
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2309018/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Impaired signaling for neuromuscular synaptic maintenance is a feature of Motor Neuron Disease. Acta Neuropathologica Communications, 2022, 10, 61.	5.2	6
2	Sizeâ€dependent dendritic maladaptations of hypoglossal motor neurons in SOD1 ^{G93A} mice. Anatomical Record, 2021, 304, 1562-1581.	1.4	10
3	TDP-43 Mutation Affects Stress Granule Dynamics in Differentiated NSC-34 Motoneuron-Like Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 611601.	3.7	19
4	Hematopoietic Prostaglandin D Synthase Inhibitor PK007 Decreases Muscle Necrosis in DMD mdx Model Mice. Life, 2021, 11, 994.	2.4	3
5	Sizeâ€Đependent Vulnerability of Lumbar Motor Neuron Dendritic Degeneration in SOD1 ^{G93A} Mice. Anatomical Record, 2020, 303, 1455-1471.	1.4	22
6	What are Neurotransmitter Release Sites and Do They Interact?. Neuroscience, 2020, 425, 157-168.	2.3	3
7	Activity-Dependent Global Downscaling of Evoked Neurotransmitter Release across Glutamatergic Inputs in <i>Drosophila</i> . Journal of Neuroscience, 2020, 40, 8025-8041.	3.6	6
8	Murine cytomegalovirus infection exacerbates complex IV deficiency in a model of mitochondrial disease. PLoS Genetics, 2020, 16, e1008604.	3.5	1
9	Preclinical Pharmacokinetics of Complement C5a Receptor Antagonists PMX53 and PMX205 in Mice. ACS Omega, 2020, 5, 2345-2354.	3.5	64
10	<i>Dscam2</i> suppresses synaptic strength through a PI3K-dependent endosomal pathway. Journal of Cell Biology, 2020, 219, .	5.2	3
11	The Role of Altered BDNF/TrkB Signaling in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience, 2019, 13, 368.	3.7	87
12	Revisiting the role of the innate immune complement system in ALS. Neurobiology of Disease, 2019, 127, 223-232.	4.4	35
13	Seasonal comparison of the neuromuscular junction morphology of Bufo marinus. Journal of Comparative Neurology, 2019, 527, 1931-1939.	1.6	1
14	Regulated Alternative Splicing of <i>Drosophila Dscam2</i> Is Necessary for Attaining the Appropriate Number of Photoreceptor Synapses. Genetics, 2018, 208, 717-728.	2.9	10
15	Defects in synaptic transmission at the neuromuscular junction precede motor deficits in a TDPâ€43 ^{Q331K} transgenic mouse model of amyotrophic lateral sclerosis. FASEB Journal, 2018, 32, 2676-2689.	0.5	52
16	Complement components are upregulated and correlate with disease progression in the TDP-43Q331K mouse model of amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2018, 15, 171.	7.2	45
17	A rat model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. Human Molecular Genetics, 2017, 26, ddw371.	2.9	59
18	Alterations in hypoglossal motor neurons due to GAD67 and VGAT deficiency in mice. Experimental Neurology, 2017, 289, 117-127.	4.1	17

#	Article	IF	CITATIONS
19	Pharmacological inhibition of complement C5aâ€C5a ₁ receptor signalling ameliorates disease pathology in the hSOD1 ^{G93A} mouse model of amyotrophic lateral sclerosis. British Journal of Pharmacology, 2017, 174, 689-699.	5.4	79
20	Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage. Journal of Leukocyte Biology, 2017, 101, 927-947.	3.3	36
21	Complement C5a-C5aR1 signalling drives skeletal muscle macrophage recruitment in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Skeletal Muscle, 2017, 7, 10.	4.2	45
22	Loss of lamininâ€a4 results in pre―and postsynaptic modifications at the neuromuscular junction. FASEB Journal, 2017, 31, 1323-1336.	0.5	9
23	Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nature Communications, 2017, 8, 611.	12.8	93
24	Investigating Methodological Differences in the Assessment of Dendritic Morphology of Basolateral Amygdala Principal Neurons—A Comparison of Golgi–Cox and Neurobiotin Electroporation Techniques. Brain Sciences, 2017, 7, 165.	2.3	14
25	Motor Areas Show Altered Dendritic Structure in an Amyotrophic Lateral Sclerosis Mouse Model. Frontiers in Neuroscience, 2017, 11, 609.	2.8	51
26	Functional decline at the aging neuromuscular junction is associated with altered laminin-α4 expression. Aging, 2017, 9, 880-899.	3.1	26
27	Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease. Neural Plasticity, 2016, 2016, 1-31.	2.2	30
28	Cortical synaptic and dendritic spine abnormalities in a presymptomatic TDP-43 model of amyotrophic lateral sclerosis. Scientific Reports, 2016, 6, 37968.	3.3	85
29	Tick holocyclotoxins trigger host paralysis by presynaptic inhibition. Scientific Reports, 2016, 6, 29446.	3.3	31
30	Marked changes in dendritic structure and spine density precede significant neuronal death in vulnerable cortical pyramidal neuron populations in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2016, 4, 77.	5.2	63
31	Developmental changes in the morphology of mouse hypoglossal motor neurons. Brain Structure and Function, 2016, 221, 3755-3786.	2.3	38
32	Glycinergic Neurotransmission: A Potent Regulator of Embryonic Motor Neuron Dendritic Morphology and Synaptic Plasticity. Journal of Neuroscience, 2016, 36, 80-87.	3.6	33
33	Absence of toll-like receptor 4 (TLR4) extends survival in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2015, 12, 90.	7.2	69
34	Motor Cortex Layer V Pyramidal Neurons Exhibit Dendritic Regression, Spine Loss, and Increased Synaptic Excitation in the Presymptomatic hSOD1 ^{G93A} Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2015, 35, 643-647.	3.6	100
35	Structural and functional characterization of dendritic arbors and GABAergic synaptic inputs on interneurons and principal cells in the rat basolateral amygdala. Journal of Neurophysiology, 2015, 114, 942-957.	1.8	32
36	Genetic absence of the vesicular inhibitory amino acid transporter differentially regulates respiratory and locomotor motor neuron development. Brain Structure and Function, 2015, 220, 525-540.	2.3	18

#	Article	IF	CITATIONS
37	Loss of β2â€ŀaminin alters calcium sensitivity and voltageâ€gated calcium channel maturation of neurotransmission at the neuromuscular junction. Journal of Physiology, 2015, 593, 245-265.	2.9	28
38	Role for terminal complement activation in amyotrophic lateral sclerosis disease progression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3-4.	7.1	45
39	Elevation of the terminal complement activation products C5a and C5b-9 in ALS patient blood. Journal of Neuroimmunology, 2014, 276, 213-218.	2.3	60
40	Identification of RNA bound to the TDP-43 ribonucleoprotein complex in the adult mouse brain. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 252-260.	1.7	77
41	Dysregulation of the complement cascade in the hSOD1G93Atransgenic mouse model of amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2013, 10, 119.	7.2	76
42	A method for the three-dimensional reconstruction of Neurobiotinâ,,¢-filled neurons and the location of their synaptic inputs. Frontiers in Neural Circuits, 2013, 7, 153.	2.8	77
43	Genetic Deficiency of GABA Differentially Regulates Respiratory and Non-Respiratory Motor Neuron Development. PLoS ONE, 2013, 8, e56257.	2.5	26
44	Neuregulin-1 Potentiates Agrin-Induced Acetylcholine Receptor Clustering via Muscle Specific Kinase Phosphorylation. Journal of Cell Science, 2012, 125, 1531-43.	2.0	43
45	Muscle Specific Kinase: Organiser of synaptic membrane domains. International Journal of Biochemistry and Cell Biology, 2011, 43, 295-298.	2.8	60
46	The Role of the Complement System and the Activation Fragment C5a in the Central Nervous System. NeuroMolecular Medicine, 2010, 12, 179-192.	3.4	136
47	The two-pore domain K+ channel TASK-1 is closely associated with brain barriers and meninges. Journal of Molecular Histology, 2010, 41, 315-323.	2.2	7
48	Myocardial deletion of <i>Smad4 </i> using a novel α skeletal muscle actin Cre recombinase transgenic mouse causes misalignment of the cardiac outflow tract. International Journal of Biological Sciences, 2010, 6, 546-555.	6.4	25
49	In Vivo Targeting of the Growth Hormone Receptor (GHR) Box1 Sequence Demonstrates that the GHR Does Not Signal Exclusively through JAK2. Molecular Endocrinology, 2010, 24, 204-217.	3.7	66
50	Solving the α-Conotoxin Folding Problem: Efficient Selenium-Directed On-Resin Generation of More Potent and Stable Nicotinic Acetylcholine Receptor Antagonists. Journal of the American Chemical Society, 2010, 132, 3514-3522.	13.7	124
51	The C5a anaphylatoxin receptor CD88 is expressed in presynaptic terminals of hippocampal mossy fibres. Journal of Neuroinflammation, 2009, 6, 34.	7.2	17
52	Neural agrin increases postsynaptic ACh receptor packing by elevating rapsyn protein at the mouse neuromuscular synapse. Developmental Neurobiology, 2008, 68, 1153-1169.	3.0	30
53	The Complement Factor C5a Contributes to Pathology in a Rat Model of Amyotrophic Lateral Sclerosis. Journal of Immunology, 2008, 181, 8727-8734.	0.8	136
54	Role of Complement in Motor Neuron Disease: Animal Models and Therapeutic Potential of Complement Inhibitors. Advances in Experimental Medicine and Biology, 2008, , 136-151.	1.6	11

#	Article	IF	CITATIONS
55	Role of complement in motor neuron disease: animal models and therapeutic potential of complement inhibitors. Advances in Experimental Medicine and Biology, 2008, 632, 143-58.	1.6	27
56	IGF-I and insulin activate mitogen-activated protein kinase via the type 1 IGF receptor in mouse embryonic stem cells. Reproduction, 2007, 134, 41-49.	2.6	23
57	Targeting of the ETS Factor Gabpl± Disrupts Neuromuscular Junction Synaptic Function. Molecular and Cellular Biology, 2007, 27, 3470-3480.	2.3	29
58	Rapsyn Interaction with Calpain Stabilizes AChR Clusters at the Neuromuscular Junction. Neuron, 2007, 55, 247-260.	8.1	85
59	Neural agrin: A synaptic stabiliser. International Journal of Biochemistry and Cell Biology, 2007, 39, 863-867.	2.8	40
60	Neuronal expression of peripherin, a type III intermediate filament protein, in the mouse hindbrain. Histochemistry and Cell Biology, 2007, 128, 541-550.	1.7	24
61	Heterozygote Effects in Mice with Partial Truncations in the Growth Hormone Receptor Cytoplasmic Domain: Assessment of Growth Parameters and Phenotype. Endocrinology, 2005, 146, 5278-5286.	2.8	14
62	Glycinergic and GABAergic Synaptic Activity Differentially Regulate Motoneuron Survival and Skeletal Muscle Innervation. Journal of Neuroscience, 2005, 25, 1249-1259.	3.6	54
63	In Vivo Analysis of Growth Hormone Receptor Signaling Domains and Their Associated Transcripts. Molecular and Cellular Biology, 2005, 25, 66-77.	2.3	137
64	P2X7-like receptor subunits enhance excitatory synaptic transmission at central synapses by presynaptic mechanisms. Neuroscience, 2004, 128, 269-280.	2.3	49
65	Postnatal changes in TASK-1 and TREK-1 expression in rat brain stem and cerebellum. NeuroReport, 2004, 15, 1321-1324.	1.2	19
66	Developmental expression of two-pore domain K+ channels, TASK-1 and TREK-1, in the rat cochlea. NeuroReport, 2004, 15, 437-441.	1.2	26
67	Neuregulin potentiates agrin-induced acetylcholine receptor clustering in myotubes. NeuroReport, 2004, 15, 2501-2505.	1.2	17
68	Functional analysis of neurotransmission at β2â€laminin deficient terminals. Journal of Physiology, 2003, 546, 789-800.	2.9	63
69	Neuromuscular synapses mediate motor axon branching and motoneuron survival during the embryonic period of programmed cell death. Developmental Biology, 2003, 257, 71-84.	2.0	22
70	Elucidating the molecular mechanisms that underlie the target control of motoneuron death. International Journal of Developmental Biology, 2002, 46, 551-8.	0.6	24
71	Transport of endosomal early antigen 1 in the rat sciatic nerve and location in cultured neurons. NeuroReport, 2001, 12, 281-284.	1.2	2
72	Alterations in ciliary neurotrophic factor signaling in rapsyn deficient mice. Journal of Neuroscience Research, 2001, 64, 575-581.	2.9	6

#	Article	IF	CITATIONS
73	Promotion of motoneuron survival and branching in rapsyn-deficient mice. Journal of Comparative Neurology, 2001, 429, 156-165.	1.6	35
74	Overexpression of rapsyn inhibits agrin-induced acetylcholine receptor clustering in muscle cells. Journal of Neurocytology, 1999, 28, 763-775.	1.5	21
75	Development of the neuromuscular junction: Genetic analysis in mice. Journal of Physiology (Paris), 1998, 92, 167-172.	2.1	52
76	Rapsyn and Agrin Slow the Metabolic Degradation of the Acetylcholine Receptor. Molecular and Cellular Neurosciences, 1997, 10, 16-26.	2.2	33
77	Defective Neuromuscular Synaptogenesis in Agrin-Deficient Mutant Mice. Cell, 1996, 85, 525-535.	28.9	856
78	The renal glomerulus of mice lacking s–laminin/laminin β2: nephrosis despite molecular compensation by laminin β1. Nature Genetics, 1995, 10, 400-406.	21.4	384
79	Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin β2. Nature, 1995, 374, 258-262.	27.8	454
80	Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature, 1995, 377, 232-236.	27.8	514
81	Synapse-Associated Expression of an Acetylcholine Receptor-Inducing Protein, ARIA/Heregulin, and Its Putative Receptors, ErbB2 and ErbB3, in Developing Mammalian Muscle. Developmental Biology, 1995, 172, 158-169.	2.0	166
82	Expanding Roles for α4 Integrin and its Ligands in Development. Cell Adhesion and Communication, 1994, 2, 27-43.	1.7	114
83	43K Protein and Acetylcholine Receptors Colocalize during the Initial Stages of Neuromuscular Synapse Formation in Vivo. Developmental Biology, 1993, 155, 275-280.	2.0	80
84	Clustering and immobilization of acetylcholine receptors by the 43-kD protein: a possible role for dystrophin-related protein. Journal of Cell Biology, 1993, 123, 729-740.	5.2	107
85	Migration of schwann cells and axons into developing chick forelimb muscles following removal of either the neural tube or the neural crest. Journal of Comparative Neurology, 1988, 277, 214-233.	1.6	32
86	Growth of axons into developing muscles of the chick forelimb is preceded by cells that stain with Schwann cell antibodies. Journal of Comparative Neurology, 1987, 259, 330-347.	1.6	64
87	The growth of muscle nerves in relation to the formation of primary myotubes in the developing chick forelimb. Journal of Comparative Neurology, 1986, 248, 245-256.	1.6	21
88	Growth of segmental nerves to the developing rat diaphragm: Absence of pioneer axons. Journal of Comparative Neurology, 1983, 218, 365-377.	1.6	26