
Piotr Lijewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2310864/publications.pdf Version: 2024-02-01

PIOTE LIEWSKI

#	Article	IF	CITATIONS
1	Fuel consumption and exhaust emissions in the process of mechanized timber extraction and transport. European Journal of Forest Research, 2017, 136, 153-160.	2.5	62
2	Kinetics and Thermodynamics of Thermal Degradation of Different Starches and Estimation the OH Group and H2O Content on the Surface by TG/DTG-DTA. Polymers, 2020, 12, 357.	4.5	53
3	Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption. Energies, 2020, 13, 6709.	3.1	37
4	Actual Emissions from Urban Buses Powered with Diesel and Gas Engines. Transportation Research Procedia, 2016, 14, 3070-3078.	1.5	31
5	Exhaust emissions generated under actual operating conditions from a hybrid vehicle and an electric one fitted with a range extender. Transportation Research, Part D: Transport and Environment, 2020, 78, 102183.	6.8	31
6	Analysis of an Increase in the Efficiency of a Spark Ignition Engine Through the Application of an Automotive Thermoelectric Generator. Journal of Electronic Materials, 2016, 45, 4028-4037.	2.2	30
7	Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas. Energies, 2020, 13, 3330.	3.1	28
8	Comparison of Waste Heat Recovery from the Exhaust of a Spark Ignition and a Diesel Engine. Journal of Electronic Materials, 2010, 39, 2034-2038.	2.2	25
9	Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs. Energies, 2020, 13, 5773.	3.1	24
10	The role of real power output from farm tractor engines in determining their environmental performance in actual operating conditions. Computers and Electronics in Agriculture, 2020, 173, 105405.	7.7	24
11	Exhaust emissions from vehicles in real traffic conditions in the Poznan agglomeration. WIT Transactions on Ecology and the Environment, 2013, , .	0.0	22
12	Exhaust Emission Tests from Agricultural Machinery under Real Operating Conditions. , 0, , .		20
13	The Analysis of Exhaust Gas Thermal Energy Recovery Through a TEG Generator in City Traffic Conditions Reproduced on a Dynamic Engine Test Bed. Journal of Electronic Materials, 2015, 44, 1704-1715.	2.2	20
14	The analysis of the PEMS measurements of the exhaust emissions from city buses using different research procedures. , 2012, , .		17
15	Exhaust emissions from small engines in handheld devices. MATEC Web of Conferences, 2017, 118, 00016.	0.2	17
16	The Comparison of the Emissions from Light Duty Vehicle in On-road and NEDC Tests. , 0, , .		14
17	Dynamic Test Bed Analysis of Gas Energy Balance for a Diesel Exhaust System Fit with a Thermoelectric Generator. Journal of Electronic Materials, 2017, 46, 3145-3155.	2.2	13
18	Air Pollution by the Exhaust Emissions from Construction Machinery under Actual Operating Conditions. Applied Mechanics and Materials, 2013, 390, 313-319.	0.2	12

PIOTR LIJEWSKI

#	Article	IF	CITATIONS
19	Analysis of Research Method, Results and Regulations Regarding the Exhaust Emissions from Two-Wheeled Vehicles under Actual Operating Conditions. Journal of Ecological Engineering, 2020, 21, 128-139.	1.1	9
20	Analysis of tractor particulate emissions in a modified NRSC test after implementing a particulate filter in the exhaust system. MATEC Web of Conferences, 2017, 118, 00028.	0.2	8
21	The Impact of the Vanadium Oxide Addition on the Physicochemical Performance Stability and Intercalation of Lithium Ions of the TiO2-rGO-electrode in Lithium Ion Batteries. Materials, 2020, 13, 1018.	2.9	8
22	Road Tests of a Two-Wheeled Vehicle with the Use of Various Urban Road Infrastructure Solutions. Journal of Ecological Engineering, 2020, 21, 152-159.	1.1	8
23	Influence of non-commercial fuel supply systems on small engine SI exhaust emissions in relation to European approval regulations. Environmental Science and Pollution Research, 2022, 29, 55928-55943.	5.3	8
24	Investigations of Exhaust Emissions from Rail Machinery during Track Maintenance Operations. Energies, 2021, 14, 3141.	3.1	7
25	Analysis of exhaust emission measurements in rural conditions from heavy-duty vehicle. Silniki Spalinowe, 2020, 182, 54-58.	0.7	7
26	The Analysis of Fuel Consumption and Exhaust Emissions From Forklifts Fueled by Diesel Fuel and Liquefied Petroleum Gas (LPG) Obtained Under Real Driving Conditions. , 2017, , .		5
27	High-Energy Solid Fuel Obtained from Carbonized Rice Starch. Energies, 2020, 13, 4096.	3.1	5
28	Problems of exhaust emissions testing from machines and mobile devices in real operating conditions. Silniki Spalinowe, 2019, 179, 292-296.	0.7	5
29	Exhaust Emissions from a Hybrid City Bus Fuelled by Conventional and Oxygenated Fuel. Energies, 2022, 15, 1123.	3.1	5
30	The On-Road Exhaust Emissions from Vehicles Fitted with the Start-Stop System. Applied Mechanics and Materials, 2013, 390, 343-349.	0.2	4
31	Measurement of Exhaust Emissions under Actual Operating Conditions with the Use of PEMS: Review of Selected Vehicles. , 0, , .		4
32	Comparative analysis of passenger car and non-road machinery specific emission in real operating conditions. , 2018, , .		4
33	Test guidelines for evaluation real driving emission two-way vehicles. MATEC Web of Conferences, 2019, 294, 02009.	0.2	4
34	Tests of ecological indicators of two-way vehicles meeting Stage IIIB and Stage IV standards in real operating conditions. Pojazdy Szynowe, 2020, , 1-9.	0.5	4
35	The Measurement of Particulate Matter from Construction Machinery under Actual Operating Conditions. , 2015, , .		3
36	Analysis of specific emission of exhaust gases from gasoline direct injection engine in real operation conditions and on dynamic engine dynamometer. , 2018, , .		3

PIOTR LIJEWSKI

#	Article	IF	CITATIONS
37	The impact of operating conditions on exhaust emissions from a two-wheeled urban vehicle. E3S Web of Conferences, 2019, 100, 00047.	0.5	3
38	Time Density of Engine Operation in Non-road Vehicles in the Aspect of the Homologation Toxic Emission Test. , 0, , .		2
39	Exhaust Emissions Measured Under Real Traffic Conditions from Vehicles Fitted with Spark Ignition and Compression Ignition Engines. Archives of Transport, 2011, 23, .	1.1	2
40	Analysis of possibilities of waste heat recovery in off-road vehicles. , 2012, , .		2
41	The Comparison of the Exhaust Emissions from an Agricultural Tractor and a Truck. Applied Mechanics and Materials, 2013, 391, 196-201.	0.2	2
42	Exhaust Emissions from Heavy-Duty Vehicles Under Actual Traffic Conditions in the City of Poznań. , 0, ,		2
43	Development of a Method of Calculation of Energy Balance in Exhaust Systems in Terms of Energy Recovery. , 2017, , .		2
44	Analysis of exhaust gas flow through a particulate filter in the exhaust of the spark ignition direct injection engine. AIP Conference Proceedings, 2019, , .	0.4	2
45	Emissions from NRMM Vehicles in Real Operating Conditions in Relation to the Number of Vehicles in Use in the Poznan City Agglomeration (SAE Paper 2020-01-2218). , 0, , .		2
46	Possibilities of NOx Reduction in the Emissions of Compression Ignition Engines through Ceramic Oxygen Conductors and Thermoelectric Materials. , 0, , .		1
47	The Analysis of the Emission of Particulate Matter from Non-Road Vehicles Under Actual Operating Conditions. , 2012, , .		1
48	Use of toxicity indicators related to CO ₂ emissions in the ecological assessment of an two-wheel vehicle. Silniki Spalinowe, 2021, , .	0.7	1
49	The Impact of Application of Photovoltaic Cells for Bus Ecological Properties / WpÅ,yw Zastosowania Ogniw Fotowoltaicznych Na Ekologiczność Autobusu Miejskiego. Journal of KONBiN, 2012, 22, 159-170.	0.4	0
50	The Analysis of the Operating Conditions of Farm Machinery Engines in Regard to Exhaust Emissions Legislation. Applied Engineering in Agriculture, 2013, , .	0.7	0
51	Analysis of driving simulation capabilities car vehicle on the engine brake stand. AIP Conference Proceedings, 2019, , .	0.4	0
52	Reduction of NOxemission from diesel engines by the application of ceramic oxygen conductors. , 2008, , .		0
53	Estimation of In-Use Powertrain Parameters of Fully Electric Vehicle Using Advanced ARM Microcontrollers. , 2012, , 157-164.		0
54	Impact of Using a Filter in a Direct Gasoline Injection Engine Exhaust System on the Emitted Particle Mass and Number. Journal of KONBiN, 2020, 50, 61-76.	0.4	0