Wataru Yoshida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2312001/publications.pdf Version: 2024-02-01

Μλταριι Υρεμιρα

#	Article	IF	CITATIONS
1	Global DNA Methylation Analysis Using Methylcytosine Dioxygenase. Springer Protocols, 2022, , 93-102.	0.3	0
2	Stabilization of VEGF i-motif structure by CpG methylation. Biochemical and Biophysical Research Communications, 2022, 594, 88-92.	2.1	8
3	Destabilization of DNA and RNA G-quadruplex structures formed by GGA repeat due to N6-methyladenine modification. Biochemical and Biophysical Research Communications, 2022, 597, 134-139.	2.1	5
4	Quantification of Global DNA Hydroxymethylation Level Using UHRF2 SRA-Luciferase Based on Bioluminescence Resonance Energy Transfer. Analytical Chemistry, 2022, 94, 8618-8624.	6.5	5
5	Bioluminescence Resonance Energy Transfer for Global DNA Methylation Quantification. Methods in Molecular Biology, 2022, , 267-279.	0.9	1
6	Thermal Stability Changes in Telomeric G-Quadruplex Structures Due to N6-Methyladenine Modification. Epigenomes, 2021, 5, 5.	1.8	5
7	Effects of CpG methylation on the thermal stability of c-kit2, c-kit*, and c-kit1 G-quadruplex structures. BBA Advances, 2021, 1, 100007.	1.6	6
8	Quantification of global DNA methylation level using 5-methylcytosine dioxygenase. Analytical and Bioanalytical Chemistry, 2020, 412, 5299-5305.	3.7	4
9	Destabilisation of the c-kit1 G-quadruplex structure by N6-methyladenosine modification. Biochemical and Biophysical Research Communications, 2020, 524, 472-476.	2.1	16
10	Multicolor bioluminescence resonance energy transfer assay for quantification of global DNA methylation. Analytical and Bioanalytical Chemistry, 2019, 411, 4765-4773.	3.7	9
11	G-quadruplex–forming CGA repeat region functions as a negative regulator of the Ccnb1ip1 enhancer. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1697-1702.	1.3	3
12	Model studies for isolation of G-quadruplex-forming DNA sequences through a pull-down strategy with macrocyclic polyoxazole. Bioorganic and Medicinal Chemistry, 2019, 27, 1742-1746.	3.0	4
13	Global DNA Methylation Level Monitoring by methyl-CpG Binding Domain-Fused Luciferase. Analytical Letters, 2019, 52, 754-760.	1.8	13
14	Direct Detection of Hemi-methylated DNA by SRA-fused Luciferase Based on Bioluminescence Resonance Energy Transfer. Analytical Letters, 2019, 52, 1258-1267.	1.8	7
15	Identification of G-quadruplex clusters by high-throughput sequencing of whole-genome amplified products with a G-quadruplex ligand. Scientific Reports, 2018, 8, 3116.	3.3	28
16	Stabilization of G-quadruplex structure on vascular endothelial growth factor gene promoter depends on CpG methylation site and cation type. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1933-1937.	2.4	13
17	Esterification of PQQ Enhances Blood-Brain Barrier Permeability and Inhibitory Activity against Amyloidogenic Protein Fibril Formation. ACS Chemical Neuroscience, 2018, 9, 2898-2903.	3.5	10
18	CpG Methylation Changes G-Quadruplex Structures Derived from Gene Promoters and Interaction with VEGF and SP1. Molecules, 2018, 23, 944.	3.8	29

WATARU YOSHIDA

#	Article	IF	CITATIONS
19	Development of HGFâ€binding aptamers with the combination of G4 promoterâ€derived aptamer selection and in silico maturation. Biotechnology and Bioengineering, 2017, 114, 2196-2203.	3.3	5
20	A quantitative homogeneous assay for global DNA methylation levels using CpG-binding domain- and methyl-CpG-binding domain-fused luciferase. Analytica Chimica Acta, 2017, 990, 168-173.	5.4	11
21	Identification of C-quadruplex structures that possess transcriptional regulating functions in the Dele and Cdc6 CpG islands. BMC Molecular Biology, 2017, 18, 17.	3.0	11
22	Development of an electrochemical detection system for measuring DNA methylation levels using methyl CpG-binding protein and glucose dehydrogenase-fused zinc finger protein. Biosensors and Bioelectronics, 2017, 93, 118-123.	10.1	21
23	Detection of DNA Methylation of G-Quadruplex and i-Motif-Forming Sequences by Measuring the Initial Elongation Efficiency of Polymerase Chain Reaction. Analytical Chemistry, 2016, 88, 7101-7107.	6.5	30
24	ATP-mediated Release of a DNA-binding Protein from a Silicon Nanoneedle Array. Electrochemistry, 2016, 84, 305-307.	1.4	6
25	Structural regulation by a G-quadruplex ligand increases binding abilities of G-quadruplex-forming aptamers. Chemical Communications, 2016, 52, 12646-12649.	4.1	19
26	Global DNA Methylation Detection System Using MBD-Fused Luciferase Based on Bioluminescence Resonance Energy Transfer Assay. Analytical Chemistry, 2016, 88, 9264-9268.	6.5	24
27	DNA Detection Technology Using Zinc Finger Protein. Journal of Microbial & Biochemical Technology, 2015, 07, .	0.2	2
28	Identification of RNA Oligonucleotides Binding to Several Proteins from Potential G-Quadruplex Forming Regions in Transcribed Pre-mRNA. Molecules, 2015, 20, 20832-20840.	3.8	7
29	Inhibition of an Allergen–Antibody Reaction Related to Japanese Cedar Pollinosis Using DNA Aptamers Against the Cry j 2 Allergen. Nucleic Acid Therapeutics, 2015, 25, 311-316.	3.6	0
30	Improvement of the VEGF binding ability of DNA aptamers through in silico maturation and multimerization strategy. Journal of Biotechnology, 2015, 212, 99-105.	3.8	20
31	DNA aptamers against the Cry j 2 allergen of Japanese cedar pollen for biosensing applications. Biosensors and Bioelectronics, 2015, 63, 159-165.	10.1	11
32	An Insulator Element Located at the Cyclin B1 Interacting Protein 1 Gene Locus Is Highly Conserved among Mammalian Species. PLoS ONE, 2015, 10, e0131204.	2.5	6
33	Emerging techniques employed in aptamer-based diagnostic tests. Expert Review of Molecular Diagnostics, 2014, 14, 143-151.	3.1	16
34	Simultaneous improvement of specificity and affinity of aptamers against <i>Streptococcus mutans</i> by in silico maturation for biosensor development. Biotechnology and Bioengineering, 2014, 111, 454-461.	3.3	22
35	Design of riboregulators for control of cyanobacterial (Synechocystis) protein expression. Biotechnology Letters, 2014, 36, 287-294.	2.2	38

³⁶ In silico Maturation: Processing Sequences to Improve Biopolymer Functions Based on Genetic Algorithms. , 2014, , 271-288.

4

WATARU YOSHIDA

#	Article	IF	CITATIONS
37	Electrochemical detection of pathogenic bacteria by using a glucose dehydrogenase fused zinc finger protein. Analytical Methods, 2014, 6, 4991-4994.	2.7	10
38	A green-light inducible lytic system for cyanobacterial cells. Biotechnology for Biofuels, 2014, 7, 56.	6.2	59
39	Improving the Gene-Regulation Ability of Small RNAs by Scaffold Engineering in <i>Escherichia coli</i> . ACS Synthetic Biology, 2014, 3, 152-162.	3.8	41
40	Selection of DNA aptamers against uropathogenic Escherichia coli NSM59 by quantitative PCR controlled Cell-SELEX. Journal of Microbiological Methods, 2014, 104, 94-100.	1.6	26
41	Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase. Analytica Chimica Acta, 2013, 801, 78-83.	5.4	11
42	Partial Peptide of α-Synuclein Modified with Small-Molecule Inhibitors Specifically Inhibits Amyloid Fibrillation of α-Synuclein. International Journal of Molecular Sciences, 2013, 14, 2590-2600.	4.1	18
43	Electrochemical Biosensors Using Aptamers for Theranostics. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 183-202.	1.1	11
44	Affinity Improvement of a VEGF Aptamer by <i>in Silico</i> Maturation for a Sensitive VEGF-Detection System. Analytical Chemistry, 2013, 85, 1132-1137.	6.5	92
45	Rapid Cytotoxicity Screening Platform for Amyloid Inhibitors Using a Membrane-Potential Sensitive Fluorescent Probe. Analytical Chemistry, 2013, 85, 185-192.	6.5	15
46	In silico maturation of bindingâ€specificity of DNA aptamers against <i>Proteus mirabilis</i> . Biotechnology and Bioengineering, 2013, 110, 2573-2580.	3.3	42
47	Detection of Histone Modification by Chromatin Immunoprecipitation Combined Zinc Finger Luciferase-Based Bioluminescence Resonance Energy Transfer Assay. Analytical Chemistry, 2013, 85, 6485-6490.	6.5	11
48	Aptamer Selection Based on G4-Forming Promoter Region. PLoS ONE, 2013, 8, e65497.	2.5	29
49	Screening of Peptide Ligands for Pyrroloquinoline Quinone Glucose Dehydrogenase Using Antagonistic Template-Based Biopanning. International Journal of Molecular Sciences, 2013, 14, 23244-23256.	4.1	2
50	An Optical Biosensing System Based on Interference-Enhanced Reflection with Aptameric Enzyme Subunits of Thrombin. Analytical Letters, 2013, 46, 242-249.	1.8	3
51	Two-Dimensional Electrophoresis-Based Selection of Aptamers Against an Unidentified Protein in a Tissue Sample. Analytical Letters, 2013, 46, 2954-2963.	1.8	7
52	Fluorescentâ€Ligandâ€Mediated Screening of Gâ€Quadruplex Structures Using a DNA Microarray. Angewandte Chemie - International Edition, 2013, 52, 12052-12055.	13.8	45
53	Fluorescentâ€Ligandâ€Mediated Screening of Gâ€Quadruplex Structures Using a DNA Microarray. Angewandte Chemie, 2013, 125, 12274-12277.	2.0	2
54	Development of a Method To Measure DNA Methylation Levels by Using Methyl CpG-Binding Protein and Luciferase-Fused Zinc Finger Protein. Analytical Chemistry, 2012, 84, 8259-8264.	6.5	43

WATARU YOSHIDA

#	Article	IF	CITATIONS
55	Aptameric sensors based on structural change for diagnosis. Faraday Discussions, 2011, 149, 93-106.	3.2	9
56	Methylation screening of reciprocal genome-wide UPDs identifies novel human-specific imprinted genesâ€. Human Molecular Genetics, 2011, 20, 3188-3197.	2.9	55
57	Methylation dynamics of IG-DMR and Gtl2-DMR during murine embryonic and placental development. Genomics, 2011, 98, 120-127.	2.9	52
58	Development of a novel biosensing system based on the structural change of a polymerized guanine-quadruplex DNA nanostructure. Biosensors and Bioelectronics, 2011, 26, 4837-4841.	10.1	15
59	An Aptamerâ€Based Bound/Free Separation System for Protein Detection. Electroanalysis, 2009, 21, 1297-1302.	2.9	24
60	Selection of DNA aptamers against insulin and construction of an aptameric enzyme subunit for insulin sensing. Biosensors and Bioelectronics, 2009, 24, 1116-1120.	10.1	116
61	Aptameric enzyme subunit for homogeneous DNA sensing. Biotechnology Letters, 2008, 30, 243-252.	2.2	18
62	Label-free homogeneous detection of immunoglobulin E by an aptameric enzyme subunit. Biotechnology Letters, 2008, 30, 421-425.	2.2	22
63	Construction of target molecule sensing system using aptameric enzyme subunit based on PQQGDH activity. Nucleic Acids Symposium Series, 2007, 51, 401-402.	0.3	0
64	Aptameric enzyme subunit for homogeneous protein sensing. Nucleic Acids Symposium Series, 2007, 51, 99-100.	0.3	5
65	Photonic boolean logic gates based on DNA aptamers. Chemical Communications, 2007, , 195-197.	4.1	76
66	Aptameric Enzyme Subunit for Biosensing Based on Enzymatic Activity Measurement. Analytical Chemistry, 2006, 78, 3296-3303.	6.5	72
67	Homogeneous DNA sensing using enzyme-inhibiting DNA aptamers. Biochemical and Biophysical Research Communications, 2006, 348, 245-252.	2.1	39
68	Analysis of the evolution of the thrombin-inhibiting DNA aptamers using a genetic algorithm. Biotechnology Letters, 2006, 28, 1933-1937.	2.2	17
69	Development of a novel sensing probe using DNA aptamer inhibiting enzymatic activity. Nucleic Acids Symposium Series, 2005, 49, 83-84.	0.3	1
70	Development of a novel DNA sensing system using DNA aptamer inhibited enzymatic activity 1. Nucleic Acids Symposium Series, 2004, 48, 231-232.	0.3	0
71	Development of a novel DNA sensing system using DNA aptamer that inhibits enzymatic activity 2. Nucleic Acids Symposium Series, 2004, 48, 309-310.	0.3	0
72	Biosensors Using the Aptameric Enzyme Subunit: The Use of Aptamers in the Allosteric Control of Enzymes. , 0, , 129-138.		1

#	Article	IF	CITATIONS
73	Quantitative detection of CpG methylation level on G-quadruplex and i-motif-forming DNA by recombinase polymerase amplification. Analytical and Bioanalytical Chemistry, 0, , .	3.7	0