R Coleman Lindsley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2309465/publications.pdf

Version: 2024-02-01

87 papers 11,409 citations

147726 31 h-index 79644 73 g-index

92 all docs 92 docs citations 92 times ranked 15170 citing authors

#	Article	IF	CITATIONS
1	Genomic profiling of a randomized trial of interferon-î± vs hydroxyurea in MPN reveals mutation-specific responses. Blood Advances, 2022, 6, 2107-2119.	2.5	26
2	Donor Clonal Hematopoiesis and Recipient Outcomes After Transplantation. Journal of Clinical Oncology, 2022, 40, 189-201.	0.8	79
3	Prediction of life-threatening and disabling bleeding in patients with AML receiving intensive induction chemotherapy. Blood Advances, 2022, 6, 2835-2846.	2.5	8
4	Outcomes of antifungal prophylaxis for newly diagnosed AML patients treated with a hypomethylating agent and venetoclax. Leukemia and Lymphoma, 2022, 63, 1934-1941.	0.6	13
5	Impact of diagnostic genetics on remission MRD and transplantation outcomes in older patients with AML. Blood, 2022, 139, 3546-3557.	0.6	37
6	Expansion, persistence, and efficacy of donor memory-like NK cells infused for posttransplant relapse. Journal of Clinical Investigation, 2022, 132, .	3.9	48
7	<i>BCOR</i> and <i>BCORL1</i> Mutations Drive Epigenetic Reprogramming and Oncogenic Signaling by Unlinking PRC1.1 from Target Genes. Blood Cancer Discovery, 2022, 3, 116-135.	2.6	18
8	Allelic complexity of <i>KMT2A</i> partial tandem duplications in acute myeloid leukemia and myelodysplastic syndromes. Blood Advances, 2022, 6, 4236-4240.	2.5	6
9	Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine. Science Translational Medicine, 2022, 14, .	5. 8	10
10	Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome. Nature Communications, 2021, 12, 1334.	5.8	103
11	Modeling and targeting of erythroleukemia by hematopoietic genome editing. Blood, 2021, 137, 1628-1640.	0.6	25
12	Pretreatment clinical and genetic factors predict early postâ€treatment mortality in fit <scp>AML</scp> patients following induction. American Journal of Hematology, 2021, 96, E259-E262.	2.0	1
13	The clinical and functional effects of <i>TERT</i> variants in myelodysplastic syndrome. Blood, 2021, 138, 898-911.	0.6	27
14	Clonal hematopoiesis in sickle cell disease. Blood, 2021, 138, 2148-2152.	0.6	29
15	Somatic GATA2 mutations define a subgroup of myeloid malignancy patients at high risk for invasive fungal disease. Blood Advances, 2021, 5, 54-60.	2.5	11
16	Adding venetoclax to fludarabine/busulfan RIC transplant for high-risk MDS and AML is feasible, safe, and active. Blood Advances, 2021, 5, 5536-5545.	2.5	24
17	Antifungal Prophylaxis: Impact on Outcomes of Newly Diagnosed AML Patients Treated with a Hypomethylating Agent and Venetoclax. Blood, 2021, 138, 4126-4126.	0.6	0
18	Clinical Characteristics and Outcomes of Patients with Newly Diagnosed De Novo Acute Myeloid Leukemia (AML) during the COVID-19 Pandemic. Blood, 2021, 138, 2291-2291.	0.6	2

#	Article	lF	CITATIONS
19	Detection of the KITD816V mutation in myelodysplastic and/or myeloproliferative neoplasms and acute myeloid leukemia with myelodysplasia-related changes predicts concurrent systemic mastocytosis. Modern Pathology, 2020, 33, 1135-1145.	2.9	12
20	Alisertib plus induction chemotherapy in previously untreated patients with high-risk, acute myeloid leukaemia: a single-arm, phase 2 trial. Lancet Haematology, the, 2020, 7, e122-e133.	2.2	19
21	Targeted Informatics for Optimal Detection, Characterization, and Quantification of FLT3 Internal Tandem Duplications Across Multiple Next-Generation Sequencing Platforms. Journal of Molecular Diagnostics, 2020, 22, 1162-1178.	1.2	20
22	Clonal hematopoiesis in the inherited bone marrow failure syndromes. Blood, 2020, 136, 1615-1622.	0.6	26
23	Short telomere length predicts nonrelapse mortality after stem cell transplantation for myelodysplastic syndrome. Blood, 2020, 136, 3070-3081.	0.6	25
24	Small-Molecule PAPD5 Inhibitors Restore Telomerase Activity in Patient Stem Cells. Cell Stem Cell, 2020, 26, 896-909.e8.	5.2	57
25	Stem cell donors should not be screened for clonal hematopoiesis. Blood Advances, 2020, 4, 789-792.	2.5	27
26	Safety and Efficacy of Decitabine Plus Ipilimumab in Relapsed or Refractory MDS/AML in the Post-BMT or Transplant Naà ve Settings. Blood, 2020, 136, 15-17.	0.6	9
27	Targeted Sequencing of 7 Genes Can Help Reduce Pathologic Misclassification of MDS. Blood, 2020, 136, 32-33.	0.6	2
28	<i>DNMT3A</i> clonal Hematopoiesis in Older Donors Is Associated with Improved Survival in Recipients after Allogeneic Hematopoietic Cell Transplant. Blood, 2020, 136, 26-26.	0.6	5
29	Distinct Genetic Pathways Define Leukemia Predisposition Versus Adaptive Clonal Hematopoiesis in Shwachman-Diamond Syndrome. Blood, 2020, 136, 35-36.	0.6	0
30	Incidence and Risk Factors for Bleeding in Patients with Acute Myeloid Leukemia Receiving Intensive Induction Chemotherapy. Blood, 2020, 136, 12-13.	0.6	0
31	444â€MHC-I skewing in mutant calreticulin-positive myeloproliferative neoplasms is countered by heteroclitic peptide cancer vaccination. , 2020, , .		0
32	Distinct Clinical and Genetic Factors Predict Early Versus Late Mortality in AML Patients Undergoing Induction Chemotherapy. Blood, 2020, 136, 17-18.	0.6	0
33	Safety and Efficacy of Adding Venetoclax to Reduced Intensity Conditioning Chemotherapy Prior to Allogeneic Hematopoietic Cell Transplantation in Patients with High Risk Myeloid Malignancies. Blood, 2020, 136, 38-39.	0.6	12
34	A dominant-negative effect drives selection of <i>TP53</i> missense mutations in myeloid malignancies. Science, 2019, 365, 599-604.	6.0	265
35	Aging Human Hematopoietic Stem Cells Manifest Profound Epigenetic Reprogramming of Enhancers That May Predispose to Leukemia. Cancer Discovery, 2019, 9, 1080-1101.	7.7	119
36	Engineered Bcor mutations lead to acute leukemia of progenitor B-1 lymphocyte origin in a sensitized background. Blood, 2019, 133, 2610-2614.	0.6	11

3

#	Article	IF	CITATIONS
37	Genomic subtyping and therapeutic targeting of acute erythroleukemia. Nature Genetics, 2019, 51, 694-704.	9.4	97
38	Recurrent genetic HLA loss in AML relapsed after matched unrelated allogeneic hematopoietic cell transplantation. Blood Advances, 2019, 3, 2199-2204.	2.5	52
39	Genetic Alterations at Diagnosis Predict Outcome of AML Patients Age 60 or Older Undergoing Allogeneic Transplantation in First Remission. Blood, 2019, 134, 48-48.	0.6	4
40	Genomic Profiling of a Phase III Clinical Trial of Interferon Versus Hydroxyurea in MPN Patients Reveals Mutation-Specific and Treatment-Specific Patterns of Response. Blood, 2019, 134, 4202-4202.	0.6	1
41	A Phase 1 Dose-Escalation Study of Adding Venetoclax to a Reduced Intensity Conditioning (RIC) Regimen Prior to Allogeneic Hematopoietic Cell Transplantation for Patients with High Risk Myeloid Malignancies. Blood, 2019, 134, 258-258.	0.6	2
42	Clinical and Immunologic Activity of Ipilimumab Following Decitabine Priming in Post-Allogeneic Transplant and Transplant-Naà ve Patients with Relapsed or Refractory Myelodysplastic Syndromes and Acute Myeloid Leukemia: A Multi-Center Phase 1, Two-Arm, Dose-Escalation Study. Blood, 2019, 134, 2015-2015.	0.6	3
43	Clonal Cytopenias of Undetermined Significance Are Common in Cytopenic Adults Evaluated for MDS in the National MDS Study. Blood, 2019, 134, 4271-4271.	0.6	0
44	Significance of Clonal Mutations in Bone Marrow Failure and Inherited Myelodysplastic Syndrome/Acute Myeloid Leukemia Predisposition Syndromes. Hematology/Oncology Clinics of North America, 2018, 32, 643-655.	0.9	16
45	Older adults with acute myeloid leukemia treated with intensive chemotherapy: "old―prognostic algorithms may not apply. Haematologica, 2018, 103, 1758-1759.	1.7	5
46	Recurrent Genetic HLA Loss in Acute Myeloid Leukemia Relapsed after Matched Unrelated Allogeneic Hematopoietic Cell Transplant. Blood, 2018, 132, 817-817.	0.6	0
47	Resistance to Inotuzumab Ozogamicin in a B-ALL Patient with TET2 and DNMT3A Mutations and Myeloid Lineage Switch. Blood, 2018, 132, 2818-2818.	0.6	2
48	Potential Barriers to Clinical Trials of New Therapeutics for Myelodysplastic Syndromes: Wide Variation in Risk Definitions and Trial Enrollment Criteria. Blood, 2018, 132, 4378-4378.	0.6	0
49	Multiplex CRISPR/Cas9-Based Genome Editing of Mouse Hematopoietic Stem Cells Recapitulates Acute Erythroid Leukemia and Identifies Therapeutic Targets. Blood, 2018, 132, 5-5.	0.6	0
50	Clonal Hematopoiesis Associated With Adverse Outcomes After Autologous Stem-Cell Transplantation for Lymphoma. Journal of Clinical Oncology, 2017, 35, 1598-1605.	0.8	339
51	Prognostic Mutations in Myelodysplastic Syndrome after Stem-Cell Transplantation. New England Journal of Medicine, 2017, 376, 536-547.	13.9	586
52	Donor-engrafted CHIP is common among stem cell transplant recipients with unexplained cytopenias. Blood, 2017, 130, 91-94.	0.6	78
53	The relative utilities of genome-wide, gene panel, and individual gene sequencing in clinical practice. Blood, 2017, 130, 433-439.	0.6	50
54	Measurement of Residual Disease in Acute Myeloid Leukemia. Current Hematologic Malignancy Reports, 2017, 12, 574-581.	1.2	9

#	Article	IF	CITATIONS
55	Mutational complexity in myelodysplasia. Best Practice and Research in Clinical Haematology, 2017, 30, 290-294.	0.7	2
56	Now I cuss less about ICUS. Blood, 2017, 129, 3282-3283.	0.6	0
57	Systematic STAT3 sequencing in patients with unexplained cytopenias identifies unsuspected large granular lymphocytic leukemia. Blood Advances, 2017, 1, 1786-1789.	2.5	13
58	Uncoding the genetic heterogeneity of myelodysplastic syndrome. Hematology American Society of Hematology Education Program, 2017, 2017, 447-452.	0.9	26
59	Integrative Epigenetic and Single-Cell RNA-Seq Profiling of Human Hematopoietic Stem Cells Reveals Epigenetic Reprogramming of Enhancer and Regulatory Elements during Normal Aging. Blood, 2017, 130, 770-770.	0.6	0
60	Validation and Implementation of a Custom Next-Generation Sequencing Clinical Assay for Hematologic Malignancies. Journal of Molecular Diagnostics, 2016, 18, 507-515.	1.2	144
61	Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nature Medicine, 2016, 22, 288-297.	15.2	191
62	Functionally identifiable apoptosis-insensitive subpopulations determine chemoresistance in acute myeloid leukemia. Journal of Clinical Investigation, 2016, 126, 3827-3836.	3.9	40
63	Genetic Alterations Predict Outcomes in Patients with Myelodysplastic Syndrome Receiving Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2016, 128, 69-69.	0.6	2
64	Clonal Hematopoiesis Associated with Adverse Outcomes Following Autologous Stem Cell Transplantation for Non-Hodgkin Lymphoma. Blood, 2016, 128, 986-986.	0.6	3
65	Systematic STAT3 Mutation Testing Identifies Patients with Unsuspected T-Cell Large Granular Lymphocytic Leukemia. Blood, 2016, 128, 919-919.	0.6	0
66	Donor Chip Causes Donor-Derived Clonal Hematopoiesis As an Early Complication of Allogeneic Stem Cell Transplantation. Blood, 2016, 128, 987-987.	0.6	0
67	Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood, 2015, 125, 1367-1376.	0.6	747
68	Aplastic Anemia & Discount (AA& Amp; MDSIF): Bone Marrow Failure Discount Scientific Symposium 2014. Leukemia Research, 2015, 39, 110-113.	0.4	4
69	Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nature Genetics, 2015, 47, 180-185.	9.4	299
70	Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood, 2015, 126, 9-16.	0.6	1,493
71	Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. New England Journal of Medicine, 2014, 371, 2488-2498.	13.9	3,474
72	Somatic Mutations Predict Poor Outcome in Patients With Myelodysplastic Syndrome After Hematopoietic Stem-Cell Transplantation. Journal of Clinical Oncology, 2014, 32, 2691-2698.	0.8	359

#	Article	IF	Citations
73	The biology and clinical impact of genetic lesions in myeloid malignancies. Blood, 2013, 122, 3741-3748.	0.6	47
74	Molecular Pathophysiology of Myelodysplastic Syndromes. Annual Review of Pathology: Mechanisms of Disease, 2013, 8, 21-47.	9.6	78
75	Biology of double-hit B-cell lymphomas. Current Opinion in Hematology, 2012, 19, 299-304.	1.2	30
76	<i>Snail</i> Promotes the Cell-Autonomous Generation of Flk1 ⁺ Endothelial Cells Through the Repression of the microRNA-200 Family. Stem Cells and Development, 2012, 21, 167-176.	1.1	25
77	Snail and the microRNA-200 Family Act in Opposition to Regulate Epithelial-to-Mesenchymal Transition and Germ Layer Fate Restriction in Differentiating ESCs. Stem Cells, 2011, 29, 764-776.	1.4	73
78	Perioperative Management of Systemic Oral Anticoagulants in Patients Having Outpatient Hand Surgery. Journal of Hand Surgery, 2008, 33, 1205-1207.	0.7	17
79	Mesp1 Coordinately Regulates Cardiovascular Fate Restriction and Epithelial-Mesenchymal Transition in Differentiating ESCs. Cell Stem Cell, 2008, 3, 55-68.	5.2	180
80	Generation of peripheral B cells occurs via two spatially and temporally distinct pathways. Blood, 2007, 109, 2521-2528.	0.6	83
81	Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development (Cambridge), 2006, 133, 3787-3796.	1.2	296
82	B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nature Immunology, 2005, 6, 90-98.	7.0	543
83	Models for peripheral B cell development and homeostasis. Seminars in Immunology, 2005, 17, 175-182.	2.7	48
84	Alternative routes to maturity: branch points and pathways for generating follicular and marginal zone B cells. Immunological Reviews, 2004, 197, 147-160.	2.8	75
85	Cutting Edge: BLyS Enables Survival of Transitional and Mature B Cells Through Distinct Mediators. Journal of Immunology, 2002, 168, 5993-5996.	0.4	281
86	Resolution of Three Nonproliferative Immature Splenic B Cell Subsets Reveals Multiple Selection Points During Peripheral B Cell Maturation. Journal of Immunology, 2001, 167, 6834-6840.	0.4	512
87	Hematopoietic cell transplants for myelodysplastic syndromes. , 0, , 328-338.		0