Byung Seo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2310136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	loT Elements, Layered Architectures and Security Issues: A Comprehensive Survey. Sensors, 2018, 18, 2796.	3.8	286
2	Internet of Things (IoT) Operating Systems Support, Networking Technologies, Applications, and Challenges: A Comparative Review. IEEE Communications Surveys and Tutorials, 2018, 20, 2062-2100.	39.4	194
3	The Internet of Things: A Review of Enabled Technologies and Future Challenges. IEEE Access, 2019, 7, 7606-7640.	4.2	152
4	Trust Management Techniques for the Internet of Things: A Survey. IEEE Access, 2019, 7, 29763-29787.	4.2	146
5	Downlink and Uplink Resource Allocation in IEEE 802.11 Wireless LANs. IEEE Transactions on Vehicular Technology, 2005, 54, 320-327.	6.3	117
6	Energy and Congestion-Aware Routing Metric for Smart Grid AMI Networks in Smart City. IEEE Access, 2017, 5, 13799-13810.	4.2	107
7	QoS-Aware and Heterogeneously Clustered Routing Protocol for Wireless Sensor Networks. IEEE Access, 2017, 5, 10250-10262.	4.2	68
8	Deep Reinforcement Learning Paradigm for Performance Optimization of Channel Observation–Based MAC Protocols in Dense WLANs. IEEE Access, 2019, 7, 3500-3511.	4.2	62
9	Forwarding Strategies in NDN-Based Wireless Networks: A Survey. IEEE Communications Surveys and Tutorials, 2020, 22, 68-95.	39.4	60
10	Information-Centric Networking With Edge Computing for IoT: Research Challenges and Future Directions. IEEE Access, 2018, 6, 73465-73488.	4.2	51
11	Applications of Federated Learning; Taxonomy, Challenges, and Research Trends. Electronics (Switzerland), 2022, 11, 670.	3.1	51
12	PDOA Based Indoor Positioning Using Visible Light Communication. IEEE Access, 2018, 6, 7557-7564.	4.2	47
13	Performance Enhancement for Multihop Harvest-to-Transmit WSNs With Path-Selection Methods in Presence of Eavesdroppers and Hardware Noises. IEEE Sensors Journal, 2018, 18, 5173-5186.	4.7	46
14	Towards Real-Time Energy Management of Multi-Microgrid Using a Deep Convolution Neural Network and Cooperative Game Approach. IEEE Access, 2020, 8, 161377-161395.	4.2	45
15	A Periodic Caching Strategy Solution for the Smart City in Information-Centric Internet of Things. Sustainability, 2018, 10, 2576.	3.2	44
16	ICN with edge for 5G: Exploiting in-network caching in ICN-based edge computing for 5G networks. Future Generation Computer Systems, 2020, 111, 159-174.	7.5	43
17	Throughput Enhancement Through Dynamic Fragmentation in Wireless LANs. IEEE Transactions on Vehicular Technology, 2005, 54, 1415-1425.	6.3	40
18	Design and Implementation of an Open Source Framework and Prototype For Named Data Networking-Based Edge Cloud Computing System. IEEE Access, 2019, 7, 57741-57759.	4.2	40

#	Article	IF	CITATIONS
19	A Comparative Performance Analysis of Popularity-Based Caching Strategies in Named Data Networking. IEEE Access, 2020, 8, 50057-50077.	4.2	39
20	Information-Centric Network-Based Vehicular Communications: Overview and Research Opportunities. Sensors, 2018, 18, 3957.	3.8	36
21	LOMCF: Forwarding and Caching in Named Data Networking Based MANETs. IEEE Transactions on Vehicular Technology, 2017, 66, 9350-9364.	6.3	35
22	Design of MAC Layer Resource Allocation Schemes for IEEE 802.11ax: Future Directions. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 2018, 35, 28-52.	3.2	35
23	Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks. Sensors, 2016, 16, 696.	3.8	34
24	A Self-Scrutinized Backoff Mechanism for IEEE 802.11ax in 5G Unlicensed Networks. Sustainability, 2018, 10, 1201.	3.2	31
25	Compound Popular Content Caching Strategy in Named Data Networking. Electronics (Switzerland), 2019, 8, 771.	3.1	30
26	OFDMA-Based Reliable Multicasting MAC Protocol for WLANs. IEEE Transactions on Vehicular Technology, 2008, 57, 3136-3145.	6.3	29
27	Services and Security Threats in SDN Based VANETs: A Survey. Wireless Communications and Mobile Computing, 2018, 2018, 1-14.	1.2	27
28	(ReLBT): A Reinforcement learning-enabled listen before talk mechanism for LTE-LAA and Wi-Fi coexistence in IoT. Computer Communications, 2020, 150, 498-505.	5.1	27
29	Hierarchical Name-Based Mechanism for Push-Data Broadcast Control in Information-Centric Multihop Wireless Networks. Sensors, 2019, 19, 3034.	3.8	25
30	EHCP: An Efficient Hybrid Content Placement Strategy in Named Data Network Caching. IEEE Access, 2019, 7, 155601-155611.	4.2	25
31	Bandwidth-Constrained Multi-Objective Segmented Brute-Force Algorithm for Efficient Mapping of Embedded Applications on NoC Architecture. IEEE Access, 2018, 6, 11242-11254.	4.2	24
32	Q-learning-enabled channel access in next-generation dense wireless networks for IoT-based eHealth systems. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	2.4	23
33	Leveraging Named Data Networking for Fragmented Networks in Smart Metropolitan Cities. IEEE Access, 2018, 6, 75899-75911.	4.2	22
34	Robust and efficient multipath Interest forwarding for NDN-based MANETs. , 2016, , .		21
35	NINQ: Name-Integrated Query Framework for Named-Data Networking of Things. Sensors, 2019, 19, 2906.	3.8	19
36	Blockchain technology in Named Data Networks: A detailed survey. Journal of Network and Computer Applications, 2020, 171, 102840.	9.1	19

#	Article	IF	CITATIONS
37	An Efficient MAC Protocol for Improving the Network Throughput for Cognitive Radio Networks. , 2009, , .		18
38	Towards Network Lifetime Enhancement of Resource Constrained IoT Devices in Heterogeneous Wireless Sensor Networks. Sensors, 2020, 20, 4156.	3.8	18
39	Efficient Producer Mobility Management Model in Information-Centric Networking. IEEE Access, 2019, 7, 42032-42051.	4.2	16
40	Packet Flooding Mitigation in CCN-Based Wireless Multimedia Sensor Networks for Smart Cities. IEEE Access, 2017, 5, 11054-11062.	4.2	15
41	Performances of Probabilistic Caching Strategies in Content Centric Networking. IEEE Access, 2018, 6, 58807-58825.	4.2	15
42	CCIC-WSN: An Architecture for Single-Channel Cluster-Based Information-Centric Wireless Sensor Networks. IEEE Internet of Things Journal, 2021, 8, 7661-7675.	8.7	15
43	OPMSS: Optimal Producer Mobility Support Solution for Named Data Networking. Applied Sciences (Switzerland), 2021, 11, 4064.	2.5	13
44	Smart Solutions in Elderly Care Facilities with RFID System and Its Integration with Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2014, 10, 713946.	2.2	13
45	Performance optimization of QoS-supported dense WLANs using machine-learning-enabled enhanced distributed channel access (MEDCA) mechanism. Neural Computing and Applications, 2020, 32, 13107-13115.	5.6	12
46	Context-Aware Naming and Forwarding in NDN-Based VANETs. Sensors, 2021, 21, 4629.	3.8	12
47	OEFS: On-Demand Energy-Based Forwarding Strategy for Named Data Wireless Ad Hoc Networks. IEEE Access, 2017, 5, 6075-6086.	4.2	11
48	A Novel Privacy Preserving Scheme for Smart Grid-Based Home Area Networks. Sensors, 2022, 22, 2269.	3.8	11
49	EPF—An Efficient Forwarding Mechanism in SDN Controller Enabled Named Data IoTs. Applied Sciences (Switzerland), 2020, 10, 7675.	2.5	10
50	CIDF-WSN: A Collaborative Interest and Data Forwarding Strategy for Named Data Wireless Sensor Networks. Sensors, 2021, 21, 5174.	3.8	9
51	vTrust: An IoT-Enabled Trust-Based Secure Wireless Energy Sharing Mechanism for Vehicular Ad Hoc Networks. Sensors, 2021, 21, 7363.	3.8	9
52	Feedback-assisted MAC protocol for real time traffic in high rate wireless personal area networks. Wireless Networks, 2010, 16, 1109-1121.	3.0	8
53	Location-Aware Forwarding and Caching in CCN-Based Mobile Ad Hoc Networks. IEICE Transactions on Information and Systems, 2016, E99.D, 1388-1391.	0.7	8
54	L2ER: Low-Latency and Energy-Based Routing Protocol for Cognitive Radio Ad Hoc Networks. International Journal of Distributed Sensor Networks, 2014, 10, 963202.	2.2	7

#	Article	IF	CITATIONS
55	Impact of Beamforming on the Path Connectivity in Cognitive Radio Ad Hoc Networks. Sensors, 2017, 17, 690.	3.8	7
56	Reliable Wireless Multicasting with Minimum Overheads in OFDM-Based WLANs. , 2008, , .		6
57	Rate-Adaptive MAC Protocol for Wireless Multicast Over OFDMA-Based MANETs. Wireless Personal Communications, 2011, 56, 675-692.	2.7	6
58	Performance Enhancements in TDMA-Based Tactical Wireless Networks. , 2012, , .		6
59	MAC protocol for reliable multicast over multi-hop wireless ad hoc networks. Journal of Communications and Networks, 2012, 14, 63-74.	2.6	6
60	Efficient and Reliable MPEG-4 Multicast MAC Protocol for Wireless Networks. IEEE Transactions on Vehicular Technology, 2015, 64, 1026-1035.	6.3	6
61	Deep Reinforcement Learning Paradigm for Dense Wireless Networks in Smart Cities. EAI/Springer Innovations in Communication and Computing, 2020, , 43-70.	1.1	6
62	A Cross-Layer Green Information-Centric Networking Design Toward the Energy Internet. IEEE Transactions on Network Science and Engineering, 2022, 9, 1577-1593.	6.4	6
63	Content Centric Networking Approach in Cognitive Radio Ad Hoc Networks. , 2015, , .		5
64	Energy Aware Forwarding in Content Centric Based Multihop Wireless Ad Hoc Networks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2015, E98.A, 2738-2742.	0.3	4
65	A novel parallel processing mechanism for data transmission in wireless content-centric networking. Journal of Intelligent and Fuzzy Systems, 2018, 35, 5815-5825.	1.4	4
66	A Compact NDN Architecture for Cluster based Information Centric Wireless Sensor Networks. , 2019, , .		4
67	Guest Editorial Special Issue on Information-Centric Wireless Sensor Networking (ICWSN) for IoT. IEEE Internet of Things Journal, 2022, 9, 844-845.	8.7	4
68	Dynamic rate adaptation for wireless multicast. , 2009, , .		3
69	A Statistical Performance Analysis of Named Data Ultra Dense Networks. Applied Sciences (Switzerland), 2019, 9, 3714.	2.5	3
70	greenMAC Protocol: A Q-Learning-Based Mechanism to Enhance Channel Reliability for WLAN Energy Savings. Electronics (Switzerland), 2020, 9, 1720.	3.1	3
71	Velocity Based Reliable Forwarding Strategy Towards Disconnect Link Avoidance in NDN-VANETs. , 2020, , .		3
72	Improving resource-constrained IoT device lifetimes by mitigating redundant transmissions across heterogeneous wireless multimedia of things. Digital Communications and Networks, 2022, 8, 778-790.	5.0	3

#	Article	IF	CITATIONS
73	Efficient Voice Transmissions for MIL-STD-188-220-Based Wideband Tactical Systems. IEICE Transactions on Communications, 2012, E95.B, 2964-2967.	0.7	3
74	Convergence Research Directions in Cognitive Sensor Networks for Elderly Housing Design. International Journal of Distributed Sensor Networks, 2015, 11, 196280.	2.2	3
75	Fog-Computing-Based Cyber–Physical System for Secure Food Traceability through the Twofish Algorithm. Electronics (Switzerland), 2022, 11, 283.	3.1	3
76	GRA-PIN: A Graphical and PIN-Based Hybrid Authentication Approach for Smart Devices. Sensors, 2022, 22, 1349.	3.8	3
77	Modified GroupCast retries block acknowledgement scheme in IEEE 802.11aa standard-based for multimedia applications. , 2014, , .		2
78	Reliable beacon transmission based MAC protocol for LR-WPANs over WLAN interferences. Journal of Zhejiang University: Science C, 2014, 15, 470-481.	0.7	2
79	Performance Improvements on LR-WPANs over Interference from WLANs. IEICE Transactions on Information and Systems, 2014, E97.D, 151-154.	0.7	2
80	Retransmission Decision Method for Wireless Multicast in Ad-Hoc Networks. IEICE Transactions on Communications, 2011, E94-B, 580-582.	0.7	2
81	A Joint Strategy for Fair and Efficient Energy Usage in WLANs in the Presence of Capture Effect. Electronics (Switzerland), 2019, 8, 386.	3.1	2
82	Energy consumption balancing in Wireless Sensor Networks. , 2010, , .		1
83	Interference Resolution Method for IEEE802.15.4-Based Wireless Sensor Networks. , 2014, , .		1
84	A breakthrough in multi-hop wireless multimedia sensor networking protocols. International Journal of Distributed Sensor Networks, 2017, 13, 155014771769888.	2.2	1
85	Editorial of cross-layer design issues, challenges and opportunities for future intelligent heterogeneous networks. Journal of Ambient Intelligence and Humanized Computing, 2019, 10, 4207-4208.	4.9	1
86	CSF: Controller Based Selective Forwarding in Software Defined Named Data Based MANETs. , 2019, , .		1
87	Minimizing Content-Store Data Access Time Using Two-Tier Tree Architecture for NDN-Based WSNs. , 2020, , .		1
88	IEEE Access Special Section Editorial: Information Centric Wireless Networking With Edge Computing for 5G and IoT. IEEE Access, 2020, 8, 139737-139740.	4.2	1
89	Emerging Information Technologies for Next Generation Communications and Networks. Applied Sciences (Switzerland), 2021, 11, 812.	2.5	1
90	A Study on Modular-Based Prototypes for the Elderly Housing. Advanced Science Letters, 2017, 23, 10440-10444.	0.2	1

#	Article	IF	CITATIONS
91	Emerging Technologies for Next-Generation Applied Science Systems. Applied Sciences (Switzerland), 2022, 12, 1801.	2.5	1
92	Electric Circuit-Based Modeling and Analysis of the Translational, Rotational Mechanical and Electromechanical Systems Dynamics. IEEE Access, 2022, 10, 67338-67349.	4.2	1
93	Link-adaptable polling-based MAC protocol for wireless LANs. , 0, , .		0
94	Energy consumption balancing in Wireless Sensor Networks. , 2010, , .		0
95	Efficient Retransmission Methods in Wireless MAC Protocol for Multicast. Wireless Personal Communications, 2012, 63, 613-626.	2.7	0
96	Performance Improvement Using Self-Link-Breakage Announcement in Wireless Ad-hoc Networks. , 2013, , .		0
97	Enhancing IEEE 802.15.4-Based Wireless Networks to Handle Loss of Beacon Frames. IEICE Transactions on Information and Systems, 2015, E98.D, 2333-2336.	0.7	0
98	Interest-Selective Retransmision Protocol for Wireless Content-Centric Networks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99.A, 1753-1757.	0.3	0
99	A reliable and scalable groupCast block acknowledgement scheme for video multicast over IEEE 802.11aa. Journal of Intelligent and Fuzzy Systems, 2018, 35, 5853-5865.	1.4	0
100	On Pending Interest Table in Named Data Networking based Edge Computing: The Case of Mobile Augmented Reality. , 2019, , .		0
101	RAPEL: Robust and Adaptive method for PIT Entry Lifetime in Wireless Content-Centric Networks. , 2019, , .		0
102	Emerging Technologies for Future Sensor Networks—Selected Papers from ICGHIT 2019. Sensors, 2019, 19, 3854.	3.8	0
103	Link-Adaptive MAC Protocol for Wireless Multicast. IEICE Transactions on Communications, 2009, E92-B, 3939-3941.	0.7	0
104	Performance Enhancements in MIL-STD-188-220-Based Tactical Communication Systems. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, E97.A, 713-716.	0.3	0
105	A Breakthrough in Multihop Wireless Multimedia Sensor Networking Protocols. International Journal of Distributed Sensor Networks, 2015, 11, 921040.	2.2	0
106	Identification of Secondary Breast Cancer in Vital Organs through the Integration of Machine Learning and Microarrays. Electronics (Switzerland), 2022, 11, 1879.	3.1	0