Orad Reshef

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2307609/publications.pdf

Version: 2024-02-01

77 2,125 24 42 papers citations h-index g-index

79 79 79 2332 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Lattice-plasmon-induced asymmetric transmission in two-dimensional chiral arrays. APL Photonics, 2022, 7, .	5.7	4
2	Designing high-performance propagation-compressing spaceplates using thin-film multilayer stacks. Optics Express, 2022, 30, 2197.	3.4	9
3	Conference demographics and footprint changed by virtual platforms. Nature Sustainability, 2022, 5, 149-156.	23.7	47
4	Fourier-Engineered Plasmonic Lattice Resonances. ACS Nano, 2022, 16, 5696-5703.	14.6	11
5	Cross-polarized surface lattice resonances in a rectangular lattice plasmonic metasurface. Optics Letters, 2022, 47, 2105.	3.3	3
6	Relaxed Phase-Matching Constraints in Zero-Index Waveguides. Physical Review Letters, 2022, 128, .	7.8	11
7	To what extent can space be compressed? Bandwidth limits of spaceplates. Optica, 2022, 9, 738.	9.3	11
8	Enhanced Nonlinear Optical Responses of Layered Epsilon-near-Zero Metamaterials at Visible Frequencies. ACS Photonics, 2021, 8, 125-129.	6.6	51
9	Photon Acceleration Using a Time-Varying Epsilon-near-Zero Metasurface. ACS Photonics, 2021, 8, 716-720.	6.6	24
10	Ultra-high-Q resonances in plasmonic metasurfaces. Nature Communications, 2021, 12, 974.	12.8	212
11	Reply to †Physical limitations on broadband invisibility based on fast-light media'. Nature Communications, 2021, 12, 2800.	12.8	3
12	An optic to replace space and its application towards ultra-thin imaging systems. Nature Communications, 2021, 12, 3512.	12.8	52
13	Tunable Doppler shift using a time-varying epsilon-near-zero thin film near 1550  nm. Optics Letters, 2021, 46, 3444.	3.3	6
14	Adiabatic Frequency Conversion Using a Time-Varying Epsilon-Near-Zero Metasurface. Nano Letters, 2021, 21, 5907-5913.	9.1	30
15	Ultra-High-Q (â‰^2400) Lattice Resonances in Plasmonic Metasurface for Flat Optics. , 2021, , .		O
16	Plasmonic Metasurfaces with Ultra-High-Q (â‰^2400) Lattice Resonances for Sensing, LiDAR Nanolasing and Imaging. , 2021, , .		0
17	Broadband bandpass THz filters with stacked metasurfaces. , 2021, , .		O
18	Multimode Surface Lattice Resonance Hybridization. , 2021, , .		0

#	Article	IF	CITATIONS
19	Enhanced Nonlinear Response in ENZ Metamaterials Realized Using Metal-Dielectric Multilayer Stacks. , 2021, , .		0
20	Non-local Field Effects in Nonlinear Plasmonic Metasurfaces. , 2020, , .		1
21	Fundamental Radiative Processes in Near-Zero-Index Media of Various Dimensionalities. ACS Photonics, 2020, 7, 1965-1970.	6.6	32
22	Plasmonic metasurfaces with high-Q nanocavities. , 2020, , .		0
23	Integration of periodic, subâ€wavelength structures in siliconâ€onâ€insulator photonic device design. IET Optoelectronics, 2020, 14, 125-135.	3.3	7
24	How to organize an online conference. Nature Reviews Materials, 2020, 5, 253-256.	48.7	62
25	Broadband frequency translation through time refraction in an epsilon-near-zero material. Nature Communications, 2020, 11, 2180.	12.8	121
26	Plasmonic Nanoantenna-Enhanced Adiabatic Wavelength Conversion using a Time-varying Epsilon-near-zero-based Metasurface., 2020,,.		2
27	Ultra-High-Q Resonance in a Plasmonic Metasurface. , 2020, , .		1
28	Ultrafast modulation of the spectral filtering properties of a THz metasurface. Optics Express, 2020, 28, 20296.	3.4	17
29	Omni-directional phase matching in integrated zero-index media. , 2020, , .		0
30	Ultra-High-Q Resonance in a Plasmonic Metasurface. , 2020, , .		2
31	Engineering Local Fields in Nonlinear Plasmonic Metasurfaces -INVITED. EPJ Web of Conferences, 2020, 238, 11002.	0.3	0
32	Nonlinear plasmonic metasurfaces using multiresonant surface lattice resonances. , 2020, , .		1
33	Manipulating the flow of light using Dirac-cone zero-index metamaterials. Reports on Progress in Physics, 2019, 82, 012001.	20.1	41
34	Ultrabroadband 3D invisibility with fast-light cloaks. Nature Communications, 2019, 10, 4859.	12.8	30
35	Efficient Nonlinear Metasurfaces using Multiresonant High-Q Plasmonic Arrays. , 2019, , .		1
36	Multiresonant High- <i>Q</i> Plasmonic Metasurfaces. Nano Letters, 2019, 19, 6429-6434.	9.1	63

#	Article	IF	CITATIONS
37	Nonlinear optical effects in epsilon-near-zero media. Nature Reviews Materials, 2019, 4, 535-551.	48.7	345
38	Multi-Resonant High-Q Plasmonic Metasurface. , 2019, , .		0
39	Towards Efficient Nonlinear Plasmonic Metasurfaces. , 2019, , .		O
40	Frequency conversion through time refraction using an epsilon-near-zero material. , 2019, , .		1
41	High-Q resonance train in a plasmonic metasurface. , 2019, , .		1
42	Resonance Splitting and Enhanced Optical Nonlinearities in ITO-based Epsilon-near-zero Metasurface with Cross-shaped Nanoantennas. , 2019, , .		3
43	Efficient nonlinear metasurfaces by using multiresonant high-Q plasmonic arrays. Journal of the Optical Society of America B: Optical Physics, 2019, 36, E30.	2.1	39
44	Waveguide-to-waveguide directional coupling beyond a free space wavelength. , 2019, , .		1
45	All-Polymer Integrated Optical Resonators by Roll-to-Roll Nanoimprint Lithography. ACS Photonics, 2018, 5, 1839-1845.	6.6	44
46	Patterning and reduction of graphene oxide using femtosecond-laser irradiation. Optics and Laser Technology, 2018, 103, 340-345.	4.6	11
47	Integrated Zero-Index Metamaterials and Waveguides. , 2018, , .		O
48	Extracting loss from asymmetric resonances in micro-ring resonators. Journal of Optics (United) Tj ETQq0 0 0 rgBT	lOverlock 2.2	10 Tf 50 30
49	Direct Observation of Phase-Free Propagation in a Silicon Waveguide. ACS Photonics, 2017, 4, 2385-2389.	6.6	42
50	On-chip all-dielectric fabrication-tolerant zero-index metamaterials. Optics Express, 2017, 25, 8326.	3.4	33
51	Monolithic CMOS-compatible zero-index metamaterials. Optics Express, 2017, 25, 12381.	3.4	30
52	Beyond the perturbative description of the nonlinear optical response of low-index materials. Optics Letters, 2017, 42, 3225.	3.3	71
53	Nonlinear Optics in TiO2 Nanoscale Waveguides. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 449-449.	0.3	1
54	Integrated Super-Couplers Based on Zero-Index Metamaterials. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 473-474.	0.3	2

#	Article	IF	Citations
55	Transition metamaterials for local-field enhancement. , 2017, , .		1
56	Long-range phase-free propagation in a dielectric metasurface., 2017,,.		0
57	Integrated zero-index supercouplers. , 2017, , .		1
58	Integrated zero-index waveguides. , 2017, , .		0
59	Lossless Integrated Dirac-Cone Metamaterials. , 2016, , .		5
60	Efficient photon triplet generation in integrated nanophotonic waveguides. Optics Express, 2016, 24, 9932.	3.4	23
61	Phase-Matching in Dirac-Cone-Based Zero-Index Metamaterials. , 2016, , .		1
62	CMOS-Compatible Zero-Index Metamaterial. , 2016, , .		3
63	Polycrystalline anatase titanium dioxide microring resonators with negative thermo-optic coefficient. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 2288.	2.1	33
64	Multimode phase-matched third-harmonic generation in sub-micrometer-wide anatase TiO_2 waveguides. Optics Express, 2015, 23, 7832.	3.4	30
65	On-chip zero-index metamaterials. Nature Photonics, 2015, 9, 738-742.	31.4	327
66	On-chip Super-robust All-dielectric Zero-Index Material. , 2015, , .		0
67	Polycrystalline Anatase Micro-Ring Resonators at Telecommunication Wavelengths. , 2014, , .		0
68	Third Harmonic Generation in Polycrystalline Anatase Titanium Dioxide Nanowaveguides. , 2014, , .		1
69	Femtosecond laser induced surface melting and nanojoining for plasmonic circuits. Proceedings of SPIE, 2013, , .	0.8	7
70	Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths. Optics Express, 2013, 21, 18582.	3.4	41
71	Optimizing anatase-TiO2deposition for low-loss planar waveguides. , 2013, , .		3
72	Submicrometer-wide amorphous and polycrystalline anatase TiO_2 waveguides for microphotonic devices. Optics Express, 2012, 20, 23821.	3.4	107

#	Article	IF	CITATIONS
73	Reply to "Comment on â€~The puzzling reliability of the Force Concept Inventory,' by N. Lasry, S. Rosenfield, H. Dedic, A. Dahan, and O. Reshef [Am. J. Phys. 79, 909–912 (2011)]― American Journal of Physics, 2012, 80, 350-350.	0.7	0
74	Submicrometer-width TiO2 waveguides. , 2012, , .		0
75	The puzzling reliability of the Force Concept Inventory. American Journal of Physics, 2011, 79, 909-912.	0.7	52
76	Losing it: The Influence of Losses on Individuals' Normalized Gains. AIP Conference Proceedings, 2010, , .	0.4	6
77	The spectrum of early career physics. Nature Reviews Physics, O, , .	26.6	0