
## Lijuan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2312585/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Controllable formation of bulk perfluorohexane nanodroplets by solvent exchange. Soft Matter, 2022, 18, 425-433.                                                                                         | 2.7 | 1         |
| 2  | Influence of the Dissolved Gas on the Interfacial Properties of Decane Surface Nanodroplets.<br>Langmuir, 2022, 38, 2213-2219.                                                                           | 3.5 | 4         |
| 3  | Theoretical Analysis on the Stability of Single Bulk Nanobubble. Frontiers in Materials, 2022, 9, .                                                                                                      | 2.4 | 3         |
| 4  | Editorial: Particle Interfaces & amp; Interface Performance Materials. Frontiers in Materials, 2022, 9, .                                                                                                | 2.4 | 0         |
| 5  | Gram-selective antibacterial peptide hydrogels. Biomaterials Science, 2022, 10, 3831-3844.                                                                                                               | 5.4 | 10        |
| 6  | Interfacial Micropancakes: Gas or Contaminations?. Langmuir, 2022, 38, 7914-7920.                                                                                                                        | 3.5 | 7         |
| 7  | Generating Bulk Nanobubbles in Alcohol Systems. ACS Omega, 2021, 6, 2873-2881.                                                                                                                           | 3.5 | 5         |
| 8  | Antimicrobial <scp>d</scp> -Peptide Hydrogels. ACS Biomaterials Science and Engineering, 2021, 7, 1703-1712.                                                                                             | 5.2 | 22        |
| 9  | Macrochirality of Self-Assembled and Co-assembled Supramolecular Structures of a Pair of Enantiomeric Peptides. Frontiers in Molecular Biosciences, 2021, 8, 700964.                                     | 3.5 | 5         |
| 10 | Collective Dynamics of Bulk Nanobubbles with Size-Dependent Surface Tension. Langmuir, 2021, 37,<br>7986-7994.                                                                                           | 3.5 | 16        |
| 11 | Generation and stability of bulk nanobubbles: A review and perspective. Current Opinion in Colloid and Interface Science, 2021, 53, 101439.                                                              | 7.4 | 69        |
| 12 | Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells.<br>Microscopy and Microanalysis, 2021, 27, 1566-1569.                                                   | 0.4 | 0         |
| 13 | Gelation of a Pentapeptide in Alcohols. Langmuir, 2021, 37, 8961-8970.                                                                                                                                   | 3.5 | 3         |
| 14 | The effects of nanobubbles on the assembly of glucagon amyloid fibrils. Soft Matter, 2021, 17, 3486-3493.                                                                                                | 2.7 | 5         |
| 15 | 3D Imaging and Quantification of the Integrin at a Single-Cell Base on a Multisignal Nanoprobe and<br>Synchrotron Radiation Soft X-ray Tomography Microscopy. Analytical Chemistry, 2021, 93, 1237-1241. | 6.5 | 20        |
| 16 | Novel 2D CaCl crystals with metallicity, room-temperature ferromagnetism, heterojunction,<br>piezoelectricity-like property and monovalent calcium ions. National Science Review, 2021, 8, nwaa274.      | 9.5 | 16        |
| 17 | Wetting Behavior of Surface Nanodroplets Regulated by Periodic Nanostructured Surfaces. ACS<br>Applied Materials & Interfaces, 2021, 13, 55726-55734.                                                    | 8.0 | 7         |
| 18 | Single-Particle Analysis for Structure and Iron Chemistry of Atmospheric Particulate Matter.<br>Analytical Chemistry, 2020, 92, 975-982.                                                                 | 6.5 | 24        |

Lijuan Zhang

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Influence of Krypton Gas Nanobubbles on the Activity of Pepsin. Langmuir, 2020, 36, 14070-14075.                                                                                                                                               | 3.5  | 11        |
| 20 | The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in<br>Li-rich cathode materials. Journal of Materials Chemistry A, 2020, 8, 7733-7745.                                                            | 10.3 | 101       |
| 21 | Formation and Stability of Bulk Nanobubbles by Vibration. Langmuir, 2020, 36, 2264-2270.                                                                                                                                                       | 3.5  | 47        |
| 22 | Ultrahigh Density of Gas Molecules Confined in Surface Nanobubbles in Ambient Water. Journal of the American Chemical Society, 2020, 142, 5583-5593.                                                                                           | 13.7 | 88        |
| 23 | Oxygenation and synchronous control of nitrogen and phosphorus release at the sediment-water interface using oxygen nano-bubble modified material. Science of the Total Environment, 2020, 725, 138258.                                        | 8.0  | 33        |
| 24 | Pyrolysis Temperature-Dependent Changes in the Characteristics of Biochar-Borne Dissolved Organic<br>Matter and Its Copper Binding Properties. Bulletin of Environmental Contamination and Toxicology,<br>2019, 103, 169-174.                  | 2.7  | 53        |
| 25 | Effect of Sodium Oleate on the Adsorption Morphology and Mechanism of Nanobubbles on the Mica Surface. Langmuir, 2019, 35, 9239-9245.                                                                                                          | 3.5  | 40        |
| 26 | Lithiumâ€Ion Batteries: Tuning Anionic Redox Activity and Reversibility for a Highâ€Capacity Liâ€Rich<br>Mnâ€Based Oxide Cathode via an Integrated Strategy (Adv. Funct. Mater. 10/2019). Advanced Functional<br>Materials, 2019, 29, 1970064. | 14.9 | 7         |
| 27 | Formation and Stability of Bulk Nanobubbles in Different Solutions. Langmuir, 2019, 35, 5250-5256.                                                                                                                                             | 3.5  | 58        |
| 28 | Mechanical Properties of Sub-Microbubbles with a Nanoparticle-Decorated Polymer Shell. Langmuir, 2019, 35, 17090-17095.                                                                                                                        | 3.5  | 4         |
| 29 | Force Spectroscopy Revealed a High-Gas-Density State near the Graphite Substrate inside Surface<br>Nanobubbles. Langmuir, 2019, 35, 2498-2505.                                                                                                 | 3.5  | 26        |
| 30 | Tuning Anionic Redox Activity and Reversibility for a Highâ€Capacity Liâ€Rich Mnâ€Based Oxide Cathode via<br>an Integrated Strategy. Advanced Functional Materials, 2019, 29, 1806706.                                                         | 14.9 | 121       |
| 31 | Influence of Mixing and Nanosolids on the Formation of Nanobubbles. Journal of Physical Chemistry<br>B, 2019, 123, 317-323.                                                                                                                    | 2.6  | 23        |
| 32 | The role of EDTA on rutile flotation using Al <sup>3+</sup> ions as an activator. RSC Advances, 2018, 8, 4872-4880.                                                                                                                            | 3.6  | 18        |
| 33 | Structural Incorporation of Manganese into Goethite and Its Enhancement of Pb(II) Adsorption.<br>Environmental Science & Technology, 2018, 52, 4719-4727.                                                                                      | 10.0 | 74        |
| 34 | Changes in structural characteristics and metal speciation for biochar exposure in typic udic ferrisols. Environmental Science and Pollution Research, 2018, 25, 153-162.                                                                      | 5.3  | 8         |
| 35 | 3D Heterogeneous Co <sub>3</sub> O <sub>4</sub> @Co <sub>3</sub> S <sub>4</sub> Nanoarrays Grown<br>on Ni Foam as a Binderâ€Free Electrode for Lithiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 309-315.                                      | 3.4  | 35        |
| 36 | Automatic Calibrations of Sample Misalignment for Nanotomography at SSRF. Microscopy and Microanalysis, 2018, 24, 124-125.                                                                                                                     | 0.4  | 1         |

LIJUAN ZHANG

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Formation and Stability of Surface/Bulk Nanobubbles Produced by Decompression at Lower Gas<br>Concentration. Journal of Physical Chemistry C, 2018, 122, 22418-22423.                                                                                              | 3.1  | 42        |
| 38 | The Role of Nanobubbles in the Precipitation and Recovery of Organic-Phosphine-Containing<br>Beneficiation Wastewater. Langmuir, 2018, 34, 6217-6224.                                                                                                              | 3.5  | 54        |
| 39 | CH <sub>4</sub> Nanobubbles on the Hydrophobic Solid–Water Interface Serving as the Nucleation<br>Sites of Methane Hydrate. Langmuir, 2018, 34, 10181-10186.                                                                                                       | 3.5  | 48        |
| 40 | Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells.<br>IUCrJ, 2018, 5, 141-149.                                                                                                                                       | 2.2  | 24        |
| 41 | Formation and Stability of Bulk Nanobubbles Generated by Ethanol–Water Exchange. ChemPhysChem, 2017, 18, 1345-1350.                                                                                                                                                | 2.1  | 89        |
| 42 | lon sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550,<br>380-383.                                                                                                                                                 | 27.8 | 1,171     |
| 43 | Inert Gas Deactivates Protein Activity by Aggregation. Scientific Reports, 2017, 7, 10176.                                                                                                                                                                         | 3.3  | 25        |
| 44 | Interfacial gas nanobubbles or oil nanodroplets?. Physical Chemistry Chemical Physics, 2017, 19,<br>1108-1114.                                                                                                                                                     | 2.8  | 26        |
| 45 | Formation of surface nanobubbles on nanostructured substrates. Nanoscale, 2017, 9, 1078-1086.                                                                                                                                                                      | 5.6  | 44        |
| 46 | Unexpectedly Enhanced Solubility of Aromatic Amino Acids and Peptides in an Aqueous Solution of<br>Divalent Transition-Metal Cations. Physical Review Letters, 2016, 117, 238102.                                                                                  | 7.8  | 41        |
| 47 | Rhodamine B-based ordered mesoporous organosilicas for the selective detection and adsorption of<br>Al( <scp>iii</scp> ). New Journal of Chemistry, 2016, 40, 6752-6761.                                                                                           | 2.8  | 11        |
| 48 | Enhanced Fluorescence in Tetraylnitrilomethylidyne–Hexaphenyl Derivative-Functionalized Periodic<br>Mesoporous Organosilicas for Sensitive Detection of Copper(II). Journal of Physical Chemistry C, 2016,<br>120, 9299-9307.                                      | 3.1  | 30        |
| 49 | Size-Dependent Stiffness of Nanodroplets: A Quantitative Analysis of the Interaction between an AFM<br>Probe and Nanodroplets. Langmuir, 2016, 32, 11230-11235.                                                                                                    | 3.5  | 10        |
| 50 | Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction. Science of the Total Environment, 2016, 569-570, 1579-1586.                                                                   | 8.0  | 8         |
| 51 | Metal-enhanced fluorescence-based multilayer core–shell Ag-nanocube@SiO <sub>2</sub> @PMOs<br>nanocomposite sensor for Cu <sup>2+</sup> detection. RSC Advances, 2016, 6, 61109-61118.                                                                             | 3.6  | 16        |
| 52 | Influence of water-dispersible colloids from organic manure on the mechanism of metal transport in<br>historically contaminated soils: coupling colloid fractionation with high-energy synchrotron<br>analysis. Journal of Soils and Sediments, 2016, 16, 349-359. | 3.0  | 6         |
| 53 | In situ measurement of contact angles and surface tensions of interfacial nanobubbles in ethanol aqueous solutions. Soft Matter, 2016, 12, 3303-3309.                                                                                                              | 2.7  | 30        |
| 54 | Distribution and Speciation of Cu in the Root Border Cells of Rice by STXM Combined with NEXAFS.<br>Bulletin of Environmental Contamination and Toxicology, 2016, 96, 408-414.                                                                                     | 2.7  | 7         |

Lijuan Zhang

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Interfacial Nanobubbles on Atomically Flat Substrates with Different Hydrophobicities.<br>ChemPhysChem, 2015, 16, 1003-1007.                                                                                         | 2.1  | 26        |
| 56 | X-Ray Absorption Spectra and Self-Bias Ferromagnetic Resonance of FeCoB Films Prepared by Composition Gradient Sputtering. IEEE Transactions on Magnetics, 2015, 51, 1-4.                                            | 2.1  | 2         |
| 57 | Stiffness and evolution of interfacial micropancakes revealed by AFM quantitative nanomechanical imaging. Physical Chemistry Chemical Physics, 2015, 17, 13598-13605.                                                | 2.8  | 24        |
| 58 | Where Does the Transformation of Precipitated Ceria Nanoparticles in Hydroponic Plants Take Place?.<br>Environmental Science & Technology, 2015, 49, 10667-10674.                                                    | 10.0 | 82        |
| 59 | The Origin of the "Snapâ€inâ€in the Force Curve between AFM Probe and the Water/Gas Interface of<br>Nanobubbles. ChemPhysChem, 2014, 15, 492-499.                                                                    | 2.1  | 17        |
| 60 | Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control.<br>Journal of Nanoparticle Research, 2014, 16, 1.                                                                     | 1.9  | 28        |
| 61 | Metallofullerenols: Polyhydroxylated Metallofullerenols Stimulate IL-1β Secretion of Macrophage<br>through TLRs/MyD88/NF-κB Pathway and NLRP3Inflammasome Activation (Small 12/2014). Small, 2014, 10,<br>2310-2310. | 10.0 | 2         |
| 62 | Mechanical mapping of nanobubbles by PeakForce atomic force microscopy. Soft Matter, 2013, 9, 8837.                                                                                                                  | 2.7  | 95        |
| 63 | Imaging interfacial micro- and nano-bubbles by scanning transmission soft X-ray microscopy. Journal of Synchrotron Radiation, 2013, 20, 413-418.                                                                     | 2.4  | 65        |
| 64 | The Morphology and Stability of Nanoscopic Gas States at Water/Solid Interfaces. ChemPhysChem, 2012, 13, 2188-2195.                                                                                                  | 2.1  | 20        |
| 65 | The length scales for stable gas nanobubbles at liquid/solid surfaces. Soft Matter, 2010, 6, 4515.                                                                                                                   | 2.7  | 65        |
| 66 | Nanoscale Multiple Gaseous Layers on a Hydrophobic Surface. Langmuir, 2009, 25, 8860-8864.                                                                                                                           | 3.5  | 74        |
| 67 | Hollow Silica Spheres: Synthesis and Mechanical Properties. Langmuir, 2009, 25, 2711-2717.                                                                                                                           | 3.5  | 172       |
| 68 | Long lifetime of nanobubbles due to high inner density. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 219-224.                                                                              | 0.2  | 61        |
| 69 | Photocatalytic Induction of Nanobubbles on TiO <sub>2</sub> Surfaces. Journal of Physical Chemistry C, 2008, 112, 4029-4032.                                                                                         | 3.1  | 27        |
| 70 | INVESTIGATION ON THE MORPHOLOGY OF PRECIPITATED CHEMICALS FROM TE BUFFER ON SOLID SUBSTRATES. Surface Review and Letters, 2007, 14, 1121-1128.                                                                       | 1.1  | 6         |
| 71 | Electrochemically Controlled Formation and Growth of Hydrogen Nanobubbles. Langmuir, 2006, 22, 8109-8113.                                                                                                            | 3.5  | 197       |
| 72 | Formation of Bulk Nanobubbles Induced by Accelerated Electrons Irradiation: Dependences on Dose<br>Rates and Doses of Irradiation. Langmuir, 0, , .                                                                  | 3.5  | 3         |