Article	IF	CITATIONS
235	GABABR1 receptor protein expression in human mesial temporal cortex: Changes in temporal lobe epilepsy. Journal of Comparative Neurology, 2002, 449, 166-179.	1.6	36
236	Neuropathological Findings in a Patient with Epilepsy and the Parry-Romberg Syndrome. Epilepsia, 2002, 42, 1198-1203.	5.1	50
237	Microstructure of the neocortex: comparative aspects. Journal of Neurocytology, 2002, 31, 299-316.	1.5	574
238	Preface to the special issue. Journal of Neurocytology, 2002, 31, 181-181.	1.5	2
239	Cortical area and species differences in dendritic spine morphology. Journal of Neurocytology, 2002, 31, 337-346.	1.5	173
240	A Model of Human Cortical Microcircuits for the Study of the Development of Epilepsy. Lecture Notes in Computer Science, 2002, , 248-253.	1.3	0
241	Microtubule-associated protein 2 phosphorylation is decreased in the human epileptic temporal lobe cortex. Neuroscience, 2001, 107, 25-33.	2.3	13
242	Barrel Pattern Formation Requires Serotonin Uptake by Thalamocortical Afferents, and Not Vesicular Monoamine Release. Journal of Neuroscience, 2001, 21, 6862-6873.	3.6	210
243	The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey. Journal of Neuroscience, 2001, 21, RC163-RC163.	3.6	286
244	Changes in the colocalization of glutamate ionotropic receptor subunits in the human epileptic temporal lobe cortex. Experimental Brain Research, 2001, 138, 398-402.	1.5	11
245	Structural abnormalities develop in the brain after ablation of the gene encoding nonmuscle myosin Ilâ€B heavy chain. Journal of Comparative Neurology, 2001, 433, 62-74.	1.6	112
246	Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cerebral cortex. Journal of Comparative Neurology, 2001, 433, 148-155.	1.6	84
247	Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nature Neuroscience, 2001, 4, 52-62.	14.8	506
248	The Human Temporal Cortex: Characterization of Neurons Expressing Nitric Oxide Synthase, Neuropeptides and Calcium-binding Proteins, and their Glutamate Receptor Subunit Profiles. Cerebral Cortex, 2001, 11, 1170-1181.	2.9	74
249	Patterns of GABABR1a,b Receptor Gene Expression in Monkey and Human Visual Cortex. Cerebral Cortex, 2001, 11, 104-113.	2.9	19
250	Colocalization of Glutamate Ionotropic Receptor Subunits in the Human Temporal Neocortex. Cerebral Cortex, 2000, 10, 621-631.	2.9	21
251	Chandelier cells and epilepsy. Brain, 1999, 122, 1807-1822.	7.6	283
252	Estimation of the Number of Synapses in the Cerebral Cortex: Methodological Considerations. Cerebral Cortex, 1999, 9, 722-732.	2.9	156

#	Article	IF	CITATIONS
253	Deficit of quantal release of GABA in experimental models of temporal lobe epilepsy. Nature Neuroscience, 1999, 2, 499-500.	14.8	99
254	Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. Journal of Comparative Neurology, 1999, 412, 515-526.	1.6	160
255	Transport of CSF antibodies to Gα subunits across neural membranes requires binding to the target protein and protein kinase C activity. Molecular Brain Research, 1999, 65, 151-166.	2.3	8
256	Myr+-Gi2α and Goα subunits restore the efficacy of opioids, clonidine and neurotensin giving rise to antinociception in G-protein knock-down mice. Neuropharmacology, 1999, 38, 1861-1873.	4.1	16
257	Variation in the spatial relationship between parvalbumin immunoreactive interneurones and pyramidal neurones in rat somatosensory cortex. NeuroReport, 1999, 10, 2975-2979.	1.2	18
258	Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. , 1999, 412, 515.		1
259	Local changes in GTP-binding protein immunoreactivities in human epileptogenic neocortex. Experimental Brain Research, 1998, 119, 153-158.	1.5	9
260	Nitric oxide-producing neurons in the neocortex: morphological and functional relationship with intraparenchymal microvasculature. Cerebral Cortex, 1998, 8, 193-203.	2.9	135
261	Chandelier cell axons are immunoreactive for GAT-1 in the human neocortex. NeuroReport, 1998, 9, 467-470.	1.2	51
262	Inhibitory synaptogenesis in mouse somatosensory cortex. Cerebral Cortex, 1997, 7, 619-634.	2.9	241
263	Microcircuits in the brain. Lecture Notes in Computer Science, 1997, , 1-14.	1.3	7
264	Colocalization of parvalbumin and calbindin D-28k in neurons including chandelier cells of the human temporal neocortex. Journal of Chemical Neuroanatomy, 1997, 12, 165-173.	2.1	62
265	Double bouquet cell axons in the human temporal neocortex: relationship to bundles of myelinated axons and colocalization of calretinin and calbindin D-28k immunoreactivities. Journal of Chemical Neuroanatomy, 1997, 13, 243-251.	2.1	60
266	Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. Journal of Chemical Neuroanatomy, 1997, 14, 1-19.	2.1	497
267	Loss of Inhibitory Synapses on the Soma and Axon Initial Segment of Pyramidal Cells in Human Epileptic Peritumoural Neocortex. Brain Research Bulletin, 1997, 44, 47-66.	3.0	51
268	Synaptic Connections of Calretinin-Immunoreactive Neurons in the Human Neocortex. Journal of Neuroscience, 1997, 17, 5143-5154.	3.6	72
269	Altered synaptic circuitry in the human temporal neocortex removed from epileptic patients. Experimental Brain Research, 1997, 114, 1-10.	1.5	73
270	Distribution of parvalbumin immunoreactivity in the neocortex of hypothyroid adult rats. Neuroscience Letters, 1996, 204, 65-68.	2.1	67

#	Article	IF	CITATIONS
271	Colocalization of calbindin D-28k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex. Journal of Comparative Neurology, 1996, 369, 472-482.	1.6	89
272	Inhibitory neurons in the human epileptogenic temporal neocortex: An immunocytochemical study. Brain, 1996, 119, 1327-1347.	7.6	138
273	Immunocytochemical localization of non-NMDA ionotropic excitatory amino acid receptor subunits in human neocortex. Brain Research, 1995, 671, 175-180.	2.2	22
274	A light and electron microscopic study of calbindin D-28k immunoreactive double bouquet cells in the human temporal cortex. Brain Research, 1995, 690, 133-140.	2.2	54
275	A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temproal neocortex. Journal of Comparative Neurology, 1994, 342, 389-408.	1.6	102
276	Microzonal decreases in the immunostaining for non-NMDA ionotropic excitatory amino acid receptor subunits GluR 2/3 and GluR 5/6/7 in the human epileptogenic neocortex. Brain Research, 1994, 657, 150-158.	2.2	43
277	GABA Neurons and Their Role in Activity-Dependent Plasticity of Adult Primate Visual Cortex. Cerebral Cortex, 1994, , 61-140.	0.6	24
278	A study of NADPH diaphorase-positive axonal plexuses in the human temporal cortex. Brain Research, 1993, 615, 342-346.	2.2	44
279	Neocortical Neuronal Diversity: Chemical Heterogeneity Revealed by Colocalization Studies of Classic Neurotransmitters, Neuropeptides, Calcium-binding Proteins, and Cell Surface Molecules. Cerebral Cortex, 1993, 3, 273-289.	2.9	332
280	A simple and reliable method for correlative light and electron microscopic studies Journal of Histochemistry and Cytochemistry, 1993, 41, 769-772.	2.5	86
281	Selective Changes in the Microorganization of the Human Epileptogenic Neocortex Revealed by Parvalbumin Immunoreactivity. Cerebral Cortex, 1993, 3, 39-48.	2.9	85
282	The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology, 1992, 39, 563-607.	5.7	842
283	Santiago Ramón y Cajal and methods in neurohistology. Trends in Neurosciences, 1992, 15, 237-246.	8.6	38
284	High-Resolution Light and Electron Microscopic Immunocytochemistry of Colocalized GABA and Calbindin D-28k in Somata and Double Bouquet Cell Axons of Monkey Somatosensory Cortex. European Journal of Neuroscience, 1992, 4, 46-60.	2.6	123
285	Synaptic Relationships of Serotonin-Inmmunoreactive Terminal Baskets pm GABA Neurons in the Cat Auditory Cortex. Cerebral Cortex, 1991, 1, 117-133.	2.9	73
286	Parvalbumin immunoreactivity reveals layer IV of monkey cerebral cortex as a mosaic of microzones of thalamic afferent terminations. Brain Research, 1991, 562, 39-47.	2.2	82
287	Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. I. The cell body. Journal of Comparative Neurology, 1991, 304, 53-69.	1.6	91
288	Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. II. The axon initial segment. Journal of Comparative Neurology, 1991, 304, 70-77.	1.6	126

#	Article	IF	CITATIONS
289	Editors' Commentary. , 1991, , 5-18.		2
290	Material Omitted from the Original English Edition. , 1991, , 19-24.		0
291	A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience, 1990, 37, 655-673.	2.3	231
292	Clutamate-positive neurons and axon terminals in cat sensory cortex: A correlative light and electron microscopic study. Journal of Comparative Neurology, 1989, 290, 141-153.	1.6	59
293	Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Research, 1989, 503, 49-54.	2.2	219
294	Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 2093-2097.	7.1	310
295	Synaptic connections of an interneuron with axonal arcades in the cat visual cortex. Journal of Neurocytology, 1988, 17, 313-323.	1.5	24
296	A light and electron microscopic study of serotonin-immunoreactive fibers and terminals in the monkey sensory-motor cortex. Experimental Brain Research, 1988, 71, 171-82.	1.5	56
297	Local connections in transplanted and normal cerebral cortex of rats. Experimental Brain Research, 1988, 69, 387-98.	1.5	22
298	Demonstration of glutamate-positive axon terminals forming asymmetric synapses in cat neocortex. Brain Research, 1988, 455, 162-165.	2.2	75
299	A study of tachykinin-immunoreactive neurons in monkey cerebral cortex. Journal of Neuroscience, 1988, 8, 1206-1224.	3.6	105
300	Regulation of Substance P Immunoreactivity in GABA Neurons of Monkey Visual Cortex by Sensory Deprivation. , 1987, , 300-301.		2
301	GABA—Peptide Neurons of the Primate Cerebral Cortex. Cerebral Cortex, 1987, , 237-266.	0.6	26
302	A correlative electron microscopic study of basket cells and large gabaergic neurons in the monkey sensory-motor cortex. Neuroscience, 1986, 17, 991-1009.	2.3	130
303	Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex. Journal of Neuroscience, 1986, 6, 3749-3766.	3.6	225
304	Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory-motor cortex. Journal of Comparative Neurology, 1985, 231, 364-384.	1.6	210
305	Vertical organization of gamma-aminobutyric acid-accumulating intrinsic neuronal systems in monkey cerebral cortex. Journal of Neuroscience, 1985, 5, 3246-3260.	3.6	74
306	Neuropeptide-containing neurons of the cerebral cortex are also GABAergic Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 6526-6530.	7.1	465

#	Article	IF	CITATIONS
307	Sensory Yagal Nature and Anatomical Access Paths to Esophagus Laminar Nerve Endings in Myenteric Ganglia. Determination by Surgical Degeneration Methods. Cells Tissues Organs, 1982, 112, 47-57.	2.3	67
308	A type of basket cell in superficial layers of the cat visual cortex. A Golgi-electron microscope study. Brain Research, 1982, 244, 9-16.	2.2	113
309	The Golgi-EM procedure: a tool to study neocortical interneurons. Progress in Clinical and Biological Research, 1981, 59A, 291-301.	0.2	2
310	Spinous leafy nerve endings in the feline stomach wall. Cells Tissues Organs, 1979, 103, 184-191.	2.3	1
311	A Brain Atlas of Synapse Protein Lifetime Across the Mouse Lifespan. SSRN Electronic Journal, 0, , .	0.4	0
312	Manifesto of a neuroanatomist. Frontiers in Neuroanatomy, 0, 16, .	1.7	2