K J Ewer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2311955/publications.pdf

Version: 2024-02-01

44069 30087 18,881 115 48 103 citations h-index g-index papers 121 121 121 22376 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, The, 2021, 397, 99-111.	13.7	3,887
2	Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase $1/2$, single-blind, randomised controlled trial. Lancet, The, 2020, 396, 467-478.	13.7	2,080
3	Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet, The, 2020, 396, 1979-1993.	13.7	1,196
4	Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet, The, 2021, 397, 881-891.	13.7	979
5	Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nature Medicine, 2021, 27, 2032-2040.	30.7	900
6	Comparison of T-cell-based assay with tuberculin skin test for diagnosis of Mycobacterium tuberculosis infection in a school tuberculosis outbreak. Lancet, The, 2003, 361, 1168-1173.	13.7	578
7	Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet, The, 2021, 397, 1351-1362.	13.7	540
8	T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nature Medicine, 2021, 27, 270-278.	30.7	473
9	Potent CD8+ T-Cell Immunogenicity in Humans of a Novel Heterosubtypic Influenza A Vaccine, MVA-NP+M1. Clinical Infectious Diseases, 2011, 52, 1-7.	5.8	424
10	Diagnosis of tuberculosis in South African children with a T cell-based assay: a prospective cohort study. Lancet, The, 2004, 364, 2196-2203.	13.7	353
11	Enumeration of T Cells Specific for RD1â€Encoded Antigens Suggests a High Prevalence of Latent <i>Mycobacterium tuberculosis</i> Infection in Healthy Urban Indians. Journal of Infectious Diseases, 2001, 183, 469-477.	4.0	335
12	A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA. New England Journal of Medicine, 2016, 374, 1635-1646.	27.0	295
13	Rapid detection of active and latent tuberculosis infection in HIV-positive individuals by enumeration of Mycobacterium tuberculosis-specific T cells. Aids, 2002, 16, 2285-2293.	2.2	276
14	Effect of BCG vaccination on risk of Mycobacterium tuberculosis infection in children with household tuberculosis contact: a prospective community-based study. Lancet, The, 2005, 366, 1443-1451.	13.7	266
15	Safety and Immunogenicity of Novel Adenovirus Type 26– and Modified Vaccinia Ankara–Vectored Ebola Vaccines. JAMA - Journal of the American Medical Association, 2016, 315, 1610.	7.4	266
16	Phase 1/2 trial of SARS-CoV-2 vaccine ChAdOx1 nCoV-19 with a booster dose induces multifunctional antibody responses. Nature Medicine, 2021, 27, 279-288.	30.7	265
17	Vaccine Vectors Derived from a Large Collection of Simian Adenoviruses Induce Potent Cellular Immunity Across Multiple Species. Science Translational Medicine, 2012, 4, 115ra2.	12.4	257
18	Protective CD8+ T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation. Nature Communications, 2013, 4, 2836.	12.8	256

#	Article	IF	CITATIONS
19	Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet, The, 2021, 397, 1809-1818.	13.7	253
20	Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002). Lancet, The, 2021, 398, 981-990.	13.7	214
21	Dynamic Antigen-specific T-Cell Responses after Point-Source Exposure toMycobacterium tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 831-839.	5.6	196
22	ChAd63-MVA–vectored Blood-stage Malaria Vaccines Targeting MSP1 and AMA1: Assessment of Efficacy Against Mosquito Bite Challenge in Humans. Molecular Therapy, 2012, 20, 2355-2368.	8.2	196
23	Clinical Assessment of a Recombinant Simian Adenovirus ChAd63: A Potent New Vaccine Vector. Journal of Infectious Diseases, 2012, 205, 772-781.	4.0	194
24	Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase $2/3$ clinical trial. Lancet HIV, the, 2021, 8, e474-e485.	4.7	190
25	Viral vectors as vaccine platforms: deployment in sight. Current Opinion in Immunology, 2011, 23, 377-382.	5.5	188
26	Prime-boost vectored malaria vaccines: Progress and prospects. Hum Vaccin, 2010, 6, 78-83.	2.4	184
27	Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infectious Diseases, The, 2020, 20, 816-826.	9.1	182
28	Phase Ia Clinical Evaluation of the Safety and Immunogenicity of the Plasmodium falciparum Blood-Stage Antigen AMA1 in ChAd63 and MVA Vaccine Vectors. PLoS ONE, 2012, 7, e31208.	2.5	157
29	Phase Ia Clinical Evaluation of the Plasmodium falciparum Blood-stage Antigen MSP1 in ChAd63 and MVA Vaccine Vectors. Molecular Therapy, 2011, 19, 2269-2276.	8.2	156
30	Ex Vivo Characterization of Early Secretory Antigenic Target 6-Specific T Cells at Sites of Active Disease in Pleural Tuberculosis. Clinical Infectious Diseases, 2005, 40, 184-187.	5.8	155
31	Viral vectors as vaccine platforms: from immunogenicity to impact. Current Opinion in Immunology, 2016, 41, 47-54.	5. 5	137
32	T Cell–Based Tracking of Multidrug Resistant Tuberculosis Infection after Brief Exposure. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 288-295.	5.6	131
33	Enzyme-linked Immunospot and Tuberculin Skin Testing to Detect Latent Tuberculosis Infection. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 1161-1168.	5.6	117
34	Prime-boost vaccination with chimpanzee adenovirus and modified vaccinia Ankara encoding TRAP provides partial protection against <i>Plasmodium falciparum</i> infection in Kenyan adults. Science Translational Medicine, 2015, 7, 286re5.	12.4	113
35	Evaluation of the Efficacy of ChAd63-MVA Vectored Vaccines Expressing Circumsporozoite Protein and ME-TRAP Against Controlled Human Malaria Infection in Malaria-Naive Individuals. Journal of Infectious Diseases, 2015, 211, 1076-1086.	4.0	110
36	Safety and High Level Efficacy of the Combination Malaria Vaccine Regimen of RTS,S/AS01 _B With Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara Vectored Vaccines Expressing ME-TRAP. Journal of Infectious Diseases, 2016, 214, 772-781.	4.0	96

#	Article	IF	CITATIONS
37	Screening of Highly Expressed Mycobacterial Genes Identifies Rv3615c as a Useful Differential Diagnostic Antigen for the <i>Mycobacterium tuberculosis </i> Complex. Infection and Immunity, 2008, 76, 3932-3939.	2.2	95
38	The early landscape of coronavirus disease 2019 vaccine development in the UK and rest of the world. Immunology, 2020, 160, 223-232.	4.4	86
39	Impact on Malaria Parasite Multiplication Rates in Infected Volunteers of the Protein-in-Adjuvant Vaccine AMA1-C1/Alhydrogel+CPG 7909. PLoS ONE, 2011, 6, e22271.	2.5	84
40	Characterization of a <i>Mycobacterium tuberculosis</i> Peptide That Is Recognized by Human CD4+ and CD8+ T Cells in the Context of Multiple HLA Alleles. Journal of Immunology, 2004, 173, 1966-1977.	0.8	82
41	AZD1222/ChAdOx1 nCoV-19 vaccination induces a polyfunctional spike protein–specific T _H 1 response with a diverse TCR repertoire. Science Translational Medicine, 2021, 13, eabj7211.	12.4	80
42	Evaluation of T-Cell Responses to Novel RD1- and RD2-Encoded (i>Mycobacterium tuberculosis (i>Gene Products for Specific Detection of Human Tuberculosis Infection. Infection and Immunity, 2004, 72, 2574-2581.	2.2	75
43	Prime and target immunization protects against liver-stage malaria in mice. Science Translational Medicine, 2018, 10, .	12.4	68
44	Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Human Vaccines and Immunotherapeutics, 2017, 13, 3020-3032.	3.3	67
45	Assessment of Humoral Immune Responses to Blood-Stage Malaria Antigens following ChAd63-MVA Immunization, Controlled Human Malaria Infection and Natural Exposure. PLoS ONE, 2014, 9, e107903.	2.5	65
46	Safety and Immunogenicity of Heterologous Prime-Boost Immunisation with Plasmodium falciparum Malaria Candidate Vaccines, ChAd63 ME-TRAP and MVA ME-TRAP, in Healthy Gambian and Kenyan Adults. PLoS ONE, 2013, 8, e57726.	2.5	64
47	Early Diagnosis of Subclinical Multidrug-Resistant Tuberculosis. Annals of Internal Medicine, 2004, 140, 709.	3.9	59
48	Safety and Immunogenicity of a Heterologous Prime-Boost Ebola Virus Vaccine Regimen in Healthy Adults in the United Kingdom and Senegal. Journal of Infectious Diseases, 2019, 219, 1187-1197.	4.0	59
49	Activation-induced Markers Detect Vaccine-Specific CD4+ T Cell Responses Not Measured by Assays Conventionally Used in Clinical Trials. Vaccines, 2018, 6, 50.	4.4	54
50	Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity― Vaccine, 2015, 33, 7444-7451.	3.8	53
51	First field efficacy trial of the ChAd63 MVA ME-TRAP vectored malaria vaccine candidate in 5-17 months old infants and children. PLoS ONE, 2018, 13, e0208328.	2.5	53
52	Safety and Immunogenicity of ChAd63 and MVA ME-TRAP in West African Children and Infants. Molecular Therapy, 2016, 24, 1470-1477.	8.2	52
53	Safety and efficacy of novel malaria vaccine regimens of RTS,S/AS01B alone, or with concomitant ChAd63-MVA-vectored vaccines expressing ME-TRAP. Npj Vaccines, 2018, 3, 49.	6.0	51
54	Translating the Immunogenicity of Prime-boost Immunization With ChAd63 and MVA ME-TRAP From Malaria Naive to Malaria-endemic Populations. Molecular Therapy, 2014, 22, 1992-2003.	8.2	49

#	Article	IF	CITATIONS
55	Comparative assessment of vaccine vectors encoding ten malaria antigens identifies two protective liver-stage candidates. Scientific Reports, 2015, 5, 11820.	3.3	49
56	A Phase Ia Study to Assess the Safety and Immunogenicity of New Malaria Vaccine Candidates ChAd63 CS Administered Alone and with MVA CS. PLoS ONE, 2014, 9, e115161.	2.5	48
57	Safety, Immunogenicity and Efficacy of Prime-Boost Vaccination with ChAd63 and MVA Encoding ME-TRAP against Plasmodium falciparum Infection in Adults in Senegal. PLoS ONE, 2016, 11, e0167951.	2.5	46
58	Repeated tuberculin testing does not induce false positive ELISPOT results. Thorax, 2006, 61, 180-180.	5.6	44
59	Analysis of human <scp>B</scp> â€cell responses following <scp>C</scp> h <scp>A</scp> d63â€ <scp>MVA MSP</scp> 1 and <scp>AMA</scp> 1 immunization and controlled malaria infection. Immunology, 2014, 141, 628-644.	4.4	43
60	T-Cell-Based Diagnosis of Neonatal Multidrug-Resistant Latent Tuberculosis Infection. Pediatrics, 2007, 119, e1-e5.	2.1	41
61	Cryopreservation-related loss of antigen-specific IFN \hat{I}^3 producing CD4+ T-cells can skew immunogenicity data in vaccine trials: Lessons from a malaria vaccine trial substudy. Vaccine, 2017, 35, 1898-1906.	3.8	40
62	Efficacy of ChAdOx1 nCoV-19 (AZD1222) Vaccine Against SARS-CoV-2 VOC 202012/01 (B.1.1.7). SSRN Electronic Journal, 0, , .	0.4	36
63	Viral Vector Malaria Vaccines Induce High-Level T Cell and Antibody Responses in West African Children and Infants. Molecular Therapy, 2017, 25, 547-559.	8.2	34
64	Assessment of novel vaccination regimens using viral vectored liver stage malaria vaccines encoding ME-TRAP. Scientific Reports, 2018, 8, 3390.	3.3	34
65	A review of Phase I trials of Ebola virus vaccines: what can we learn from the race to develop novel vaccines?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160295.	4.0	33
66	Reduced Ebola vaccine responses in CMV+ young adults is associated with expansion of CD57+KLRG1+ T cells. Journal of Experimental Medicine, 2020, 217, .	8.5	31
67	A single dose of ChAdOx1 Chik vaccine induces neutralizing antibodies against four chikungunya virus lineages in a phase 1 clinical trial. Nature Communications, 2021, 12, 4636.	12.8	31
68	Qualified Biolayer Interferometry Avidity Measurements Distinguish the Heterogeneity of Antibody Interactions with <i>Plasmodium falciparum</i> Circumsporozoite Protein Antigens. Journal of Immunology, 2018, 201, 1315-1326.	0.8	30
69	Safety and immunogenicity of heterologous prime-boost immunization with viral-vectored malaria vaccines adjuvanted with Matrix-Mâ,,¢. Vaccine, 2017, 35, 6208-6217.	3.8	27
70	CXCR3+ T Follicular Helper Cells Induced by Co-Administration of RTS,S/AS01B and Viral-Vectored Vaccines Are Associated With Reduced Immunogenicity and Efficacy Against Malaria. Frontiers in Immunology, 2018, 9, 1660.	4.8	26
71	Durability of ChAdOx1 nCoV-19 vaccination in people living with HIV. JCI Insight, 2022, 7, .	5.0	26
72	Safety and immunogenicity of ChAdOx1 MERS vaccine candidate in healthy Middle Eastern adults (MERS002): an open-label, non-randomised, dose-escalation, phase 1b trial. Lancet Microbe, The, 2022, 3, e11-e20.	7.3	25

#	Article	IF	CITATIONS
73	Methods for Measuring T-Cell Memory to Vaccination: From Mouse to Man. Vaccines, 2018, 6, 43.	4.4	24
74	Assessment of Immune Interference, Antagonism, and Diversion following Human Immunization with Biallelic Blood-Stage Malaria Viral-Vectored Vaccines and Controlled Malaria Infection. Journal of Immunology, 2013, 190, 1135-1147.	0.8	23
75	Safety and Immunogenicity of Malaria Vectored Vaccines Given with Routine Expanded Program on Immunization Vaccines in Gambian Infants and Neonates: A Randomized Controlled Trial. Frontiers in Immunology, 2017, 8, 1551.	4.8	23
76	Safety and Immunogenicity of the Heterosubtypic Influenza A Vaccine MVA-NP+M1 Manufactured on the AGE1.CR.pIX Avian Cell Line. Vaccines, 2019, 7, 33.	4.4	23
77	Tolerability and Immunogenicity After a Late Second Dose or a Third Dose of ChAdOx1 nCoV-19 (AZD1222). SSRN Electronic Journal, 0, , .	0.4	23
78	Potency assays for novel T-cell-inducing vaccines against malaria. Current Opinion in Molecular Therapeutics, 2009, 11, 72-80.	2.8	23
79	Impact of a T cell-based blood test for tuberculosis infection on clinical decision-making in routine practice. Journal of Infection, 2007, 54, e169-e174.	3.3	22
80	Is Interleukin-4Î'3 Splice Variant Expression in Bovine Tuberculosis a Marker of Protective Immunity?. Infection and Immunity, 2007, 75, 3006-3013.	2.2	20
81	Antigen Mining with Iterative Genome Screens Identifies Novel Diagnostics for the Mycobacterium tuberculosis Complex. Vaccine Journal, 2006, 13, 90-97.	3.1	19
82	Safety and Immunogenicity of a Novel Recombinant Simian Adenovirus ChAdOx2 as a Vectored Vaccine. Vaccines, 2019, 7, 40.	4.4	19
83	Diagnosis of occult tuberculosis in hematological malignancy by enumeration of antigen-specific T cells. Leukemia, 2006, 20, 379-381.	7.2	17
84	Development of an In Vitro Assay and Demonstration of Plasmodium berghei Liver-Stage Inhibition by TRAP-Specific CD8+ T Cells. PLoS ONE, 2015, 10, e0119880.	2.5	17
85	Assessment of the Plasmodium falciparum Preerythrocytic Antigen UIS3 as a Potential Candidate for a Malaria Vaccine. Infection and Immunity, 2017, 85, .	2.2	16
86	An in vitro assay to measure antibody-mediated inhibition of P. berghei sporozoite invasion against P. falciparum antigens. Scientific Reports, 2017, 7, 17011.	3.3	15
87	Characterization of two in vivo-expressed methyltransferases of the Mycobacterium tuberculosis complex: antigenicity and genetic regulation. Microbiology (United Kingdom), 2008, 154, 1059-1067.	1.8	13
88	Detection of Vaccine-Induced Antibodies to Ebola Virus in Oral Fluid. Open Forum Infectious Diseases, 2016, 3, ofw031.	0.9	13
89	Assessment of Chimpanzee Adenovirus Serotype 63 Neutralizing Antibodies Prior to Evaluation of a Candidate Malaria Vaccine Regimen Based on Viral Vectors. Vaccine Journal, 2014, 21, 901-903.	3.1	12
90	High Efficacy of a Low Dose Candidate Malaria Vaccine, R21 in 1 Adjuvant Matrix-Mâ,,¢, with Seasonal Administration to Children in Burkina Faso. SSRN Electronic Journal, 0, , .	0.4	12

#	Article	IF	CITATIONS
91	Single Dose Administration, And The Influence Of The Timing Of The Booster Dose On Immunogenicity and Efficacy Of ChAdOx1 nCoV-19 (AZD1222) Vaccine. SSRN Electronic Journal, O	0.4	10
92	Characterisation of the T-cell response to Ebola virus glycoprotein amongst survivors of the 2013–16 West Africa epidemic. Nature Communications, 2021, 12, 1153.	12.8	10
93	A three-antigen Plasmodium falciparum DNA primeâ€"Adenovirus boost malaria vaccine regimen is superior to a two-antigen regimen and protects against controlled human malaria infection in healthy malaria-naà ve adults. PLoS ONE, 2021, 16, e0256980.	2.5	10
94	Characterization of Antigenic MHC-Class-I-Restricted T Cell Epitopes in the Glycoprotein of Ebolavirus. Cell Reports, 2019, 29, 2537-2545.e3.	6.4	7
95	Safety and Immunogenicity of the ChAdox1 nCoV-19 (AZD1222) Vaccine Against SARS-CoV-2 in HIV Infection. SSRN Electronic Journal, 0, , .	0.4	6
96	Efficacy and Safety of a Modified Vaccinia Ankara-NP+M1 Vaccine Combined with QIV in People Aged 65 and Older: A Randomised Controlled Clinical Trial (INVICTUS). Vaccines, 2021, 9, 851.	4.4	6
97	Deep Immune Phenotyping and Single-Cell Transcriptomics Allow Identification of Circulating TRM-Like Cells Which Correlate With Liver-Stage Immunity and Vaccine-Induced Protection From Malaria. Frontiers in Immunology, 2022, 13, 795463.	4.8	6
98	CMV-associated T cell and NK cell terminal differentiation does not affect immunogenicity of ChAdOx1 vaccination. JCI Insight, 2022, 7 , .	5.0	6
99	Gene expression profiling and antigen mining of the tuberculin production strain Mycobacterium bovis AN5. Veterinary Microbiology, 2009, 133, 272-277.	1.9	5
100	Identification of Immunodominant Responses to the Plasmodium falciparum Antigens PfUIS3, PfLSA1 and PfLSAP2 in Multiple Strains of Mice. PLoS ONE, 2015, 10, e0144515.	2.5	5
101	Diagnosis of tuberculosis. Lancet, The, 2003, 361, 2081-2082.	13.7	3
102	Safety and Immunogenicity of Adenovirus and Poxvirus Vectored Vaccines against a Mycobacterium Avium Complex Subspecies. Vaccines, 2021, 9, 262.	4.4	3
103	Diagnosis of tuberculosis. Lancet, The, 2003, 361, 2082-2083.	13.7	1
104	Should Individuals Who Are Tuberculin Skin Test Negative and Positive to RD1–IFN-γ Assay Receive Preventive Therapy?. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 199-199.	5.6	1
105	Development of an in vitro Plasmodium parasite killing assay for the evaluation of cell-mediated immune responses following vaccination with pre-erythrocytic malaria vaccine candidates. Malaria Journal, 2014, 13, .	2.3	1
106	Heterologous Prime-Boost Schedules of Replication-Defective Adenovirus Serotype 26 and Modified Vaccinia Virus Ankara Vector Vaccines Expressing Ebola Virus Glycoprotein Are Immunogenic and Well Tolerated in Healthy Adults. Open Forum Infectious Diseases, 2015, 2, .	0.9	1
107	Clinical Evaluation Of New Viral Vectored Vaccines Targeting The Plasmodium Falciparum Blood-Stage Antigens; Msp1 And Ama1. Journal of Infection, 2011, 63, 492-493.	3.3	0
108	Correction for Nébié et al., Assessment of Chimpanzee Adenovirus Serotype 63 Neutralizing Antibodies Prior to Evaluation of a Candidate Malaria Vaccine Regimen Based on Viral Vectors. Vaccine Journal, 2014, 21, 1376-1376.	3.1	0

#	Article	IF	CITATIONS
109	Immunogenicity of ChAd63 + MVA ME-TRAP in Senegalese adults. Malaria Journal, 2014, 13, .	2.3	0
110	Co-infection with Schistosoma haematobium modulates the gene expression profile of malaria infection in schoolchildren in Gabon. Malaria Journal, $2014,13,13$	2.3	0
111	Humoral immunogenicity of ChAd63_MVA ME-TRAP vaccination in African infants and children. Malaria Journal, 2014, 13, .	2.3	0
112	Safety and immunogenicity of the heterologous prime-boost Ebolavirus vaccine regimen CHAD3-EBO Z and MVA-BN® FILO in healthy UK adults. Journal of Infection, 2015, 71, 688.	3.3	0
113	OC 8552â€EFFICACY OF THE CHAD63-MVC ME-TRAP VECTORED MALARIA VACCINE CANDIDATE IN 5–17 MG OLD INFANTS AND CHILDREN IN BURKINA FASO. BMJ Global Health, 2019, 4, A13.1-A13.	ОМТНЅ С	0
114	IMMUNOGENICITY OF MALARIA-VECTORED VACCINES IS NOT AFFECTED BY CO-ADMINISTRATION WITH ROUTINE EPI VACCINES IN A RANDOMISED CONTROLLED TRIAL IN GAMBIAN INFANTS AND NEONATES. BMJ Global Health, 2017, 2, A30.3-A31.	4.7	0
115	Vaccines against SARS-CoV-2. , 2022, , 201-222.		0