
David T Scadden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2308953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 2010, 466, 829-834.	27.8	2,935
2	The bone marrow niche for haematopoietic stem cells. Nature, 2014, 505, 327-334.	27.8	1,910
3	Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology, 2000, 18, 410-414.	17.5	1,679
4	Hematopoietic Stem Cell Quiescence Maintained by p21 ^{cip1/waf1} . Science, 2000, 287, 1804-1808.	12.6	1,199
5	Bayesian approach to single-cell differential expression analysis. Nature Methods, 2014, 11, 740-742.	19.0	1,186
6	Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature, 2010, 464, 852-857.	27.8	980
7	Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature, 2014, 508, 269-273.	27.8	933
8	In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 2005, 435, 969-973.	27.8	820
9	Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature, 2009, 457, 92-96.	27.8	800
10	Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nature Reviews Genetics, 2008, 9, 115-128.	16.3	755
11	A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell, 2019, 177, 1915-1932.e16.	28.9	640
12	Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. Journal of Experimental Medicine, 2005, 201, 1781-1791.	8.5	610
13	Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature, 2016, 532, 323-328.	27.8	553
14	Endogenous Bone Marrow MSCs Are Dynamic, Fate-Restricted Participants in Bone Maintenance and Regeneration. Cell Stem Cell, 2012, 10, 259-272.	11.1	551
15	In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature, 2011, 474, 216-219.	27.8	502
16	A Microenvironment-Induced Myeloproliferative Syndrome Caused by Retinoic Acid Receptor γ Deficiency. Cell, 2007, 129, 1097-1110.	28.9	490
17	Mesenchymal Cell Contributions to the Stem Cell Niche. Cell Stem Cell, 2015, 16, 239-253.	11.1	444
18	Wnt Signaling in the Niche Enforces Hematopoietic Stem Cell Quiescence and Is Necessary to Preserve Self-Renewal In Vivo. Cell Stem Cell, 2008, 2, 274-283.	11.1	436

#	Article	IF	CITATIONS
19	Inhibition of Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid Leukemia. Cell, 2016, 167, 171-186.e15.	28.9	353
20	Stem cell repopulation efficiency but not pool size is governed by p27kip1. Nature Medicine, 2000, 6, 1235-1240.	30.7	318
21	Nice Neighborhood: Emerging Concepts of the Stem Cell Niche. Cell, 2014, 157, 41-50.	28.9	307
22	Cell-State-Specific Metabolic Dependency in Hematopoiesis and Leukemogenesis. Cell, 2014, 158, 1309-1323.	28.9	289
23	Therapeutic targeting of a stem cell niche. Nature Biotechnology, 2007, 25, 238-243.	17.5	288
24	Active movement of T cells away from a chemokine. Nature Medicine, 2000, 6, 543-548.	30.7	283
25	Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF ^{high} neutrophils. Science, 2017, 358, .	12.6	270
26	The bone marrow at the crossroads of blood and immunity. Nature Reviews Immunology, 2012, 12, 49-60.	22.7	268
27	Diabetes Impairs Hematopoietic Stem Cell Mobilization by Altering Niche Function. Science Translational Medicine, 2011, 3, 104ra101.	12.4	254
28	Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nature Medicine, 2013, 19, 1513-1517.	30.7	233
29	AKT/FOXO Signaling Enforces Reversible Differentiation Blockade in Myeloid Leukemias. Cell, 2011, 146, 697-708.	28.9	232
30	Osteoblastic regulation of B lymphopoiesis is mediated by G _s α-dependent signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16976-16981.	7.1	222
31	Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature, 2016, 539, 304-308.	27.8	210
32	Engineering pulmonary vasculature in decellularized rat and human lungs. Nature Biotechnology, 2015, 33, 1097-1102.	17.5	199
33	Ischemic Stroke Activates Hematopoietic Bone Marrow Stem Cells. Circulation Research, 2015, 116, 407-417.	4.5	182
34	C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature, 2020, 582, 89-94.	27.8	182
35	Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nature Biotechnology, 2016, 34, 738-745.	17.5	176
36	Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Science Translational Medicine, 2017, 9, .	12.4	176

#	Article	IF	CITATIONS
37	mTOR Complex 1 Plays Critical Roles in Hematopoiesis and Pten-Loss-Evoked Leukemogenesis. Cell Stem Cell, 2012, 11, 429-439.	11.1	172
38	Myocardial Infarction Activates CCR2+ Hematopoietic Stem and Progenitor Cells. Cell Stem Cell, 2015, 16, 477-487.	11.1	168
39	dropEst: pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments. Genome Biology, 2018, 19, 78.	8.8	159
40	Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nature Medicine, 2019, 25, 1761-1771.	30.7	157
41	Efficient generation of human T cells from a tissue-engineered thymic organoid. Nature Biotechnology, 2000, 18, 729-734.	17.5	156
42	Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell, 2016, 167, 1310-1322.e17.	28.9	153
43	Angiogenin Promotes Hematopoietic Regeneration by Dichotomously Regulating Quiescence of Stem and Progenitor Cells. Cell, 2016, 166, 894-906.	28.9	150
44	Myelopoiesis is regulated by osteocytes through Gsα-dependent signaling. Blood, 2013, 121, 930-939.	1.4	146
45	Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature, 2020, 579, 111-117.	27.8	140
46	Proximity-Based Differential Single-Cell Analysis of the Niche to Identify Stem/Progenitor Cell Regulators. Cell Stem Cell, 2016, 19, 530-543.	11.1	136
47	In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nature Protocols, 2011, 6, 1-14.	12.0	135
48	Differential stem- and progenitor-cell trafficking by prostaglandin E2. Nature, 2013, 495, 365-369.	27.8	132
49	Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nature Communications, 2019, 10, 617.	12.8	130
50	Hematopoietic Stem Cell Niche in Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 555-581.	22.4	129
51	Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells. Cell Stem Cell, 2019, 25, 784-796.e5.	11.1	128
52	Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15392-15397.	7.1	124
53	Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. Journal of Experimental Medicine, 2015, 212, 759-774.	8.5	122
54	Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nature Medicine, 2017, 23, 100-106.	30.7	121

#	Article	IF	CITATIONS
55	PHD3 Loss in Cancer Enables Metabolic Reliance on Fatty Acid Oxidation via Deactivation of ACC2. Molecular Cell, 2016, 63, 1006-1020.	9.7	120
56	Intrinsic Human Immunodeficiency Virus Type 1 Resistance of Hematopoietic Stem Cells Despite Coreceptor Expression. Journal of Virology, 1999, 73, 728-737.	3.4	99
57	Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell, 2021, 39, 1464-1478.e8.	16.8	98
58	Stress-Induced Changes in Bone Marrow Stromal Cell Populations Revealed through Single-Cell Protein Expression Mapping. Cell Stem Cell, 2019, 25, 570-583.e7.	11.1	96
59	Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. Journal of Experimental Medicine, 2014, 211, 2341-2349.	8.5	95
60	Role of the Osteoblast Lineage in the Bone Marrow Hematopoietic Niches. Journal of Bone and Mineral Research, 2009, 24, 759-764.	2.8	94
61	Rapid Mobilization Reveals a Highly Engraftable Hematopoietic Stem Cell. Cell, 2018, 172, 191-204.e10.	28.9	92
62	A hostel for the hostile: the bone marrow niche in hematologic neoplasms. Haematologica, 2015, 100, 1376-1387.	3.5	90
63	Heterogeneity of the bone marrow niche. Current Opinion in Hematology, 2016, 23, 331-338.	2.5	83
64	A biomaterial-based vaccine eliciting durable tumour-specific responses against acute myeloid leukaemia. Nature Biomedical Engineering, 2020, 4, 40-51.	22.5	83
65	An injectable bone marrow–like scaffold enhances T cell immunity after hematopoietic stem cell transplantation. Nature Biotechnology, 2019, 37, 293-302.	17.5	79
66	Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance. Cell Metabolism, 2020, 32, 391-403.e6.	16.2	79
67	Lineage Tracing Reveals a Subset of Reserve Muscle Stem Cells Capable of Clonal Expansion under Stress. Cell Stem Cell, 2019, 24, 944-957.e5.	11.1	78
68	Bone marrow stem cells: current and emerging concepts. Annals of the New York Academy of Sciences, 2015, 1335, 32-44.	3.8	75
69	Generation of human T lymphocytes from bone marrow CD34+ cells in vitro. Nature Medicine, 1996, 2, 46-51.	30.7	73
70	Extracellular cyclic ADPâ€ribose increases intracellular free calcium concentration and stimulates proliferation of human hemopoietic progenitors. FASEB Journal, 2000, 14, 680-690.	0.5	72
71	Aldehyde dehydrogenase 3a2 protects AML cells from oxidative death and the synthetic lethality of ferroptosis inducers. Blood, 2020, 136, 1303-1316.	1.4	68
72	Adult blood stem cell localization reflects the abundance of reported bone marrow niche cell types and their combinations. Blood, 2020, 136, 2296-2307.	1.4	63

#	Article	IF	CITATIONS
73	The stem cell niche in health and leukemic disease. Best Practice and Research in Clinical Haematology, 2007, 20, 19-27.	1.7	62
74	Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-κB inflammatory pathway. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1871-1876.	7.1	62
75	AIDS-Related Malignancies. Annual Review of Medicine, 2003, 54, 285-303.	12.2	55
76	Single Targeted Exon Mutation Creates a True Congenic Mouse for Competitive Hematopoietic Stem Cell Transplantation: The C57BL/6-CD45.1STEM Mouse. Stem Cell Reports, 2016, 6, 985-992.	4.8	54
77	Harnessing the apoptotic programs in cancer stemâ€like cells. EMBO Reports, 2015, 16, 1084-1098.	4.5	53
78	Development of ML390: A Human DHODH Inhibitor That Induces Differentiation in Acute Myeloid Leukemia. ACS Medicinal Chemistry Letters, 2016, 7, 1112-1117.	2.8	51
79	Glucocorticoids Regulate Bone Marrow B Lymphopoiesis After Stroke. Circulation Research, 2019, 124, 1372-1385.	4.5	50
80	The NOTCH1/CD44 axis drives pathogenesis in a T cell acute lymphoblastic leukemia model. Journal of Clinical Investigation, 2018, 128, 2802-2818.	8.2	48
81	Epstein–Barr virus–driven gene therapy for EBV–related lymphomas. Nature Medicine, 1996, 2, 1379-1382.	30.7	47
82	Heterologous cells cooperate to augment stem cell migration, homing, and engraftment. Blood, 2003, 101, 45-51.	1.4	46
83	Distinctive Mesenchymal-Parenchymal Cell Pairings Govern B Cell Differentiation in the Bone Marrow. Stem Cell Reports, 2016, 7, 220-235.	4.8	43
84	Lactate Dehydrogenase A Governs Cardiac Hypertrophic Growth in Response to Hemodynamic Stress. Cell Reports, 2020, 32, 108087.	6.4	43
85	Immunotoxin combined with chemotherapy for patients with AIDS-related non-Hodgkin's lymphoma. , 1998, 83, 2580-2587.		42
86	Cell interactions in the bone marrow microenvironment affecting myeloid malignancies. Blood Advances, 2020, 4, 3795-3803.	5.2	42
87	Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning. Blood, 2014, 124, 2937-2947.	1.4	39
88	VEGF-C protects the integrity of the bone marrow perivascular niche in mice. Blood, 2020, 136, 1871-1883.	1.4	38
89	Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants. Nature Biotechnology, 2000, 18, 882-887.	17.5	36
90	Bone marrow drives central nervous system regeneration after radiation injury. Journal of Clinical Investigation, 2017, 128, 281-293.	8.2	36

#	Article	IF	CITATIONS
91	Ptpn21 Controls Hematopoietic Stem Cell Homeostasis and Biomechanics. Cell Stem Cell, 2019, 24, 608-620.e6.	11.1	35
92	Notch Receptor-Ligand Engagement Maintains Hematopoietic Stem Cell Quiescence and Niche Retention. Stem Cells, 2015, 33, 2280-2293.	3.2	34
93	B lymphocyte-derived acetylcholine limits steady-state and emergency hematopoiesis. Nature Immunology, 2022, 23, 605-618.	14.5	33
94	Sipa1 deficiency–induced bone marrow niche alterations lead to the initiation of myeloproliferative neoplasm. Blood Advances, 2018, 2, 534-548.	5.2	32
95	Bone marrow endothelial dysfunction promotes myeloid cell expansion in cardiovascular disease. , 2022, 1, 28-44.		32
96	Malic enzyme 2 connects the Krebs cycle intermediate fumarate to mitochondrial biogenesis. Cell Metabolism, 2021, 33, 1027-1041.e8.	16.2	30
97	Hematopoiesis: Reconciling Historic Controversies about the Niche. Cell Stem Cell, 2017, 20, 590-592.	11.1	28
98	Chromatin-state barriers enforce an irreversible mammalian cell fate decision. Cell Reports, 2021, 37, 109967.	6.4	28
99	D-Cyclins Repress Apoptosis in Hematopoietic Cells by Controlling Death Receptor Fas and Its Ligand FasL. Developmental Cell, 2014, 30, 255-267.	7.0	27
100	Efficacy and safety of anti-CD45–saporin as conditioning agent for RAG deficiency. Journal of Allergy and Clinical Immunology, 2021, 147, 309-320.e6.	2.9	27
101	Progression signature underlies clonal evolution and dissemination of multiple myeloma. Blood, 2021, 137, 2360-2372.	1.4	26
102	The metabolic regulator mTORC1 controls terminal myeloid differentiation. Science Immunology, 2017, 2, .	11.9	23
103	Amino acid–insensitive mTORC1 regulation enables nutritional stress resilience in hematopoietic stem cells. Journal of Clinical Investigation, 2017, 127, 1405-1413.	8.2	23
104	Proton export alkalinizes intracellular pH and reprograms carbon metabolism to drive normal and malignant cell growth. Blood, 2022, 139, 502-522.	1.4	23
105	Modulating Bone Marrow Hematopoietic Lineage Potential to Prevent Bone Metastasis in Breast Cancer. Cancer Research, 2018, 78, 5300-5314.	0.9	22
106	Niche-Based Screening in Multiple Myeloma Identifies a Kinesin-5 Inhibitor with Improved Selectivity over Hematopoietic Progenitors. Cell Reports, 2015, 10, 755-770.	6.4	21
107	ZFP521 regulates murine hematopoietic stem cell function and facilitates MLL-AF9 leukemogenesis in mouse and human cells. Blood, 2017, 130, 619-624.	1.4	20
108	tiRNA signaling via stress-regulated vesicle transfer in the hematopoietic niche. Cell Stem Cell, 2021, 28, 2090-2103.e9.	11.1	20

#	Article	IF	CITATIONS
109	SnapShot: The Hematopoietic Stem Cell Niche. Cell, 2014, 158, 228-228.e1.	28.9	19
110	Not All Created Equal: Lineage Hard-Wiring in the Production of Blood. Cell, 2015, 163, 1568-1570.	28.9	19
111	Effective Multi-lineage Engraftment in a Mouse Model of Fanconi Anemia Using Non-genotoxic Antibody-Based Conditioning. Molecular Therapy - Methods and Clinical Development, 2020, 17, 455-464.	4.1	19
112	Rethinking Stroma: Lessons from the Blood. Cell Stem Cell, 2012, 10, 648-649.	11.1	18
113	Imaging dynamic mTORC1 pathway activity in vivo reveals marked shifts that support time-specific inhibitor therapy in AML. Nature Communications, 2021, 12, 245.	12.8	18
114	Transmembrane Inhibitor of RICTOR/mTORC2 in Hematopoietic Progenitors. Stem Cell Reports, 2014, 3, 832-840.	4.8	17
115	Epstein-Barr Virus, the CNS, and AIDS-Related Lymphomas: As Close as Flame to Smoke. Journal of Clinical Oncology, 2000, 18, 3323-3324.	1.6	15
116	The secrets of the bone marrow niche: Metabolic priming for AML. Nature Medicine, 2012, 18, 865-867.	30.7	15
117	The Wave2 scaffold Hem-1 is required for transition of fetal liver hematopoiesis to bone marrow. Nature Communications, 2018, 9, 2377.	12.8	15
118	Bortezomib Induces Proliferation of Mesenchymal Progenitor Cells and Promotes Differentiation towards Osteoblastic Lineage Blood, 2006, 108, 88-88.	1.4	13
119	Sequential In vivo Imaging of Osteogenic Stem/Progenitor Cells During Fracture Repair. Journal of Visualized Experiments, 2014, , .	0.3	12
120	Metabolic perturbations sensitize triple-negative breast cancers to apoptosis induced by BH3 mimetics. Science Signaling, 2021, 14, .	3.6	10
121	Endogenous transmembrane protein UT2 inhibits pSTAT3 and suppresses hematological malignancy. Journal of Clinical Investigation, 2016, 126, 1300-1310.	8.2	9
122	Stem cells and immune reconstitution in AIDS. Blood Reviews, 2003, 17, 227-231.	5.7	8
123	The weight of cell identity. Journal of Clinical Investigation, 2007, 117, 3653-3655.	8.2	8
124	Recent advances in "sickle and niche―research - Tribute to Dr. Paul S Frenette Stem Cell Reports, 2022, 17, 1509-1535.	4.8	8
125	Case 30-2006. New England Journal of Medicine, 2006, 355, 1358-1368.	27.0	7
126	Cell Cycle Analysis of Hematopoietic Stem and Progenitor Cells by Multicolor Flow Cytometry. Current Protocols in Cytometry, 2019, 87, e50.	3.7	7

#	Article	lF	CITATIONS
127	Targeting the Warburg effect for leukemia therapy: Magnitude matters. Molecular and Cellular Oncology, 2015, 2, e981988.	0.7	6
128	In vivo genome-wide CRISPR screening in murine acute myeloid leukemia uncovers microenvironmental dependencies. Blood Advances, 2022, 6, 5072-5084.	5.2	6
129	Bone's dark side: mutated osteoblasts implicated in leukemia. Cell Research, 2014, 24, 383-384.	12.0	5
130	Shipping mouse bone marrow: Keep it in the bone. Experimental Hematology, 2017, 49, 68-72.	0.4	5
131	Low NCOR2 levels in multiple myeloma patients drive multidrug resistance via MYC upregulation. Blood Cancer Journal, 2021, 11, 194.	6.2	5
132	Cellular thrust and parry in the leukemic niche. Blood, 2014, 124, 2760-2761.	1.4	4
133	Harnessing the Biology of Stem Cells' Niche. , 2017, , 15-31.		4
134	Growing old in the age of heterogeneity: the perils of shifting clonality. Current Opinion in Hematology, 2019, 26, 222-227.	2.5	4
135	AIDSâ€Related Malignancies. Oncologist, 1998, 3, 119-123.	3.7	4
136	Osteocytes Support Hematopoiesis by Altering the Bone Marrow Microenvironment Through GsÎ \pm Signaling. Blood, 2011, 118, 219-219.	1.4	4
137	Tic-TACs: Refreshing Hair Growth. Cell, 2014, 157, 769-770.	28.9	3
138	Blood and Bone. New England Journal of Medicine, 2016, 374, 1891-1893.	27.0	3
139	Written in bone: young bone makes young blood. EMBO Journal, 2017, 36, 831-833.	7.8	3
140	Mgta-145, in Combination with Plerixafor in a Phase 1 Clinical Trial, Mobilizes Large Numbers of Human Hematopoietic Stem Cells and a Graft with Immunosuppressive Effects for Allogeneic Transplant. Blood, 2020, 136, 31-32.	1.4	3
141	Matrix Glycoprotein Osteopontin Is a Stem Cell Niche Constituent That Constrains the Hematopoietic Stem Cell Pool Size Blood, 2004, 104, 664-664.	1.4	3
142	Promoting Osteoblastogenesis Using a Novel Dkk-1 Neutralizing Antibody in the Treatment of Multiple Myeloma Related Bone Disease. Blood, 2008, 112, 2739-2739.	1.4	3
143	Inhibition of the Enzyme Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid Leukemia. Blood, 2016, 128, 1656-1656.	1.4	3
144	Toward Cellular-based Therapies for HIV Infection. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 759-764.	1.8	2

#	Article	IF	CITATIONS
145	Blood loses it when nerves go bad. Cell Research, 2014, 24, 1151-1152.	12.0	2
146	DHODH Inhibitors in the Treatment of Acute Myeloid Leukemia: Defining the Mechanism of Action and the Basis of the Metabolic Therapeutic Window. Blood, 2018, 132, 2716-2716.	1.4	2
147	Reversing Clonal Hematopoiesis and Associated Atherosclerotic Disease By Targeted Antibody-Drug-Conjugate (ADC) Conditioning and Transplant. Blood, 2020, 136, 34-35.	1.4	2
148	Immuneâ€responsive biodegradable scaffolds for enhancing neutrophil regeneration. Bioengineering and Translational Medicine, 2023, 8, .	7.1	2
149	Adult Stem Cells. American Journal of Transplantation, 2005, 5, 193-193.	4.7	1
150	Transcriptome comparison of distinct osteolineage subsets in the hematopoietic stem cell niche using a triple fluorescent transgenic mouse model. Genomics Data, 2015, 5, 318-319.	1.3	1
151	Hematopoietic Microenvironment. , 2018, , 119-126.		1
152	Metcalf Lecture Award: Applying niche biology to engineer T-cell regenerative therapies. Experimental Hematology, 2019, 80, 1-10.	0.4	1
153	Analysis of Leukemia Cell Metabolism through Stable Isotope Tracing in Mice. Bio-protocol, 2021, 11, e4171.	0.4	1
154	Young haematopoietic stem cells are picky eaters. Cell Research, 2021, 31, 377-378.	12.0	1
155	Epigenetic Activation of the pH Regulator MCT4 in Acute Myeloid Leukemia Exploits a Fundamental Metabolic Process of Enhancing Cell Growth through Proton Shifting. Blood, 2019, 134, 3765-3765.	1.4	1
156	Dose Adjusted IV Busulfan/Cyclophosphamide (BU/CY) and Autologous (AU) Stem Cell Transplantation (SCT) for Recurrent Lymphoma Blood, 2004, 104, 1884-1884.	1.4	1
157	Nucleotide Receptor P2Y14 Modulates Hematopoietic Stem Cell Response to Tissue Injury Altering Stem Cell Preservation and Tissue Recovery Blood, 2006, 108, 679-679.	1.4	1
158	CYC065, a Potent Derivative of Seliciclib Is Active In Multiple Myeloma In Preclinical Studies. Blood, 2010, 116, 2999-2999.	1.4	1
159	Lenalidomide In Combination with the Activin Receptor Type II Murine Fc Protein RAP-011: Preclinical Rationale for a Novel Anti-Myeloma Strategy. Blood, 2010, 116, 4075-4075.	1.4	1
160	Parathyroid Hormone-Induced Modulation of the Bone Marrow Microenvironment Reduces Leukemic Stem Cells in Murine Chronic Myelogenous-Leukemia-Like Disease Via a TGFbeta-Dependent Pathway. Blood, 2011, 118, 1670-1670.	1.4	1
161	Differential Regulation of Myeloid Leukemias by the Bone Marrow Microenvironment. Blood, 2012, 120, 1245-1245.	1.4	1
162	Clonal-Heterogeneity and Propensity for Bone Metastasis in Multiple Myeloma. Blood, 2014, 124, 3370-3370.	1.4	1

#	Article	IF	CITATIONS
163	Proximity-Based Single Cell Analysis of the Bone Marrow Niche Identifies Interleukin-18 As a Quiescence Regulator of Early Hematopoietic Progenitors. Blood, 2014, 124, 773-773.	1.4	1
164	Distinct Bone Marrow Blood Vessels Differentially Regulate Normal and Malignant Hematopoietic Stem and Progenitor Cells. Blood, 2015, 126, 664-664.	1.4	1
165	What is the role of the bone marrow microenvironment in AML?. Best Practice and Research in Clinical Haematology, 2021, 34, 101328.	1.7	1
166	A Regulatory Network Between Notch and AKT Signaling Pathways Differentially Controls Megakaryocyte Development From Hematopoietic Stem or Committed Progenitor Cells Blood, 2009, 114, 384-384.	1.4	1
167	Ex Vivo expansion Of Umbilical Cord Blood CD34+ Cells Under Hypoxic Conditions Using Novel Compound#999 With Cytokines. Blood, 2013, 122, 4508-4508.	1.4	1
168	Thymus Regeneration Is Dependent on Distinct Mesenchymal Stromal Cell Populations. Blood, 2019, 134, 586-586.	1.4	1
169	A Specific Mesenchymal Stem and Progenitor Cell (MSPC) Subpopulation with a Multi-Potent Gene Signature Is Transcriptionally Altered in the Setting of Myelodysplastic Syndrome (MDS) in Primary Human Bone Marrow Aspirates. Blood, 2019, 134, 1708-1708.	1.4	1
170	Spatial Transcriptomics Reveals DPP4 As Novel Marker of a More Proliferative Phenotype in Early AML Progression. Blood, 2021, 138, 3310-3310.	1.4	1
171	AIDS lymphomas: beginning of an EPOCH?. Blood, 2003, 101, 4647-4647.	1.4	Ο
172	T-cell differentiation: Notch another step. Blood, 2003, 102, 2316-2316.	1.4	0
173	Deep diving in the blood stem cellâ€ome. EMBO Journal, 2014, 33, 2281-2282.	7.8	Ο
174	Global transcriptome analysis of T-competent progenitors in the bone marrow. Genomics Data, 2015, 5, 100-102.	1.3	0
175	A Novel System for the Study of Neutrophil-Fungal Interactions. Open Forum Infectious Diseases, 2016, 3, .	0.9	Ο
176	The skeletal stem cell. , 2021, , 75-98.		0
177	In memory of Paul Sylvain Frenette, a pioneering explorer of the hematopoietic stem cell niche who left far too early. Experimental Hematology, 2021, , .	0.4	Ο
178	Unique Expression of Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1/CD31) on Embryonic Stem Cells Blood, 2004, 104, 3914-3914.	1.4	0
179	Specialized Bone Marrow Endothelium Defines Microdomains for Tumor and Stem Cell Engraftment Blood, 2004, 104, 663-663.	1.4	0
180	Hematopoietic Stem Cell Engraftment in Bone Marrow Is Dependent upon Gsα Blood, 2006, 108, 857-857.	1.4	0

#	Article	IF	CITATIONS
181	Neither Germinal Center (GC) vs Non-Germinal Center (Non-GC) Phenotype nor FOXP1 Expression Correlate with Outcome in AlDS-Associated Diffuse Large B-Cell Lymphoma (DLBCL): Study of Patients from AIDS Malignancies Consortium Trials 010 and 034 Blood, 2006, 108, 2023-2023.	1.4	0
182	CCL3 Impairs Osteoblast Function Via Downregulation of Osteocalcin Blood, 2009, 114, 739-739.	1.4	0
183	Regulation of Rho GTPases by the Hematopoietic-Specific Guanine Nucleotide Exchange Factor Vav1 Is Critical for Hematopoietic Stem Cell Retention in the Endosteal Niche and Engraftment Blood, 2009, 114, 80-80.	1.4	0
184	Parathyroid Hormone-Induced Modulation of the Bone Marrow Microenvironment Inhibits the Development of Murine Chronic Myelogenous-Leukemia-Like Disease. Blood, 2010, 116, 937-937.	1.4	0
185	Role of BMP Signaling In the Anemia of Chronic Disease. Blood, 2010, 116, 2043-2043.	1.4	0
186	Vav1 Regulates Perivascular Homing, Bone Marrow Retention and Engraftment of Hematopoietic Stem Cells Via SDF1a Signaling. Blood, 2010, 116, 400-400.	1.4	0
187	Real-Time RT-PCR Analysis of Individual Osteolineage Cells within the Hematopoietic Stem Cell Niche. Blood, 2011, 118, 2389-2389.	1.4	0
188	Identifying Small Molecules That Overcome HoxA9-Mediated Differentiation Arrest in Acute Myeloid Leukemia. Blood, 2012, 120, 3513-3513.	1.4	0
189	Human and Murine β-Defensin-Derived Peptides Induce Rapid Mobilization Of Murine Hematopoietic Stem and Progenitor Cells Via Activation Of CXCR4 Signaling and CXCL12 Release. Blood, 2013, 122, 890-890.	1.4	0
190	BCR-ABL1+ Leukemic Stem Cells Are Dependent On Selectin-Ligand Interactions For Engraftment In The Bone Marrow Niche. Blood, 2013, 122, 2703-2703.	1.4	0
191	Loss of Notch Receptor-Ligand Engagement Leads to Increased Hematopoietic Stem and Progenitor Cell Egress and Mobilization. Blood, 2014, 124, 652-652.	1.4	0
192	Heterogeneity in the Making of Blood. Blood, 2015, 126, SCI-27-SCI-27.	1.4	0
193	Rapid Mobilization Reveals a Highly Engraftable Hematopoietic Stem Cell. Blood, 2016, 128, 368-368.	1.4	Ο
194	Osteoblastic Cell-Derived Extracellular Vesicles Transfer Small RNAs That Alter the Physiology of Hematopoietic Cells <i>In Vivo</i> . Blood, 2017, 130, 93-93.	1.4	0
195	Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance. SSRN Electronic Journal, 0, , .	0.4	Ο
196	Inhibition of S-Adenosylmethionine Synthesis Promotes Erythropoiesis Via Epigenetic Modifications. Blood, 2021, 138, 1991-1991.	1.4	0
197	Myeloid-Biased HSC Require Semaphorin4a from the Bone Marrow Niche for Self-Renewal Under Stress and Life-Long Persistence. Blood, 2021, 138, 3283-3283.	1.4	0
198	Generation of Definitive Engraftable Hematopoietic Stem Cells from Human Embryonic Stem Cells. , 0, , 23-35.		0

#	Article	IF	CITATIONS
199	Abstract 982: A new transcriptional metastatic signature predicts survival in clear cell renal cell carcinoma. Cancer Research, 2022, 82, 982-982.	0.9	0