Wang Renming

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/23075/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stepping piezoelectric actuators with large working stroke for nano-positioning systems: A review. Sensors and Actuators A: Physical, 2019, 292, 39-51.	4.1	173
2	A piezoelectric-driven rotary actuator by means of inchworm motion. Sensors and Actuators A: Physical, 2013, 194, 269-276.	4.1	122
3	A Piezoelectric-Driven Linear Actuator by Means of Coupling Motion. IEEE Transactions on Industrial Electronics, 2018, 65, 2458-2466.	7.9	121
4	Triboelectric Nanogenerator for Ocean Wave Graded Energy Harvesting and Condition Monitoring. ACS Nano, 2021, 15, 16368-16375.	14.6	64
5	A Novel Piezoelectric Inchworm Actuator Driven by One Channel Direct Current Signal. IEEE Transactions on Industrial Electronics, 2021, 68, 2015-2023.	7.9	56
6	A Low-Frequency Structure-Control-Type Inertial Actuator Using Miniaturized Bimorph Piezoelectric Vibrators. IEEE Transactions on Industrial Electronics, 2019, 66, 6179-6188.	7.9	51
7	A self-adapting linear inchworm piezoelectric actuator based on a permanent magnets clamping structure. Mechanical Systems and Signal Processing, 2019, 132, 429-440.	8.0	50
8	Design and experimental research of a novel inchworm type piezo-driven rotary actuator with the changeable clamping radius. Review of Scientific Instruments, 2013, 84, 015006.	1.3	29
9	A Novel Linear Walking Type Piezoelectric Actuator Based on the Parasitic Motion of Flexure Mechanisms. IEEE Access, 2019, 7, 25908-25914.	4.2	28
10	Piezoelectric inertial rotary actuator operating in two-step motion mode for eliminating backward motion. Applied Physics Letters, 2020, 117, .	3.3	26
11	A walking type piezoelectric actuator based on the parasitic motion of obliquely assembled PZT stacks. Smart Materials and Structures, 2021, 30, 085030.	3.5	26
12	A linear inertial piezoelectric actuator using a single bimorph vibrator. Smart Materials and Structures, 2019, 28, 115020.	3.5	23
13	Performance comparison of two motion modes of a piezoelectric inertial linear motor and its potential application in cell manipulation. Mechanical Systems and Signal Processing, 2021, 157, 107743.	8.0	23
14	Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy. Electrophoresis, 2020, 41, 1425-1432.	2.4	21
15	High-voltage output triboelectric nanogenerator with DC/AC optimal combination method. Nano Research, 2022, 15, 3239-3245.	10.4	20
16	Development of a Portable Electrical Impedance Tomography Device for Online Thrombus Detection in Extracorporeal-Circulation Equipment. IEEE Sensors Journal, 2021, 21, 3653-3659.	4.7	17
17	Design and Experimental Performance of a Novel Piezoelectric Inertial Actuator for Magnetorheological Fluid Control Using Permanent Magnet. IEEE Access, 2019, 7, 43573-43580.	4.2	15
18	A parasitic type piezoelectric actuator with an asymmetrical flexure hinge mechanism. Microsystem Technologies, 2020, 26, 917-924.	2.0	15

WANG RENMING

#	Article	IF	CITATIONS
19	A two-fixed-end beam piezoelectric inertial actuator using electromagnet controlled magnetorheological fluid (MRF) for friction regulation. Smart Materials and Structures, 2020, 29, 065011.	3.5	15
20	Quantitative detection and evaluation of thrombus formation based on electrical impedance spectroscopy. Biosensors and Bioelectronics, 2019, 141, 111437.	10.1	14
21	An inertial piezoelectric rotary actuator characterized by the motion without rollback. Smart Materials and Structures, 2020, 29, 095015.	3.5	14
22	A parasitic type piezoelectric actuator with the asymmetrical trapezoid flexure mechanism. Sensors and Actuators A: Physical, 2020, 309, 111907.	4.1	12
23	Quantitative Measurement and Evaluation of Red Blood Cell Aggregation in Normal Blood Based on a Modified Hanai Equation. Sensors, 2019, 19, 1095.	3.8	11
24	An inertial piezoelectric rotary actuator based on active friction regulation using magnetic force. Smart Materials and Structures, 2021, 30, 095014.	3.5	11
25	The Development of Piezoelectric Inchworm Actuator Clamped With Magnetorheological Elastomer and Its Potential Application in Brain–Computer Interface Implantation. IEEE Transactions on Industrial Electronics, 2023, 70, 4018-4026.	7.9	7
26	Theoretical modeling and dynamic characteristics analysis of piezoelectric inertial actuator. International Journal of Mechanical Sciences, 2022, 225, 107363.	6.7	7
27	Antimicrobial Resistance Risk Assessment Models and Database System for Animal-Derived Pathogens. Antibiotics, 2020, 9, 829.	3.7	6
28	A Piezoelectric Linear Actuator Controlled by the Reversed-Phase Connection of Two Bimorphs. IEEE Access, 2021, 9, 45845-45852.	4.2	5
29	A Prediction Method for Animal-Derived Drug Resistance Trend Using a Grey-BP Neural Network Combination Model. Antibiotics, 2021, 10, 692.	3.7	5
30	A Novel Bionic Piezoelectric Actuator Based on the Walrus Motion. Journal of Bionic Engineering, 2021, 18, 1117-1125.	5.0	5
31	Quantitative Evaluation of Burn Injuries Based on Electrical Impedance Spectroscopy of Blood with a Seven-Parameter Equivalent Circuit. Sensors, 2021, 21, 1496.	3.8	4
32	An Integrated Piezoelectric Inertial Actuator Controlled by Cam Mechanisms. IEEE Access, 2021, 9, 152756-152764.	4.2	3
33	Principle, Design and Future of Inchworm Type Piezoelectric Actuators. , 0, , .		2
34	Quantitative Measurement of the Erythrocyte Sedimentation Based on Electrical Impedance Spectroscopy with Modified HANAI Theory and the Multi-frequency Parameter Xc. IEEE Sensors Journal, 2021, , 1-1.	4.7	2
35	Effect of an Anti-Mixing Cover on the Back-Flow in the Separation Chamber of a Cyclone Separator. IEEE Access, 2019, 7, 108504-108512.	4.2	1
36	An Improved Algorithm GVSPM-F for Electrical Impedance Tomography. IEEE Access, 2021, 9, 12592-12600.	4.2	1

#	Article	IF	CITATIONS
37	An Optimization Algorithm H-GVSPM for Electrical Impedance Tomography. IEEE Sensors Journal, 2023, 23, 4518-4526.	4.7	1