Christopher Cramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/23071/publications.pdf

Version: 2024-02-01

529 papers 61,142 citations

98 h-index 226 g-index

585 all docs

585 docs citations

585 times ranked 42308 citing authors

#	Article	IF	CITATIONS
1	Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. Journal of Physical Chemistry B, 2009, 113, 6378-6396.	1.2	12,475
2	Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113, 184-215.	0.8	2,561
3	Implicit Solvation Models:  Equilibria, Structure, Spectra, and Dynamics. Chemical Reviews, 1999, 99, 2161-2200.	23.0	2,123
4	Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics, $2009, 11, 10757$.	1.3	1,431
5	Consistent van der Waals Radii for the Whole Main Group. Journal of Physical Chemistry A, 2009, 113, 5806-5812.	1.1	1,325
6	Aqueous Solvation Free Energies of Ions and Ionâ $^{\circ}$ Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton. Journal of Physical Chemistry B, 2006, 110, 16066-16081.	1.2	856
7	Parametrized Models of Aqueous Free Energies of Solvation Based on Pairwise Descreening of Solute Atomic Charges from a Dielectric Medium. The Journal of Physical Chemistry, 1996, 100, 19824-19839.	2.9	828
8	Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation. Journal of Physical Chemistry B, 2011, 115, 14556-14562.	1.2	828
9	Destruction of chemical warfare agents using metal–organic frameworks. Nature Materials, 2015, 14, 512-516.	13.3	790
10	Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases. Journal of Chemical Theory and Computation, 2012, 8, 527-541.	2.3	661
11	Pairwise solute descreening of solute charges from a dielectric medium. Chemical Physics Letters, 1995, 246, 122-129.	1.2	648
12	Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers. Journal of the American Chemical Society, 2015, 137, 14019-14022.	6.6	593
13	A Universal Approach to Solvation Modeling. Accounts of Chemical Research, 2008, 41, 760-768.	7.6	536
14	Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. Journal of Chemical Physics, 2021, 155, 084801.	1.2	518
15	A Hafnium-Based Metal–Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO ₂ Fixation and Regioselective and Enantioretentive Epoxide Activation. Journal of the American Chemical Society, 2014, 136, 15861-15864.	6.6	470
16	General parameterized SCF model for free energies of solvation in aqueous solution. Journal of the American Chemical Society, 1991, 113, 8305-8311.	6.6	457
17	Single-Ion Solvation Free Energies and the Normal Hydrogen Electrode Potential in Methanol, Acetonitrile, and Dimethyl Sulfoxide. Journal of Physical Chemistry B, 2007, 111, 408-422.	1.2	452
18	An SCF Solvation Model for the Hydrophobic Effect and Absolute Free Energies of Aqueous Solvation. Science, 1992, 256, 213-217.	6.0	439

#	Article	IF	Citations
19	The restricted active space followed by second-order perturbation theory method: Theory and application to the study of CuO2 and Cu2O2 systems. Journal of Chemical Physics, 2008, 128, 204109.	1.2	430
20	Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. Journal of Chemical Theory and Computation, 2007, 3, 2011-2033.	2.3	426
21	NWChem: Past, present, and future. Journal of Chemical Physics, 2020, 152, 184102.	1.2	425
22	Performance of SM6, SM8, and SMD on the SAMPL1 Test Set for the Prediction of Small-Molecule Solvation Free Energies. Journal of Physical Chemistry B, 2009, 113, 4538-4543.	1,2	418
23	SM6:Â A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Soluteâ^'Water Clusters. Journal of Chemical Theory and Computation, 2005, 1, 1133-1152.	2.3	414
24	Computational electrochemistry: prediction of liquid-phase reduction potentials. Physical Chemistry Chemical Physics, 2014, 16, 15068-15106.	1.3	407
25	Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants. Journal of Physical Chemistry A, 2006, 110, 2493-2499.	1.1	405
26	Divergence between Organometallic and Single-Electron-Transfer Mechanisms in Copper(II)-Mediated Aerobic C–H Oxidation. Journal of the American Chemical Society, 2013, 135, 9797-9804.	6.6	396
27	Model for Aqueous Solvation Based on Class IV Atomic Charges and First Solvation Shell Effects. The Journal of Physical Chemistry, 1996, 100, 16385-16398.	2.9	358
28	Mononuclear Cu–O2 Complexes: Geometries, Spectroscopic Properties, Electronic Structures, and Reactivity. Accounts of Chemical Research, 2007, 40, 601-608.	7.6	337
29	AM1-SM2 and PM3-SM3 parameterized SCF solvation models for free energies in aqueous solution. Journal of Computer-Aided Molecular Design, 1992, 6, 629-666.	1.3	316
30	Variable character of O–O and M-O bonding in side-on ($\hat{A}2$) 1:1 metal complexes of O2. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3635-3640.	3.3	315
31	Class IV charge models: A new semiempirical approach in quantum chemistry. Journal of Computer-Aided Molecular Design, 1995, 9, 87-110.	1.3	309
32	The MIDI! basis set for quantum mechanical calculations of molecular geometries and partial charges. Theoretica Chimica Acta, 1996, 93, 281-301.	0.9	298
33	Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 10294-10301.	6.6	282
34	Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 1977-1982.	6.6	273
35	New Class IV Charge Model for Extracting Accurate Partial Charges from Wave Functions. Journal of Physical Chemistry A, 1998, 102, 1820-1831.	1.1	259
36	Structural, Spectroscopic, and Theoretical Characterization of Bis($\hat{l}\frac{1}{4}$ -oxo)dicopper Complexes, Novel Intermediates in Copper-Mediated Dioxygen Activation. Journal of the American Chemical Society, 1996, 118, 11555-11574.	6.6	255

#	Article	IF	Citations
37	The Ruâ^'Hbpp Water Oxidation Catalyst. Journal of the American Chemical Society, 2009, 131, 15176-15187.	6.6	253
38	Structures of Nonheme Oxoiron(IV) Complexes from X-ray Crystallography, NMR Spectroscopy, and DFT Calculations. Angewandte Chemie - International Edition, 2005, 44, 3690-3694.	7.2	247
39	Quantum-Chemical Characterization of the Properties and Reactivities of Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 6051-6111.	23.0	241
40	Equilibrium Mercury Isotope Fractionation between Dissolved Hg(II) Species and Thiol-Bound Hg. Environmental Science & Environ	4.6	230
41	A Carbon-Free Sandwich Complex [(P5)2Ti]2 Science, 2002, 295, 832-834.	6.0	229
42	Defining the Proton Topology of the Zr ₆ -Based Metal–Organic Framework NU-1000. Journal of Physical Chemistry Letters, 2014, 5, 3716-3723.	2.1	228
43	Metal–Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000- and UiO-66-Supported Iridium Complexes. Journal of the American Chemical Society, 2015, 137, 7391-7396.	6.6	228
44	Quantum Mechanical Continuum Solvation Models for Ionic Liquids. Journal of Physical Chemistry B, 2012, 116, 9122-9129.	1.2	225
45	Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature. ACS Central Science, 2017, 3, 31-38.	5.3	222
46	An Exceptionally Stable Metal–Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation. Journal of the American Chemical Society, 2016, 138, 14720-14726.	6.6	211
47	Computation of equilibrium oxidation and reduction potentials for reversible and dissociative electron-transfer reactions in solution. Theoretical Chemistry Accounts, 2004, 112, 217.	0.5	206
48	Practical computation of electronic excitation in solution: vertical excitation model. Chemical Science, 2011, 2, 2143.	3.7	202
49	Extension of the platform of applicability of the SM5.42R universal solvation model. Theoretical Chemistry Accounts, 1999, 103, 9-63.	0.5	197
50	Computational electrochemistry: aqueous one-electron oxidation potentials for substituted anilines. Physical Chemistry Chemical Physics, 2000, 2, 1231-1239.	1.3	194
51	Rapid Câ€"H Bond Activation by a Monocopper(III)â€"Hydroxide Complex. Journal of the American Chemical Society, 2011, 133, 17602-17605.	6.6	191
52	Quantum chemical conformational analysis of glucose in aqueous solution. Journal of the American Chemical Society, 1993, 115, 5745-5753.	6.6	185
53	Bergman, Aza-Bergman, and Protonated Aza-Bergman Cyclizations and Intermediate 2,5-Arynes:Â Chemistry and Challenges to Computation. Journal of the American Chemical Society, 1998, 120, 6261-6269.	6.6	185
54	Relative stability of alternative chair forms and hydroxymethyl conformations of \hat{l}^2 -d-glucopyranose. Carbohydrate Research, 1995, 276, 219-251.	1.1	184

#	Article	IF	CITATIONS
55	Dioxygen Activation at a Single Copper Site:Â Structure, Bonding, and Mechanism of Formation of 1:1 Cuâ "O2Adducts. Journal of the American Chemical Society, 2004, 126, 16896-16911.	6.6	184
56	Snapshots of Dioxygen Activation by Copper: $\hat{a} \in \infty$ The Structure of a 1:1 Cu/O2 Adduct and Its Use in Syntheses of Asymmetric Bis($\hat{l}^{1}\!\!/4$ -oxo) Complexes. Journal of the American Chemical Society, 2002, 124, 10660-10661.	6.6	181
57	Theoretical Models on the Cu2O2 Torture Track:  Mechanistic Implications for Oxytyrosinase and Small-Molecule Analogues. Journal of Physical Chemistry A, 2006, 110, 1991-2004.	1.1	179
58	Synthesis and structural and spectroscopic characterization of mononuclear copper nitrosyl complexes: models for nitric oxide adducts of copper proteins and copper-exchanged zeolites. Journal of the American Chemical Society, 1993, 115, 11285-11298.	6.6	172
59	Generalized Born Solvation Model SM12. Journal of Chemical Theory and Computation, 2013, 9, 609-620.	2.3	170
60	Quantum Chemical Conformational Analysis of 1,2-Ethanediol: Correlation and Solvation Effects on the Tendency To Form Internal Hydrogen Bonds in the Gas Phase and in Aqueous Solution. Journal of the American Chemical Society, 1994, 116, 3892-3900.	6.6	168
61	PM3-SM3: A general parameterization for including aqueous solvation effects in the PM3 molecular orbital model. Journal of Computational Chemistry, 1992, 13, 1089-1097.	1.5	166
62	Universal Quantum Mechanical Model for Solvation Free Energies Based on Gas-Phase Geometries. Journal of Physical Chemistry B, 1998, 102, 3257-3271.	1.2	166
63	Combining Wave Function Methods with Density Functional Theory for Excited States. Chemical Reviews, 2018, 118, 7249-7292.	23.0	166
64	A reinvestigation of singlet benzyne thermochemistry predicted by CASPT2, coupled-cluster and density functional calculations. Chemical Physics Letters, 1997, 277, 311-320.	1.2	165
65	A porous, electrically conductive hexa-zirconium(<scp>iv</scp>) metal–organic framework. Chemical Science, 2018, 9, 4477-4482.	3.7	158
66	Design of a Metal–Organic Framework with Enhanced Back Bonding for Separation of N ₂ and CH ₄ . Journal of the American Chemical Society, 2014, 136, 698-704.	6.6	157
67	Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr ₆ Nodes of UiO-66 and NU-1000. Journal of the American Chemical Society, 2016, 138, 15189-15196.	6.6	155
68	Hybrid Density Functional Methods Empirically Optimized for the Computation of 13C and 1H Chemical Shifts in Chloroform Solution. Journal of Chemical Theory and Computation, 2006, 2, 1085-1092.	2.3	151
69	Molecular Modeling of Environmentally Important Processes: Reduction Potentials. Journal of Chemical Education, 2004, 81, 596.	1.1	150
70	Tuning Zr ₆ Metal–Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts. ACS Catalysis, 2016, 6, 235-247.	5 . 5	150
71	Structure and Dynamics of Zr ₆ O ₈ Metal–Organic Framework Node Surfaces Probed with Ethanol Dehydration as a Catalytic Test Reaction. Journal of the American Chemical Society, 2018, 140, 3751-3759.	6.6	150
72	Computational Design of Functionalized Metal–Organic Framework Nodes for Catalysis. ACS Central Science, 2018, 4, 5-19.	5. 3	148

#	Article	IF	CITATIONS
73	A Hafnium-Based Metal–Organic Framework as a Nature-Inspired Tandem Reaction Catalyst. Journal of the American Chemical Society, 2015, 137, 13624-13631.	6.6	137
74	Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 9292-9304.	6.6	131
75	A New Intermediate in Copper Dioxygen Chemistry: Breaking the O-O Bond To Form a {Cu2(.muO)2}2+Core. Journal of the American Chemical Society, 1995, 117, 8865-8866.	6.6	126
76	Computational Electrochemistry: The Aqueous Ru3+ \mid Ru2+Reduction Potential. Journal of Physical Chemistry C, 2007, 111, 5783-5799.	1.5	126
77	Mechanistic Insights into the Alternating Copolymerization of Epoxides and Cyclic Anhydrides Using a (Salph)AlCl and Iminium Salt Catalytic System. Journal of the American Chemical Society, 2017, 139, 15222-15231.	6.6	125
78	Ab Initio Characterization of Phenylnitrenium and Phenylcarbene: Remarkably Different Properties for Isoelectronic Species. Journal of the American Chemical Society, 1994, 116, 9787-9788.	6.6	123
79	Factors controlling relative stability of anomers and hydroxymethyl conformers of glucopyranose. Journal of Computational Chemistry, 1998, 19, 1111-1129.	1.5	122
80	Quantum chemical characterization of the mechanism of an iron-based water oxidation catalyst. Chemical Science, 2012, 3, 1293.	3.7	122
81	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angewandte Chemie - International Edition, 2018, 57, 1949-1953.	7.2	121
82	Density functional solvation model based on CM2 atomic charges. Journal of Chemical Physics, 1998, 109, 9117-9133.	1.2	120
83	Universal Solvation Model Based on the Generalized Born Approximation with Asymmetric Descreening. Journal of Chemical Theory and Computation, 2009, 5, 2447-2464.	2.3	120
84	Improved methods for semiempirical solvation models. Journal of Computational Chemistry, 1995, 16, 422-440.	1.5	119
85	Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition. Chemistry of Materials, 2015, 27, 4772-4778.	3.2	116
86	Isotopic Probing of Molecular Oxygen Activation at Copper(I) Sites. Journal of the American Chemical Society, 2007, 129, 14697-14709.	6.6	114
87	Self-Sorting Chiral Subcomponent Rearrangement During Crystallization. Journal of the American Chemical Society, 2007, 129, 8774-8780.	6.6	114
88	Trimethylenemethane. Comparison of Multiconfiguration Self-Consistent Field and Density Functional Methods for a Non-Kekulé Hydrocarbon. The Journal of Physical Chemistry, 1996, 100, 9664-9670.	2.9	113
89	On the Nature of Actinide– and Lanthanide–Metal Bonds in Heterobimetallic Compounds. Chemistry - A European Journal, 2011, 17, 8424-8433.	1.7	112
90	Site-Selective Copper-Catalyzed Azidation of Benzylic C–H Bonds. Journal of the American Chemical Society, 2020, 142, 11388-11393.	6.6	112

#	Article	IF	CITATIONS
91	Effects of Thioether Substituents on the O2Reactivity of \hat{l}^2 -Diketiminateâ 'Cu(I) Complexes:Â Probing the Role of the Methionine Ligand in Copper Monooxygenases. Journal of the American Chemical Society, 2006, 128, 3445-3458.	6.6	111
92	Structural Transitions of the Metal-Oxide Nodes within Metal–Organic Frameworks: On the Local Structures of NU-1000 and UiO-66. Journal of the American Chemical Society, 2016, 138, 4178-4185.	6.6	108
93	Copper-catalysed benzylic C–H coupling with alcohols via radical relay enabled by redox buffering. Nature Catalysis, 2020, 3, 358-367.	16.1	108
94	Parameterization of charge model 3 for AM1, PM3, BLYP, and B3LYP. Journal of Computational Chemistry, 2003, 24, 1291-1304.	1.5	107
95	The <i>cis</i> a€{Ru ^{II} (bpy) ₂ (H ₂ O) ₂] ²⁺ Waterâ€Oxidation Catalyst Revisited. Angewandte Chemie - International Edition, 2010, 49, 7745-7747.	7.2	107
96	Direct Dynamics for Free Radical Kinetics in Solution:Â Solvent Effect on the Rate Constant for the Reaction of Methanol with Atomic Hydrogen. Journal of Physical Chemistry A, 1999, 103, 4893-4909.	1.1	103
97	Single-Site Organozirconium Catalyst Embedded in a Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 15680-15683.	6.6	103
98	New Universal Solvation Model and Comparison of the Accuracy of the SM5.42R, SM5.43R, C-PCM, D-PCM, and IEF-PCM Continuum Solvation Models for Aqueous and Organic Solvation Free Energies and for Vapor Pressures. Journal of Physical Chemistry A, 2004, 108, 6532-6542.	1.1	100
99	An Anionic, Tetragonal Copper(II) Superoxide Complex. Journal of the American Chemical Society, 2010, 132, 15869-15871.	6.6	100
100	Perturbing the Copper(III)–Hydroxide Unit through Ligand Structural Variation. Journal of the American Chemical Society, 2016, 138, 356-368.	6.6	100
101	Assessment of electronic structure methods for the determination of the ground spin states of Fe(<scp>ii</scp>), Fe(<scp>iii</scp>) and Fe(<scp>iv</scp>) complexes. Physical Chemistry Chemical Physics, 2017, 19, 13049-13069.	1.3	100
102	General Semiempirical Quantum Mechanical Solvation Model for Nonpolar Solvation Free Energies. n-Hexadecane. Journal of the American Chemical Society, 1995, 117, 1057-1068.	6.6	99
103	Ab Initio Characterization of the Isomerism between the \hat{l}_4 - \hat{l} - 2 : \hat{l} - 2 -Peroxo- and Bis(\hat{l}_4 -oxo)dicopper Cores. Journal of the American Chemical Society, 1996, 118, 11283-11287.	6.6	99
104	A universal model for the quantum mechanical calculation of free energies of solvation in non-aqueous solvents. Theoretical Chemistry Accounts, 1997, 98, 85-109.	0.5	99
105	Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chemical Reviews, 2022, 122, 6322-6373.	23.0	99
106	Molecular orbital theory calculations of aqueous solvation effects on chemical equilibria. Journal of the American Chemical Society, 1991, 113, 8552-8554.	6.6	98
107	Pyrene-Edged Fe ^{< sup>_{4< sub>6< sub> Cages Adaptively Reconfigure During Guest Binding. Journal of the American Chemical Society, 2014, 136, 15615-15624.}}	6.6	98
108	Comparison of Real-Time and Linear-Response Time-Dependent Density Functional Theories for Molecular Chromophores Ranging from Sparse to High Densities of States. Journal of Chemical Theory and Computation, 2015, 11, 1102-1109.	2.3	98

#	Article	IF	Citations
109	A Universal Organic Solvation Model. Journal of Organic Chemistry, 1996, 61, 8720-8721.	1.7	97
110	Predicting aqueous solubilities from aqueous free energies of solvation and experimental or calculated vapor pressures of pure substances. Journal of Chemical Physics, 2003, 119, 1661-1670.	1.2	97
111	Tuning the Properties of Zr ₆ O ₈ Nodes in the Metal Organic Framework UiO-66 by Selection of Node-Bound Ligands and Linkers. Chemistry of Materials, 2019, 31, 1655-1663.	3.2	97
112	Full valence complete active space SCF, multireference CI, and density functional calculations of 1A1—3B1 singlet—triplet gaps for the valence-isoelectronic series BH-2, CH2, NH+2, AlH-2, SiH2, PH+2, GaH-2, GeH2, and AsH+2. Chemical Physics Letters, 1994, 218, 387-394.	1.2	96
113	Experimental and quantum chemical characterization of the water oxidation cycle catalysed by [Rull(damp)(bpy)(H2O)]2+. Chemical Science, 2012, 3, 2576.	3.7	96
114	Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution. Carbohydrate Research, 1997, 298, 1-14.	1.1	94
115	Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models. Journal of Computer-Aided Molecular Design, 2010, 24, 317-333.	1.3	94
116	Beyond the Active Site: Tuning the Activity and Selectivity of a Metal–Organic Framework-Supported Ni Catalyst for Ethylene Dimerization. Journal of the American Chemical Society, 2018, 140, 11174-11178.	6.6	94
117	Universal reaction field model based on ab initio Hartree–Fock theory. Chemical Physics Letters, 1998, 288, 293-298.	1.2	93
118	Copper(I)â^î±-Ketocarboxylate Complexes:  Characterization and O ₂ Reactions That Yield Copperâ^Oxygen Intermediates Capable of Hydroxylating Arenes. Journal of the American Chemical Society, 2007, 129, 14190-14192.	6.6	93
119	Resonance Raman Spectroscopy as a Probe of the Bis($\hat{l}\frac{1}{4}$ -oxo)dicopper Core. Journal of the American Chemical Society, 2000, 122, 792-802.	6.6	91
120	Theoretical Investigation of Enolborane Addition to α-Heteroatom-Substituted Aldehydes. Relevance of the Cornforth and Polar Felkinâ´Anh Models for Asymmetric Induction. Journal of the American Chemical Society, 2006, 128, 2920-2930.	6.6	91
121	Experimental and Theoretical Investigations into the Unusual Regioselectivity of 4,5-, 5,6-, and 6,7-Indole Aryne Cycloadditions. Organic Letters, 2010, 12, 96-99.	2.4	91
122	Density functional calculations of the influence of substitution on singlet–triplet gaps in carbenes and vinylidenes. Journal of Physical Organic Chemistry, 1997, 10, 755-767.	0.9	90
123	Crystal Engineering Using the Unconventional Hydrogen Bond. Synthesis, Structure, and Theoretical Investigation of Cyclotrigallazane. Journal of the American Chemical Society, 1998, 120, 521-531.	6.6	90
124	Characterization of a 1:1 Cuâ^'O2Adduct Supported by an Anilido Imine Ligand. Inorganic Chemistry, 2005, 44, 6989-6997.	1.9	90
125	Quantum chemical studies of molecules incorporating a Cu2O22+ core. Coordination Chemistry Reviews, 2009, 253, 723-753.	9.5	90
126	Free Radical Mechanisms for the Treatment of Methyl tert-Butyl Ether (MTBE) via Advanced Oxidation/Reductive Processes in Aqueous Solutions. Chemical Reviews, 2009, 109, 1302-1345.	23.0	90

#	Article	IF	CITATIONS
127	Anomeric and reverse anomeric effects in the gas phase and aqueous solution. Journal of Organic Chemistry, 1992, 57, 7034-7043.	1.7	89
128	Use of calculated quantum chemical properties as surrogates for solvatochromic parameters in structure-activity relationships. Accounts of Chemical Research, 1993, 26, 599-605.	7.6	89
129	Density functional theory: excited states and spin annihilation. Chemical Physics Letters, 1995, 245, 165-170.	1.2	89
130	What causes aqueous acceleration of the Claisen rearrangement?. Journal of the American Chemical Society, 1992, 114, 8794-8799.	6.6	88
131	Reductive Dechlorination of Hexachloroethane in the Environment: Mechanistic Studies via Computational Electrochemistry. Journal of the American Chemical Society, 2001, 123, 2025-2031.	6.6	88
132	Sinterâ€Resistant Platinum Catalyst Supported by Metal–Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 909-913.	7.2	88
133	Electrostatic component of solvation: Comparison of SCRF continuum models. Journal of Computational Chemistry, 2003, 24, 284-297.	1.5	86
134	Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol. Nature Communications, 2020, 11, 5849.	5.8	86
135	A Semiempirical Quantum Mechanical Solvation Model for Solvation Free Energies in All Alkane Solvents. The Journal of Physical Chemistry, 1995, 99, 7137-7146.	2.9	85
136	Ab Initio Characterization of [H3N·BH3]2, [H3N·AlH3]2, and [H3N·GaH3]2. Inorganic Chemistry, 1997, 36, 5358-5362.	1.9	85
137	Electronic Interactions in Aryne Biradicals. Ab Initio Calculations of the Structures, Thermochemical Properties, and Singletâr'Triplet Splittings of the Didehydronaphthalenes. Journal of Physical Chemistry A, 1998, 102, 9072-9081.	1.1	82
138	meta andpara substitution effects on the electronic state energies and ring-expansion reactivities of phenylnitrenes. International Journal of Quantum Chemistry, 2001, 85, 492-508.	1.0	82
139	A Selfâ€Improved Waterâ€Oxidation Catalyst: Is One Site Really Enough?. Angewandte Chemie - International Edition, 2014, 53, 205-209.	7.2	82
140	Quantum Chemical Characterization of Structural Single Fe(II) Sites in MIL-Type Metal–Organic Frameworks for the Oxidation of Methane to Methanol and Ethane to Ethanol. ACS Catalysis, 2019, 9, 2870-2879.	5 . 5	82
141	Factors Controlling Regioselectivity in the Reduction of Polynitroaromatics in Aqueous Solution. Environmental Science & Envir	4.6	80
142	Theoretical Characterization of End-On and Side-On Peroxide Coordination in Ligated Cu2O2 Models. Journal of Physical Chemistry A, 2006, 110, 11557-11568.	1.1	80
143	From Transition Metals to Lanthanides to Actinides: Metal-Mediated Tuning of Electronic Properties of Isostructural Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13246-13251.	1.9	80
144	Structure, Dynamics, and Reactivity for Light Alkane Oxidation of Fe(II) Sites Situated in the Nodes of a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 18142-18151.	6.6	80

#	Article	IF	Citations
145	Correlation and solvation effects on heterocyclic equilibria in aqueous solution. Journal of the American Chemical Society, 1993, 115, 8810-8817.	6.6	79
146	Understanding and Estimating Membrane/Water Partition Coefficients:Â Approaches To Derive Quantitative Structure Property Relationships. Chemical Research in Toxicology, 1998, 11, 847-854.	1.7	79
147	Reductive Dechlorination of 1,1,2,2-Tetrachloroethane. Environmental Science &	4.6	79
148	Thermochemistry of Simple Enols and Enol Cation Radicals Revisited. A G2(MP2) ab Initio Study. Journal of the American Chemical Society, 1995, 117, 12243-12253.	6.6	78
149	Two-response-time model based on CM2/INDO/S2 electrostatic potentials for the dielectric polarization component of solvatochromic shifts on vertical excitation energies. International Journal of Quantum Chemistry, 2000, 77, 264-280.	1.0	78
150	HF/6-31G* energy surfaces for disaccharide analogs. Journal of Computational Chemistry, 2001, 22, 65-78.	1.5	78
151	Computationally Guided Discovery of a Catalytic Cobalt-Decorated Metal–Organic Framework for Ethylene Dimerization. Journal of Physical Chemistry C, 2016, 120, 23576-23583.	1.5	78
152	Reduction of Nitrous Oxide to Dinitrogen by a Mixed Valent Tricopper-Disulfido Cluster. Journal of the American Chemical Society, 2009, 131, 2812-2814.	6.6	77
153	Enhanced Activity of Heterogeneous Pd(II) Catalysts on Acid-Functionalized Metal–Organic Frameworks. ACS Catalysis, 2019, 9, 5383-5390.	5.5	77
154	Parametrized Model for Aqueous Free Energies of Solvation Using Geometry-Dependent Atomic Surface Tensions with Implicit Electrostatics. Journal of Physical Chemistry B, 1997, 101, 7147-7157.	1.2	76
155	Resolution of a Challenge for Solvation Modeling: Calculation of Dicarboxylic Acid Dissociation Constants Using Mixed Discrete–Continuum Solvation Models. Journal of Physical Chemistry Letters, 2012, 3, 1437-1442.	2.1	76
156	Understanding the Mechanism of Polymerization of $\hat{l}\mu$ -Caprolactone Catalyzed by Aluminum Salen Complexes. Inorganic Chemistry, 2013, 52, 13692-13701.	1.9	76
157	Length-Dependent Nanotransport and Charge Hopping Bottlenecks in Long Thiophene-Containing Ï€-Conjugated Molecular Wires. Journal of the American Chemical Society, 2015, 137, 15732-15741.	6.6	76
158	Heteroatomic substitution in aromatic $\ddot{l}f$ biradicals: the six pyridynes. Chemical Physics Letters, 1998, 287, 320-326.	1.2	75
159	Charge Model 4 and Intramolecular Charge Polarization. Journal of Chemical Theory and Computation, 2007, 3, 2046-2054.	2.3	75
160	Active Site Models for the Cu _A Site of Peptidylglycine \hat{l} ±-Hydroxylating Monooxygenase and Dopamine \hat{l} 2-Monooxygenase. Inorganic Chemistry, 2012, 51, 9465-9480.	1.9	75
161	Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis. ACS Catalysis, 2019, 9, 8481-8502.	5 . 5	75
162	The interface of electronic structure and dynamics for reactions in solution. International Journal of Quantum Chemistry, 1998, 70, 887-896.	1.0	74

#	Article	IF	CITATIONS
163	Structures of Reactive Nitrenium Ions:Â Time-Resolved Infrared Laser Flash Photolysis and Computational Studies of SubstitutedN-Methyl-N-arylnitrenium Ions. Journal of the American Chemical Society, 2000, 122, 8271-8278.	6.6	74
164	Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires. Journal of the American Chemical Society, 2017, 139, 10410-10418.	6.6	74
165	omnisol:  Fast Prediction of Free Energies of Solvation and Partition Coefficients. Journal of Organic Chemistry, 1998, 63, 4305-4313.	1.7	73
166	Continuum Solvation Models: Classical and Quantum Mechanical Implementations. Reviews in Computational Chemistry, 2007, , 1-72.	1.5	73
167	Impact of Solvent Polarity on N-Heterocyclic Carbene-Catalyzed Î ² -Protonations of Homoenolate Equivalents. Organic Letters, 2009, 11, 3942-3945.	2.4	73
168	Roles of Monomer Binding and Alkoxide Nucleophilicity in Aluminum-Catalyzed Polymerization of $\hat{\mu}$ ϕ Caprolactone. Macromolecules, 2012, 45, 5387-5396.	2.2	73
169	Ab Initio Molecular Orbital and Density Functional Studies on the Solvolysis of Sarin andO,S-Dimethyl Methylphosphonothiolate, a VX-like Compound. Journal of Organic Chemistry, 2005, 70, 8649-8660.	1.7	72
170	Systematic comparison of the benzynes, pyridynes, and pyridynium cations and characterization of the Bergman cyclization of Z-but-1-en-3-yn-1-yl isonitrile to the meta diradical 2,4-pyridyne. International Journal of Mass Spectrometry, 2000, 201, 1-15.	0.7	71
171	Aggregation of Alkyllithiums in Tetrahydrofuran. Journal of Organic Chemistry, 2007, 72, 2962-2966.	1.7	71
172	Generating Cu ^{II} –Oxyl/Cu ^{III} –Oxo Species from Cu ^I –αâ€Ketocarboxylate Complexes and O ₂ : In Silico Studies on Ligand Effects and CHâ€Activation Reactivity. Chemistry - A European Journal, 2009, 15, 4886-4895.	1.7	70
173	Excited State Absorption from Real-Time Time-Dependent Density Functional Theory. Journal of Chemical Theory and Computation, 2015, 11 , $4294-4303$.	2.3	70
174	Interfacial Electronic Structure in Thiolate Self-Assembled Monolayers:Â Implication for Molecular Electronics. Journal of the American Chemical Society, 2000, 122, 4700-4707.	6.6	69
175	Effects of Electron-Deficient β-Diketiminate and Formazan Supporting Ligands on Copper(I)-Mediated Dioxygen Activation. Inorganic Chemistry, 2009, 48, 4514-4523.	1.9	69
176	Reply to Comment on "A Universal Approach to Solvation Modeling― Accounts of Chemical Research, 2009, 42, 493-497.	7.6	69
177	High Tg aliphatic polyesters by the polymerization of spirolactide derivatives. Polymer Chemistry, 2010, 1, 870.	1.9	69
178	Molecular Rhodium Complexes Supported on the Metal-Oxide-Like Nodes of Metal Organic Frameworks and on Zeolite HY: Catalysts for Ethylene Hydrogenation and Dimerization. ACS Applied Materials & Dimerization. ACS Applied Materials & Dimerization. ACS Applied Materials & Dimerization.	4.0	69
179	Electronic Absorption Spectra and Solvatochromic Shifts by the Vertical Excitation Model: Solvated Clusters and Molecular Dynamics Sampling. Journal of Physical Chemistry B, 2015, 119, 958-967.	1.2	68
180	Mechanisms of Photoisomerization and Water-Oxidation Catalysis of Mononuclear Ruthenium(II) Monoaquo Complexes. Inorganic Chemistry, 2013, 52, 6354-6364.	1.9	67

#	Article	IF	CITATIONS
181	Hypervalent Iodine(III) Compounds as Biaxial Halogen Bond Donors. Journal of the American Chemical Society, 2020, 142, 8633-8640.	6.6	67
182	Polarization of the nucleic acid bases in aqueous solution. Chemical Physics Letters, 1992, 198, 74-80.	1.2	64
183	MIDI! basis set for silicon, bromine, and iodine. Theoretical Chemistry Accounts, 1998, 99, 192-196.	0.5	64
184	Benchmark RI-MP2 database of nucleic acid base trimers: performance of different density functional models for prediction of structures and binding energies. Physical Chemistry Chemical Physics, 2007, 9, 5000.	1.3	64
185	Electronic Structure of Oxidized Complexes Derived fromcis-[Rull(bpy)2(H2O)2]2+and Its Photoisomerization Mechanism. Inorganic Chemistry, 2011, 50, 11134-11142.	1.9	64
186	A computational study of solvent effects on the conformation of dopamine. Journal of the American Chemical Society, 1992, 114, 8226-8231.	6.6	63
187	Singletâ^'Triplet Splittings and 1,2-Hydrogen Shift Barriers for Methylphenylborenide, Methylphenylcarbene, and Methylphenylnitrenium in the Gas Phase and Solution. What a Difference a Charge Makes. Journal of the American Chemical Society, 1997, 119, 12338-12342.	6.6	63
188	Constructing and evaluating energy surfaces of crystalline disaccharides. Journal of Molecular Graphics and Modelling, 2000, 18, 95-107.	1.3	63
189	Hydroxo-Bridged Dicopper(II,III) and -(III,III) Complexes: Models for Putative Intermediates in Oxidation Catalysis. Journal of the American Chemical Society, 2014, 136, 7269-7272.	6.6	63
190	Atomistic Approach toward Selective Photocatalytic Oxidation of a Mustard-Gas Simulant: A Case Study with Heavy-Chalcogen-Containing PCN-57 Analogues. ACS Applied Materials & Diterfaces, 2017, 9, 19535-19540.	4.0	63
191	Perspective on Foundations of Solvation Modeling: The Electrostatic Contribution to the Free Energy of Solvation. Journal of Chemical Theory and Computation, 2008, 4, 877-887.	2.3	62
192	Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2018, 10, 18435-18439.	4.0	62
193	Architectural Control of Isosorbide-Based Polyethers via Ring-Opening Polymerization. Journal of the American Chemical Society, 2019, 141, 5107-5111.	6.6	62
194	Mechanism of the Reactions of Alcohols with $\langle i \rangle o \langle i \rangle$ -Benzynes. Journal of the American Chemical Society, 2014, 136, 13657-13665.	6.6	61
195	Design Optimization of 1,3-Diphospha-2,4-diboretane Diradicals. Angewandte Chemie - International Edition, 2002, 41, 3894-3896.	7.2	60
196	Heterobimetallic Dioxygen Activation: Â Synthesis and Reactivity of Mixed Cuâ^'Pd and Cuâ^'Pt Bis ($\hat{l}\frac{1}{4}$ -oxo) Complexes. Journal of the American Chemical Society, 2007, 129, 7990-7999.	6.6	60
197	Generalized-active-space pair-density functional theory: an efficient method to study large, strongly correlated, conjugated systems. Chemical Science, 2017, 8, 2741-2750.	3.7	60
198	Intramolecular $[4+2]$ cycloadditions of nitroalkenes with olefins. Journal of the American Chemical Society, 1986, 108, 1306-1307.	6.6	59

#	Article	IF	Citations
199	The Nature of Electronic Contact in Self-Assembled Monolayers for Molecular Electronics:Â Evidence for Strong Coupling. Journal of Physical Chemistry B, 1999, 103, 8915-8919.	1.2	59
200	Substituent Effects on Nitrogen Isotope Fractionation During Abiotic Reduction of Nitroaromatic Compounds. Environmental Science & Environmental Scien	4.6	59
201	Uniform Treatment of Solute–Solvent Dispersion in the Ground and Excited Electronic States of the Solute Based on a Solvation Model with State-Specific Polarizability. Journal of Chemical Theory and Computation, 2013, 9, 3649-3659.	2.3	59
202	Density-Functional Calculations of Radicals and Diradicals. ACS Symposium Series, 1996, , 402-422.	0.5	58
203	Stereoelectronic Effects on Molecular Geometries and State-Energy Splittings of Ligated Monocopper Dioxygen Complexes. Journal of Physical Chemistry A, 2008, 112, 3754-3767.	1.1	58
204	Quantum chemical characterization of the mechanism of a supported cobalt-based water oxidation catalyst. Dalton Transactions, 2012, 41, 12213.	1.6	58
205	Influence of Hydroxyl Substitution on Benzyne Properties. Quantum Chemical Characterization of the Didehydrophenols. Journal of the American Chemical Society, 2001, 123, 923-928.	6.6	57
206	Bulky Guanidinato Nickel(I) Complexes: Synthesis, Characterization, Isomerization, and Reactivity Studies. Chemistry - A European Journal, 2011, 17, 1294-1303.	1.7	57
207	Quantum Chemical Characterization of Cycloaddition Reactions between the Hydroxyallyl Cation and Dienes of Varying Nucleophilicityâ€. Journal of Organic Chemistry, 1998, 63, 5523-5532.	1.7	56
208	Performance of SM8 on a Test To Predict Small-Molecule Solvation Free Energies. Journal of Physical Chemistry B, 2008, 112, 8651-8655.	1.2	56
209	Reduced and quenched polarizabilities of interior atoms in molecules. Chemical Science, 2013, 4, 2349.	3.7	56
210	Charge Transport in 4 nm Molecular Wires with Interrupted Conjugation: Combined Experimental and Computational Evidence for Thermally Assisted Polaron Tunneling. ACS Nano, 2016, 10, 4372-4383.	7.3	56
211	Polarization Effects in Aqueous and Nonaqueous Solutions. Journal of Chemical Theory and Computation, 2007, 3, 2055-2067.	2.3	55
212	Variability of Nitrogen Isotope Fractionation during the Reduction of Nitroaromatic Compounds with Dissolved Reductants. Environmental Science & Environmental Envir	4.6	55
213	Selectivity in Ring-Opening Metathesis Polymerization of <i>Z</i> -Cyclooctenes Catalyzed by a Second-generation Grubbs Catalyst. ACS Catalysis, 2012, 2, 2547-2556.	5.5	55
214	Conformational analysis of cellobiose by electronic structure theories. Carbohydrate Research, 2012, 350, 68-76.	1.1	55
215	Mechanistic Studies of $\hat{l}\mu$ -Caprolactone Polymerization by (salen)AlOR Complexes and a Predictive Model for Cyclic Ester Polymerizations. ACS Catalysis, 2016, 6, 1215-1224.	5.5	55
216	Mechanistic Study of Cp*Co ^{III} /Rh ^{III} -Catalyzed Directed Câ€"H Functionalization with Diazo Compounds. Journal of Organic Chemistry, 2017, 82, 1195-1204.	1.7	55

#	Article	IF	CITATIONS
217	Mechanisms for Hydrogen-Atom Abstraction by Mononuclear Copper(III) Cores: Hydrogen-Atom Transfer or Concerted Proton-Coupled Electron Transfer?. Journal of the American Chemical Society, 2019, 141, 17236-17244.	6.6	55
218	Structure and Dynamics of Phosphorus(V)-Stabilized Carbanions: A Comparison of Theoretical, Crystallographic, and Solution Structures. Journal of the American Chemical Society, 1994, 116, 2437-2447.	6.6	54
219	Solvation Model for Chloroform Based on Class IV Atomic Charges. Journal of Physical Chemistry B, 1997, 101, 2061-2069.	1.2	54
220	Universal solvation model based on conductor-like screening model., 2000, 21, 340-366.		54
221	Characterization of the structure and reactivity of monocopper-oxygen complexes supported by \hat{l}^2 -diketiminate and anilido-imine ligands. Journal of Computational Chemistry, 2006, 27, 1950-1961.	1.5	54
222	Construction of Pourbaix Diagrams for Rutheniumâ€Based Waterâ€Oxidation Catalysts by Density Functional Theory. Angewandte Chemie - International Edition, 2012, 51, 12810-12814.	7.2	54
223	Free Energies of Solvation with Surface, Volume, and Local Electrostatic Effects and Atomic Surface Tensions to Represent the First Solvation Shell. Journal of Chemical Theory and Computation, 2010, 6, 1109-1117.	2.3	53
224	Cytochrome P450-catalyzed dealkylation of atrazine by <i>Rhodococcus</i> sp. strain NI86/21 involves hydrogen atom transfer rather than single electron transfer. Dalton Transactions, 2014, 43, 12175-12186.	1.6	53
225	Modeling the Peroxide/Superoxide Continuum in 1:1 Side-on Adducts of O2with Cu. Inorganic Chemistry, 2004, 43, 7281-7283.	1.9	52
226	Reactions of Copper(II)-H2O2 Adducts Supported by Tridentate Bis(2-pyridylmethyl)amine Ligands: Sensitivity to Solvent and Variations in Ligand Substitution. Inorganic Chemistry, 2008, 47, 8222-8232.	1.9	52
227	Refined SMD Parameters for Bromine and Iodine Accurately Model Halogenâ€Bonding Interactions in Solution. Chemistry - A European Journal, 2018, 24, 15983-15987.	1.7	52
228	Hyperconjugation as it affects conformational analysis. Computational and Theoretical Chemistry, 1996, 370, 135-146.	1.5	51
229	Class IV Charge Model for the Self-Consistent Charge Density-Functional Tight-Binding Method. Journal of Physical Chemistry A, 2004, 108, 2545-2549.	1.1	51
230	Intermolecular [4 + 2]-Cycloadditions of Nitroalkenes with Cyclic Olefins. Transformations of Cyclic Nitronates. Helvetica Chimica Acta, 1986, 69, 1971-1989.	1.0	50
231	Quantum Chemical Analysis ofpara-Substitution Effects on the Electronic Structure of Phenylnitrenium lons in the Gas Phase and Aqueous Solution. Journal of the American Chemical Society, 1998, 120, 11778-11783.	6.6	50
232	A class IV charge model for molecular excited states. Journal of Chemical Physics, 1999, 110, 724-733.	1.2	50
233	Aryl- and alkylnitrenium ions: singlet-triplet gaps via AB initio and semi-empirical methods. Tetrahedron Letters, 1992, 33, 1705-1708.	0.7	49
234	Aromatic Hydroxylation Reactivity of a Mononuclear $Cu(II)\hat{a}^{-}$ Alkylperoxo Complex. Journal of the American Chemical Society, 2007, 129, 7248-7249.	6.6	49

#	Article	IF	CITATIONS
235	Mechanism of the Intramolecular Hexadehydro-Diels–Alder Reaction. Journal of Organic Chemistry, 2015, 80, 11744-11754.	1.7	49
236	Structural and Spectroscopic Characterization of Reaction Intermediates Involved in a Dinuclear Co–Hbpp Water Oxidation Catalyst. Journal of the American Chemical Society, 2016, 138, 15291-15294.	6.6	49
237	Superacidity and Superelectrophilicity of BF3â^'Carbonyl Complexes. Journal of the American Chemical Society, 1999, 121, 2633-2634.	6.6	48
238	A QM/MM analysis of the conformations of crystalline sucrose moieties. Carbohydrate Research, 2000, 326, 305-322.	1.1	48
239	Charge Model 3:Â A Class IV Charge Model Based on Hybrid Density Functional Theory with Variable Exchange. Journal of Physical Chemistry A, 2002, 106, 10707-10717.	1.1	48
240	Electronic tuning of \hat{l}^2 -diketiminate ligands with fluorinated substituents: effects on the O2-reactivity of mononuclear Cu(i) complexes. Dalton Transactions, 2006, , 4944-4953.	1.6	48
241	Extension of a Temperature-Dependent Aqueous Solvation Model to Compounds Containing Nitrogen, Fluorine, Chlorine, Bromine, and Sulfur. Journal of Physical Chemistry B, 2008, 112, 3024-3039.	1.2	48
242	Reactivity of (Dicarboxamide)M ^{II} â€"OH (M = Cu, Ni) Complexes â€" Reaction with Acetonitrile to Yield M ^{II} â€"Cyanomethides. European Journal of Inorganic Chemistry, 2013, 2013, 4077-4084.	1.0	48
243	Quantum Chemical Characterization of the Cyclization of the Neocarzinostatin Chromophore to the 1,5-Didehydroindene Biradical. Organic Letters, 1999, 1, 215-218.	2.4	47
244	Quantum Chemical Characterization of Methane Metathesis in L2MCH3(L = H, Cl, Cp, Cp*; $M = Sc$, Y, Lu). Organometallics, 2003, 22, 1682-1689.	1.1	47
245	Reactivity of copper(ii)-alkylperoxo complexes. Dalton Transactions, 2011, 40, 10326.	1.6	47
246	Nickel Catalysts for the Dehydrative Decarbonylation of Carboxylic Acids to Alkenes. Organometallics, 2016, 35, 2391-2400.	1.1	47
247	Quantum chemical characterization of cycloaddition reactions between 1,3-butadiene and oxyallyl cations of varying electrophilicity. Journal of Physical Organic Chemistry, 2000, 13, 176-186.	0.9	46
248	Predicting Aqueous Free Energies of Solvation as Functions of Temperature. Journal of Physical Chemistry B, 2006, 110, 5665-5675.	1.2	46
249	Biological chemistry of organotin compounds: Interactions and dealkylation by dithiols. Journal of Organometallic Chemistry, 2006, 691, 1748-1755.	0.8	46
250	Comparison of various density functional methods for distinguishing stereoisomers based on computed $\langle \sup 1 \langle \sup H $ or $\langle \sup 13 \langle \sup C $ NMR chemical shifts using diastereomeric penam $\hat{1}^2 \hat{a} \in A$ as a test set. Magnetic Resonance in Chemistry, 2007, 45, 819-829.	1.1	46
251	Computational Screening of Bimetal-Functionalized Zr ₆ O ₈ MOF Nodes for Methane C–H Bond Activation. Inorganic Chemistry, 2017, 56, 8739-8743.	1.9	46
252	How Do Different Fluorine Substitution Patterns Affect the Electronic State Energies of Phenylnitrene?. Journal of the American Chemical Society, 1996, 118, 5490-5491.	6.6	45

#	Article	IF	Citations
253	A Semiempirical Quantum Model for Hydrogen-Bonded Nucleic Acid Base Pairs. Journal of Chemical Theory and Computation, 2005, 1, 1275-1285.	2.3	45
254	PdnCO (n= 1,2):Â Accurate Ab Initio Bond Energies, Geometries, and Dipole Moments and the Applicability of Density Functional Theory for Fuel Cell Modeling. Journal of Physical Chemistry B, 2006, 110, 24030-24046.	1.2	45
255	Sorting Out the Relative Contributions of Electrostatic Polarization, Dispersion, and Hydrogen Bonding to Solvatochromic Shifts on Vertical Electronic Excitation Energies. Journal of Chemical Theory and Computation, 2010, 6, 2829-2844.	2.3	45
256	Rate-Determining Attack on Substrate Precedes Rieske Cluster Oxidation during Cis-Dihydroxylation by Benzoate Dioxygenase. Biochemistry, 2015, 54, 4652-4664.	1.2	45
257	Atomic Layer Deposition in a Metal–Organic Framework: Synthesis, Characterization, and Performance of a Solid Acid. Chemistry of Materials, 2017, 29, 1058-1068.	3.2	45
258	Computational prediction of a ground-state triplet arylnitrenium ion and a possible ground-state triplet silylene. Tetrahedron Letters, 1997, 38, 1515-1518.	0.7	44
259	Models for dioxygen activation by the CuB site of dopamine \hat{l}^2 -monooxygenase and peptidylglycine \hat{l}_2 -hydroxylating monooxygenase. Journal of Biological Inorganic Chemistry, 2006, 11, 197-205.	1.1	44
260	pH-Dependent Equilibrium Isotope Fractionation Associated with the Compound Specific Nitrogen and Carbon Isotope Analysis of Substituted Anilines by SPME-GC/IRMS. Analytical Chemistry, 2011, 83, 1641-1648.	3.2	44
261	Single Ni atoms and Ni4 clusters have similar catalytic activity for ethylene dimerization. Journal of Catalysis, 2017, 354, 278-286.	3.1	44
262	Computational screening of MOF-supported transition metal catalysts for activity and selectivity in ethylene dimerization. Journal of Catalysis, 2018, 360, 160-167.	3.1	44
263	More reliable partial atomic charges when using diffuse basis sets. PhysChemComm, 2002, 5, 117.	0.8	43
264	Quantum Chemical Characterization of the Structural and Energetic Properties of HCNâ^'BF3. Journal of Chemical Theory and Computation, 2005, 1, 827-833.	2.3	43
265	Direct Examination of H ₂ O ₂ Activation by a Heme Peroxidase. Journal of the American Chemical Society, 2008, 130, 7802-7803.	6.6	43
266	Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C–H Region of DMSO as a Case Study. Journal of Physical Chemistry B, 2016, 120, 1429-1436.	1.2	43
267	The role of ligand redox non-innocence in ring-opening polymerization reactions catalysed by bis(imino)pyridine iron alkoxide complexes. Dalton Transactions, 2017, 46, 12971-12980.	1.6	43
268	Steric Effects and Solvent Effects on S $<$ sub $>$ N $<$ /sub $>$ 2 Reactions. Journal of Physical Chemistry A, 2009, 113, 9109-9114.	1.1	42
269	Structural Characterization of Pristine and Defective [Zr ₁₂ (μ _{<6>3} (O) ₈ (μ ₃ OH) ₈ (μ ₃ OH) ₈ (μ ₂ Ouble-Node Metal–Organic Framework and Predicted Applications for Single-Site Catalytic Hydrolysis of Sarin, Chemistry of Materials, 2018, 30, 4432-4439.	:/sub>-OH)) ₆
270	Quantum chemical descriptors for linear solvation energy relationships. Computers & Chemistry, 1995, 19, 209-215.	1.2	41

#	Article	IF	Citations
271	Electronic Structures of Aziridenium and Cyclopropylidene. Hypovalent Atoms in Three-Membered Rings. The Journal of Physical Chemistry, 1995, 99, 1462-1465.	2.9	41
272	Mixed metal bis($\hat{l}\frac{1}{4}$ -oxo) complexes with [CuM($\hat{l}\frac{1}{4}$ -O)2]n+(M = Ni(iii) or Pd(ii)) cores. Chemical Communications, 2004, , 1716-1717.	2.2	41
273	Bâr'N Distance Potential of CH3CNâr'BF3Revisited:Â Resolving the Experimentâr'Theory Structure Discrepancy and Modeling the Effects of Low-Dielectric Environments. Journal of Physical Chemistry B, 2007, 111, 1408-1415.	1.2	41
274	Intramolecular [4+2]-cycloadditions of nitroalkenes with olefins. 2. Tetrahedron, 1990, 46, 7373-7392.	1.0	40
275	Prediction of Singletâ^Triplet Splittings for Aryne Biradicals from1H Hyperfine Interactions in Aryl Radicals. Journal of Physical Chemistry A, 1997, 101, 9191-9194.	1.1	40
276	Prediction of Vapor Pressures from Self-Solvation Free Energies Calculated by the SM5 Series of Universal Solvation Models. Journal of Physical Chemistry B, 2000, 104, 4726-4734.	1.2	40
277	Structures and Aggregation States of Fluoromethyllithium and Chloromethyllithium Carbenoids in the Gas Phase and in Ethereal Solvent. Journal of Organic Chemistry, 2002, 67, 7607-7612.	1.7	40
278	Second-order perturbation theory with complete and restricted active space reference functions applied to oligomeric unsaturated hydrocarbons. Physical Chemistry Chemical Physics, 2009, 11, 10964.	1.3	40
279	The solvation, partitioning, hydrogen bonding, and dimerization of nucleotide bases: a multifaceted challenge for quantum chemistry. Physical Chemistry Chemical Physics, 2011, 13, 10908.	1.3	40
280	Water clusters to nanodrops: a tight-binding density functional study. Physical Chemistry Chemical Physics, 2013, 15, 1837-1843.	1.3	40
281	Empirical and Theoretical Insights into the Structural Features and Host–Guest Chemistry of M ₈ L ₄ Tube Architectures. Journal of the American Chemical Society, 2014, 136, 3972-3980.	6.6	40
282	Computational Study of First-Row Transition Metals Supported on MOF NU-1000 for Catalytic Acceptorless Alcohol Dehydrogenation. Journal of Physical Chemistry C, 2016, 120, 24697-24705.	1.5	40
283	Insights into the Structure–Activity Relationships in Metal–Organic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2020, 10, 8995-9005.	5.5	40
284	Analytical energy gradients of a self-consistent reaction-field solvation model based on CM2 atomic charges. Journal of Chemical Physics, 1999, 110, 5503-5513.	1.2	39
285	Wild-Type RNA MicrohelixAla and 3:70 Variants:  Molecular Dynamics Analysis of Local Helical Structure and Tightly Bound Water. Journal of the American Chemical Society, 1999, 121, 7310-7317.	6.6	39
286	Quantum Mechanics Studies of the Intrinsic Conformation of Trehalose. Journal of Physical Chemistry A, 2002, 106, 4988-4997.	1.1	39
287	Electronic structures of [n]-cyclacenes (n = 6–12) and short, hydrogen-capped, carbon nanotubes. Faraday Discussions, 0, 145, 507-521.	1.6	39
288	Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models. Physical Chemistry Chemical Physics, 2013, 15, 13578.	1.3	39

#	Article	IF	Citations
289	C–H Bond Activation on Bimetallic Two-Atom Co-M Oxide Clusters Deposited on Zr-Based MOF Nodes: Effects of Doping at the Molecular Level. ACS Catalysis, 2018, 8, 2864-2869.	5. 5	39
290	Rationalizing the Reactivity of Bimetallic Molecular Catalysts for CO ₂ Hydrogenation. ACS Catalysis, 2018, 8, 4955-4968.	5.5	39
291	Electronic structure and bonding of lanthanoid(iii) carbonates. Physical Chemistry Chemical Physics, 2012, 14, 14822.	1.3	38
292	The fluorophosphoranyl series: theoretical insights into relative stabilities and localization of spin. Journal of the American Chemical Society, 1991, 113, 2439-2447.	6.6	37
293	Experimental and Theoretical Study of Stabilization of Delocalized Forms of Semibullvalenes and Barbaralanes by Dipolar and Polarizable Solvents. Observation of a Delocalized Structure that Is Lower in Free Energy than the Localized Formâ€. Journal of Organic Chemistry, 2005, 70, 3437-3449.	1.7	37
294	Using Nitrogen Isotope Fractionation to Assess the Oxidation of Substituted Anilines by Manganese Oxide. Environmental Science & Environmental Science	4.6	37
295	Competitive oxygen-18 kinetic isotope effects expose O–O bond formation in water oxidation catalysis by monomeric and dimeric ruthenium complexes. Chemical Science, 2014, 5, 1141-1152.	3.7	37
296	Dehalogenation of Aromatics by Nucleophilic Aromatic Substitution. Environmental Science & Emp; Technology, 2014, 48, 10904-10911.	4.6	37
297	Mechanism of the Polymerization of rac-Lactide by Fast Zinc Alkoxide Catalysts. Inorganic Chemistry, 2017, 56, 14366-14372.	1.9	37
298	Electronic Structure and Bonding in Hexacoordinate Silyl–Palladium Complexes Support from the National Science Foundation (CHE-9876792) is gratefully acknowledged Angewandte Chemie - International Edition, 2002, 41, 1953.	7.2	36
299	Benzylic Cations with Triplet Ground States:  Computational Studies of Aryl Carbenium Ions, Silylenium Ions, Nitrenium Ions, and Oxenium Ions Substituted with Meta π Donors. Journal of the American Chemical Society, 2007, 129, 10113-10119.	6.6	36
300	Calculation of the electronic structures and spectra of several organic and inorganic radicals containing aluminum. Computational and Theoretical Chemistry, 1991, 235, 243-262.	1.5	35
301	Effect of meta Electron-Donating Groups on the Electronic Structure of Substituted Phenyl Nitrenium Ions. Journal of the American Chemical Society, 2004, 126, 9661-9668.	6.6	35
302	Density-functional theory and hybrid density-functional theory continuum solvation models for aqueous and organic solvents: universal SM5.43 and SM5.43R solvation models for any fraction of Hartree-Fock exchange. Theoretical Chemistry Accounts, 2005, 113, 107-131.	0.5	35
303	Validation of density functional modeling protocols on experimental bis(μ-oxo)/μ-η2:η2-peroxo dicopper equilibria. Journal of Biological Inorganic Chemistry, 2007, 12, 1221-1234.	1.1	35
304	Structure, Bonding, and Energetic Properties of Nitrileâ^'Borane Complexes: RCNâ^'BH ₃ . Journal of Physical Chemistry A, 2011, 115, 1955-1963.	1.1	35
305	Experimental and Computational Study of a New Wheel-Shaped {[W ₅ O ₂₁] ₃ [(U ^{VI} O ₂) ₂ (μ-O <sub 2012,="" 51,="" 8784-8790.<="" chemistry,="" inorganic="" polyoxometalate.="" td=""><td>)>2k∲sub></td><td>)]∢≆sub>3</td></sub>)> 2 k∲sub>)]∢≆sub>3
306	Influence of First and Second Coordination Environment on Structural Fe(II) Sites in MIL-101 for C–H Bond Activation in Methane. ACS Catalysis, 2021, 11, 579-589.	5.5	35

#	Article	IF	CITATIONS
307	Entropic Contributions to Free Energies of Solvation. The Journal of Physical Chemistry, 1994, 98, 4141-4147.	2.9	34
308	What Controls Partitioning of the Nucleic Acid Bases between Chloroform and Water?. Journal of Physical Chemistry B, 1997, 101, 5084-5088.	1.2	34
309	Prediction of Soil Sorption Coefficients Using a Universal Solvation Model. Environmental Science & En	4.6	34
310	Biradical and Zwitterionic Cyclizations of Oxy-Substituted Enyne-Allenes. Organic Letters, 2001, 3, 1881-1884.	2.4	34
311	Adiabatic connection method for X??+?RX nucleophilic substitution reactions (X?=?F, Cl). Journal of Physical Organic Chemistry, 2002, 15, 712-720.	0.9	34
312	Predicting Adsorption Coefficients at Airâ [*] Water Interfaces Using Universal Solvation and Surface Area Models. Journal of Physical Chemistry B, 2004, 108, 12882-12897.	1.2	34
313	Accurate partial atomic charges for high-energy molecules using class IV charge models with the MIDI! basis set. Theoretical Chemistry Accounts, 2005, 113, 133-151.	0.5	34
314	The Role of Alkoxide Initiator, Spin State, and Oxidation State in Ring-Opening Polymerization of ε-Caprolactone Catalyzed by Iron Bis(imino)pyridine Complexes. Inorganic Chemistry, 2018, 57, 2064-2071.	1.9	34
315	Readily Degradable Aromatic Polyesters from Salicylic Acid. ACS Macro Letters, 2020, 9, 96-102.	2.3	34
316	Engineering Electrical Conductivity in Stable Zirconium-Based PCN-222 MOFs with Permanent Mesoporosity. Chemistry of Materials, 2020, 32, 6137-6149.	3.2	34
317	Quantum Chemical Characterization of the Bonding of N-Heterocyclic Carbenes to Cp2MI Compounds [M = Ce(III), U(III)]. Inorganic Chemistry, 2006, 45, 9442-9447.	1.9	33
318	Large Gasâ^'Solid Structural Differences in Complexes of Haloacetonitriles with Boron Trifluoride. Inorganic Chemistry, 2006, 45, 722-731.	1.9	33
319	Electrochemical Reduction of 2,4-Dinitrotoluene in Aprotic and pH-Buffered Media. Journal of Physical Chemistry C, 2015, 119, 13088-13097.	1.5	33
320	Metal–Organic Frameworks with Metal–Catecholates for O ₂ /N ₂ Separation. Journal of Physical Chemistry C, 2019, 123, 12935-12946.	1.5	33
321	The theoretical structures of neutral, anionic, and lithiated P-allylphosphonic diamide. Journal of Organic Chemistry, 1990, 55, 1806-1813.	1.7	32
322	Efficient Prediction of Isotropic Hyperfine Coupling in Radicals Containing Phosphorus. A Systematic Comparison of UHF, PUHF, and UMP2 Spin Densities. The Journal of Physical Chemistry, 1994, 98, 5024-5033.	2.9	32
323	Helicate Extension as a Route to Molecular Wires. Chemistry - A European Journal, 2008, 14, 7180-7185.	1.7	32
324	What Active Space Adequately Describes Oxygen Activation by a Late Transition Metal? CASPT2 and RASPT2 Applied to Intermediates from the Reaction of O2 with a $Cu(I)$ - $\hat{I}\pm$ -Ketocarboxylate. Journal of Chemical Theory and Computation, 2009, 5, 2967-2976.	2.3	32

#	Article	IF	Citations
325	A Short Yet Very Weak Dative Bond: Structure, Bonding, and Energetic Properties of N ₂ â^BH ₃ . Journal of Physical Chemistry A, 2010, 114, 2628-2636.	1.1	32
326	Predicting paramagnetic ¹ H NMR chemical shifts and state-energy separations in spin-crossover host–guest systems. Physical Chemistry Chemical Physics, 2014, 16, 10620-10628.	1.3	32
327	Influence of Coherent Tunneling and Incoherent Hopping on the Charge Transfer Mechanism in Linear Donor–Bridge–Acceptor Systems. Journal of Physical Chemistry Letters, 2015, 6, 4889-4897.	2.1	32
328	Excited-state absorption in tetrapyridyl porphyrins: comparing real-time and quadratic-response time-dependent density functional theory. Physical Chemistry Chemical Physics, 2017, 19, 27452-27462.	1.3	32
329	A Universal Solvation Model Based on Class IV Charges and the Intermediate Neglect of Differential Overlap for the Spectroscopy Molecular Orbital Method. Journal of Physical Chemistry A, 2000, 104, 2178-2182.	1.1	31
330	Synthesis, Structure, and Electronic Properties of RuN6 Dinuclear Ru-Hbpp Complexes. Inorganic Chemistry, 2012, 51, 320-327.	1.9	31
331	Ab Initio Extension of the AMOEBA Polarizable Force Field to Fe ²⁺ . Journal of Chemical Theory and Computation, 2013, 9, 3062-3071.	2.3	31
332	Excited-State Absorption from Real-Time Time-Dependent Density Functional Theory: Optical Limiting in Zinc Phthalocyanine. Journal of Physical Chemistry Letters, 2016, 7, 1387-1391.	2.1	31
333	Computational Screening of Roles of Defects and Metal Substitution on Reactivity of Different Singlevs Double-Node Metal†Organic Frameworks for Sarin Decomposition. Journal of Physical Chemistry C, 2019, 123, 15157-15165.	1.5	31
334	Reactions of Diarylnitrenium Ions with Electron Rich Alkenes:Â An Experimental and Theoretical Study. Journal of Organic Chemistry, 1997, 62, 2742-2751.	1.7	30
335	Fast approximate methods for calculating nucleic acid base pair interaction energies. Journal of Computational Chemistry, 2003, 24, 57-67.	1.5	30
336	Solvation Effects on Alternative Nucleophilic Substitution Reaction Paths for Chloride/Allyl Chloride and \hat{l}^3 -Methylated Congeners. Journal of Organic Chemistry, 2003, 68, 6375-6386.	1.7	30
337	Demonstration of Tunable Reactivity for meta-Benzynes. Journal of the American Chemical Society, 2005, 127, 5760-5761.	6.6	30
338	High-spin and low-spin iron(ii) complexes with facially-coordinated borohydride ligands. Dalton Transactions, 2006, , 1347-1351.	1.6	30
339	Interaction of a Weakly Acidic Dinitroaromatic with Alkylamines: Avoiding the Meisenheimer Trap. Journal of the American Chemical Society, 2011, 133, 12858-12865.	6.6	30
340	Mechanistic analysis of water oxidation catalyzed by mononuclear copper in aqueous bicarbonate solutions. Catalysis Science and Technology, 2014, 4, 2484-2489.	2.1	30
341	Tuning the properties of metal–organic framework nodes as supports of single-site iridium catalysts: node modification by atomic layer deposition of aluminium. Faraday Discussions, 2017, 201, 195-206.	1.6	30
342	Quantum Chemical Characterization of Singlet and Triplet Didehydroindenes. Journal of Physical Chemistry A, 2001, 105, 2091-2098.	1.1	29

#	Article	IF	CITATIONS
343	Substituent effects on benzyne electronic structures. Journal of Physical Organic Chemistry, 2001, 14, 597-603.	0.9	29
344	Rate-Dependent Carbon and Nitrogen Kinetic Isotope Fractionation in Hydrolysis of Isoproturon. Environmental Science & Environ	4.6	29
345	X-ray Absorption Spectroscopic and Computational Investigation of a Possible S···S Interaction in the [Cu ₃ S ₂] ³⁺ Core. Journal of the American Chemical Society, 2011, 133, 17180-17191.	6.6	29
346	Mechanism of Pd-Catalyzed Decarbonylation of Biomass-Derived Hydrocinnamic Acid to Styrene following Activation as an Anhydride. Inorganic Chemistry, 2016, 55, 4124-4131.	1.9	29
347	Selective Decarbonylation of Fatty Acid Esters to Linear α-Olefins. Organometallics, 2017, 36, 2956-2964.	1.1	29
348	Importance of discriminator base stacking interactions: molecular dynamics analysis of A73 microhelixAla variants. Nucleic Acids Research, 2000, 28, 2527-2534.	6.5	28
349	Singletâ^'Triplet Energy Gaps in Highly Stabilized Nitrenium Ions:  Experimental and Theoretical Study of 1,3-Dimethylbenzotriazolium Ion. Organic Letters, 2000, 2, 2451-2454.	2.4	28
350	Transition state for intramolecular C-H bond cleavage in [(L Cu) 2 (μ-O) 2] 2+ (L) Tj ETQq0 0 0 rgBT /Overlock	₹ 18.╁ 50	462 ₂₈ Td ( =
351	Kinetics and DFT studies on the reaction of copper(II) complexes and H2O2. Journal of Biological Inorganic Chemistry, 2005, 10, 581-590.	1.1	28
352	DNA Base Trimers: Empirical and Quantum Chemical Ab Initio Calculations versus Experiment in Vacuo. Chemistry - A European Journal, 2007, 13, 2067-2077.	1.7	28
353	Thermochemical Factors Affecting the Dehalogenation of Aromatics. Environmental Science & Emp; Technology, 2013, 47, 14194-14203.	4.6	28
354	Why metal–oxos react with dihydroanthracene and cyclohexadiene at comparable rates, despite having different C–H bond strengths. A computational study. Chemical Communications, 2016, 52, 10509-10512.	2.2	28
355	An AB initio study of the $[1,2]$ proton transfer from phosphine oxide to phosphinic acid. Chemical Physics Letters, 1987, 136, 17-21.	1.2	27
356	Application of a universal solvation model to nucleic acid bases: Comparison of semiempirical molecular orbital theory, ab initio Hartree–Fock theory, and density functional theory. Biophysical Chemistry, 1999, 78, 147-155.	1.5	27
357	Early Excited State Dynamics of 6-Styryl-Substituted Pyrylium Salts Exhibiting Dual Fluorescence. Journal of Physical Chemistry A, 2006, 110, 9988-9994.	1.1	27
358	VBSM: A Solvation Model Based on Valence Bond Theory. Journal of Physical Chemistry A, 2008, 112, 12761-12768.	1.1	27
359	Effect of Axially Projected Oligothiophene Pendants and Nitro-Functionalized Diimine Ligands on the Lowest Excited State in Cationic Ir(III) bis-Cyclometalates. Inorganic Chemistry, 2012, 51, 5082-5094.	1.9	27
360	Optimization and prediction of the electron–nuclear dipolar and scalar interaction in ¹ H and ¹³ C liquid state dynamic nuclear polarization. Chemical Science, 2015, 6, 6482-6495.	3.7	27

#	Article	IF	CITATIONS
361	Boosting Photoelectric Conductivity in Porphyrin-Based MOFs Incorporating C ₆₀ . Journal of Physical Chemistry C, 2020, 124, 1878-1887.	1.5	27
362	Computational studies of open-shell phosphorus oxy acids. Pt. 3. Theoretical rotation, pseudorotation, and pseudoinversion barriers for the hydroxyphosphoranyl radical. Journal of the American Chemical Society, 1990, 112, 7965-7972.	6.6	26
363	Molecular orbital calculations on the P?S bond cleavage step in the hydroperoxidolysis of nerve agent VX. Journal of Physical Organic Chemistry, 1998, 11, 232-240.	0.9	26
364	2,3-Didehydro-1,4-benzoquinone. A quantum thermochemical study. Journal of the Chemical Society Perkin Transactions II, 1999, , 2273-2283.	0.9	26
365	Parametrization of a Universal Solvation Model for Molecules Containing Silicon. Journal of Physical Chemistry A, 2002, 106, 5160-5168.	1.1	26
366	How useful are vibrational frequencies of isotopomeric O2 fragments for assessing local symmetry? Some simple systems and the vexing case of a galactose oxidase model. Journal of Biological Inorganic Chemistry, 2005, 10, 778-789.	1.1	26
367	Evaluation of various DFT protocols for computing 1H and 13C chemical shifts to distinguish stereoisomers: diastereomeric 2-, 3-, and 4-methylcyclohexanols as a test set. Journal of Physical Organic Chemistry, 2007, 20, 345-354.	0.9	26
368	Reactions of Copper(II)-Phenol Systems with O2: Models for TPQ Biosynthesis in Copper Amine Oxidases. Inorganic Chemistry, 2011, 50, 1633-1647.	1.9	26
369	l̂²-Oxo-l̂-diimine Nickel Complexes: A Comparison of Tautomeric Active Species in Ethylene Polymerization Catalysis. Organometallics, 2016, 35, 2076-2085.	1.1	26
370	Mechanistic Insight into the Stereoselective Cationic Polymerization of Vinyl Ethers. Journal of the American Chemical Society, 2020, 142, 17175-17186.	6.6	26
371	Multireference configuration interaction and second-order perturbation theory calculations for the $1\ 3A\hat{a}\in^3$, $1\ 1A\hat{a}\in^3$, and $1\ 1A\hat{a}\in^2$ electronic states of vinylnitrene and vinylphosphinidene. Chemical Physics Letters, 1996, 260, 7-14.	1.2	25
372	Density Functional Characterization of Methane Metathesis with Cp*2MR (M = Sc, Y, Lu; R = Me,) Tj ETQq0 0 0 r	gBŢ./Over	·lock_10 Tf 50
373	Characterization of Coâ^'C Bonding in Dichlorovinylcobaloxime Complexes. Inorganic Chemistry, 2007, 46, 1645-1654.	1.9	25
374	Quantum chemical and matrix-IR characterization of CH ₃ CN–BCl ₃ : a complex with two distinct minima along the B–N bond potential. Physical Chemistry Chemical Physics, 2014, 16, 16480-16491.	1.3	25
375	Quantum Chemical Characterization of Single Molecule Magnets Based on Uranium. Journal of Physical Chemistry A, 2017, 121, 1726-1733.	1.1	25
376	Characterization of the Fleeting Hydroxoiron(III) Complex of the Pentadentate TMC-py Ligand. Inorganic Chemistry, 2017, 56, 11129-11140.	1.9	25
377	Quantum Chemical Characterization of the Reactions of Guanine with the Phenylnitrenium Ion. Journal of Organic Chemistry, 2001, 66, 8997-9004.	1.7	24
378	Isotactic Polymers with Alternating Lactic Acid and Oxetane Subunits from the Endoentropic Polymerization of a 14-Membered Ring. Macromolecules, 2004, 37, 5274-5281.	2.2	24

#	Article	IF	Citations
379	N–O bond cleavage mechanism(s) in nitrous oxide reductase. Journal of Biological Inorganic Chemistry, 2012, 17, 687-698.	1.1	24
380	On the factors that control the reactivity of meta-benzynes. Chemical Science, 2014, 5, 2205-2215.	3.7	24
381	Partial Fluorination as a Strategy for Crystal Engineering of Rubrene Derivatives. Crystal Growth and Design, 2017, 17, 643-658.	1.4	24
382	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angewandte Chemie, 2018, 130, 1967-1971.	1.6	24
383	Accurate dipole moments from Hartree–Fock calculations by means of class IV charges. Journal of Chemical Physics, 1999, 111, 885-892.	1.2	23
384	Intramolecular 4 + 3 Cycloadditions. Theoretical and Experimental Evaluation of Endo/Exo Preferences of a Cyclopentenyl Cation. Journal of Organic Chemistry, 2001, 66, 5641-5644.	1.7	23
385	QM/MM distortion energies in di- and oligosaccharides complexed with proteins. International Journal of Quantum Chemistry, 2001, 84, 416-425.	1.0	23
386	Oligomeric Rods of Alkyl- and Hydridogallium Imides. Journal of the American Chemical Society, 2005, 127, 1493-1503.	6.6	23
387	Density Functional Characterization of Methane Metathesis in ansa-[Bis(\hat{i} -5-2-indenyl)methane]ML Complexes [M = Sc, Y, Lu; L = CH3, CH2C(CH3)3]. Organometallics, 2006, 25, 5906-5912.	1.1	23
388	Carbon dioxide reduction by mononuclear ruthenium polypyridyl complexes. Physical Chemistry Chemical Physics, 2011, 13, 19480.	1.3	23
389	Prediction of ¹⁹ F NMR Chemical Shifts in Labeled Proteins: Computational Protocol and Case Study. Molecular Pharmaceutics, 2016, 13, 2376-2386.	2.3	23
390	Water oxidation catalysis with ligand substituted Ru–bpp type complexes. Catalysis Science and Technology, 2016, 6, 5088-5101.	2.1	23
391	Continuum Solvation Models. , 2002, , 1-80.		22
392	Pi Bonding and Negative Hyperconjugation in Mono-, Di-, and Triaminoborane, -alane, -gallane, and -indane. Inorganic Chemistry, 2003, 42, 6691-6700.	1.9	22
393	Uranyl–Peroxide Nanocapsules in Aqueous Solution: Force Field Development and First Applications. Journal of Physical Chemistry C, 2014, 118, 24730-24740.	1.5	22
394	Evidence for a Sigmatropic and an Ionic Pathway in the Winstein Rearrangement. Journal of Organic Chemistry, 2018, 83, 8214-8224.	1.7	22
395	Superradiance and Directional Exciton Migration in Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 1396-1406.	6.6	22
396	Quantum Chemical Analysis of Heteroarylnitrenium lons and Mechanisms for Their Self-Destruction. Journal of the American Chemical Society, 2000, 122, 5588-5596.	6.6	21

#	Article	IF	CITATIONS
397	A Class IV Charge Model for Boron Based on Hybrid Density Functional Theory. Journal of Physical Chemistry A, 2003, 107, 6483-6488.	1.1	21
398	298 K enthalpies of formation of monofluorinated alkanes: theoretical predictions for methyl, ethyl, isopropyl andtert-butyl fluoride. Journal of Physical Organic Chemistry, 2004, 17, 656-664.	0.9	21
399	Interactions of Alkyltin Salts with Biological Dithiols: Dealkylation and Induction of a Regular β-Turn Structure in Peptides. Journal of the American Chemical Society, 2004, 126, 14400-14410.	6.6	21
400	Synthesis and Characterization of the First 2 D Neptunyl Structure Stabilized by Sideâ€on Cation–Cation Interactions. Chemistry - A European Journal, 2013, 19, 2937-2941.	1.7	21
401	Correlating Electronic Structure and Magnetic Anisotropy in Actinide Complexes [An(COT) $<$ sub $>$ 2 $<$ /sub $>$], An $<$ sup $>$ III/IV $<$ /sup $>$ = U, Np, and Pu. Inorganic Chemistry, 2020, 59, 6815-6825.	1.9	21
402	The Molecular Path Approaching the Active Site in Catalytic Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 20090-20094.	6.6	21
403	Quantum mechanical and 13C dynamic NMR study of 1,3-dimethylthiourea conformational isomerizations. Computational and Theoretical Chemistry, 1998 , 425 , $61-68$.	1.5	20
404	When anomeric effects collide. Journal of Computational Chemistry, 2001, 22, 1194-1204.	1.5	20
405	Transition State Analysis of Model and Enzymatic Prenylation Reactions. Journal of the American Chemical Society, 2007, 129, 5796-5797.	6.6	20
406	Efficient Hydrosilylation of Acetophenone with a New Anthraquinonic Amide-Based Iron Precatalyst. Organometallics, 2016, 35, 4083-4089.	1.1	20
407	Why So Slow? Mechanistic Insights from Studies of a Poor Catalyst for Polymerization of μ̂-Caprolactone. Inorganic Chemistry, 2017, 56, 725-728.	1.9	20
408	Sterically Induced Ligand Framework Distortion Effects on Catalytic Cyclic Ester Polymerizations. Inorganic Chemistry, 2018, 57, 3451-3457.	1.9	20
409	Predicted Efficient Visible-Light Driven Water Splitting and Carbon Dioxide Reduction Using Photoredox-Active UiO-NDI Metal Organic Framework. Journal of Physical Chemistry C, 2019, 123, 19778-19785.	1.5	20
410	Computational Prediction and Experimental Verification of ε-Caprolactone Ring-Opening Polymerization Activity by an Aluminum Complex of an Indolide/Schiff-Base Ligand. ACS Catalysis, 2019, 9, 885-889.	5.5	20
411	First Principles Nonadiabatic Excited-State Molecular Dynamics in NWChem. Journal of Chemical Theory and Computation, 2020, 16, 6418-6427.	2.3	20
412	SMx Continuum Models for Condensed Phases. , 2006, , 112-139.		20
413	Anab InitioStudy of Hydrogen Abstraction from Cluster Models for the Diamond Surface. Journal of Physical Chemistry B, 1997, 101, 9574-9580.	1.2	19
414	Universal Solvation Models. ACS Symposium Series, 1998, , 201-219.	0.5	19

#	Article	IF	Citations
415	Paul Dowd and diradicals. Journal of the Chemical Society Perkin Transactions II, 1998, , 1007-1014.	0.9	19
416	Perfluorocarbenes Produced by Thermal Cracking. Barriers to Generation and Rearrangement. Journal of Organic Chemistry, 1999, 64, 4850-4859.	1.7	19
417	Gallium and Indium Hydrazides. Molecular and Electronic Structure of In[N(SiMe3)NMe2]3 and Related Compounds. Inorganic Chemistry, 2003, 42, 3431-3437.	1.9	19
418	Volatilities of Actinide and Lanthanide $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ -Dimethylaminodiboranate Chemical Vapor Deposition Precursors: A DFT Study. Journal of Physical Chemistry C, 2012, 116, 23194-23200.	1.5	19
419	Vibrational Solvatochromism in Vaska's Complex Adducts. Journal of Physical Chemistry A, 2012, 116, 9279-9286.	1.1	19
420	Atomic layer deposition of Cu(<scp>i</scp>) oxide films using Cu(<scp>ii</scp>) bis(dimethylamino-2-propoxide) and water. Dalton Transactions, 2017, 46, 5790-5795.	1.6	19
421	Mechanism of intramolecular C–H bond activation in [(LCu)2(μ-O)2]2+ (L=1,4,7-trialkyl-1,4,7-triazacyclononane): quantum mechanical/molecular mechanical modeling. Computational and Theoretical Chemistry, 2003, 632, 111-120.	1.5	18
422	Modeling Free Energies of Solvation in Olive Oil. Molecular Pharmaceutics, 2008, 5, 1064-1079.	2.3	18
423	Multireference Electronic Structures of Fe–Pyridine(diimine) Complexes over Multiple Oxidation States. Journal of Physical Chemistry A, 2017, 121, 5932-5939.	1.1	18
424	Where is the unpaired electron in the phosphoranyl radicals H3PSâ° and H3PSH?. Chemical Physics Letters, 1993, 202, 297-302.	1.2	17
425	Quantum Chemical Characterization of the Structures, Thermochemical Properties, and Singletâ^'Triplet Splittings of Didehydroquinolinium and Didehydroisoquinolinium Ions. Journal of Physical Chemistry A, 2005, 109, 10348-10356.	1.1	17
426	Exploring the Effects of Node Topology, Connectivity, and Metal Identity on the Binding of Nerve Agents and Their Hydrolysis Products in Metal–Organic Frameworks. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 35657-35675.	4.0	17
427	Modeling the Mechanism of CO2/Cyclohexene Oxide Copolymerization Catalyzed by Chiral Zinc \hat{I}^2 -Diiminates: Factors Affecting Reactivity and Isotacticity. ACS Catalysis, 2020, 10, 8870-8879.	5.5	17
428	Tuning the Conductivity of Hexa-Zirconium(IV) Metal–Organic Frameworks by Encapsulating Heterofullerenes. Chemistry of Materials, 2021, 33, 1182-1189.	3.2	17
429	Quantum chemical characterization of the cytosine: 2-Aminopurine base pair. Journal of Computational Chemistry, 2001, 22, 1167-1179.	1.5	16
430	Prediction of tautomeric preferences and pKa values for oxyluciferin and its constituent heterocycles. Journal of Physical Organic Chemistry, 2003, 16, 336-347.	0.9	16
431	Experimental and Theoretical Characterization of the 3,5-Didehydrobenzoate Anion:Â A Negatively Chargedmeta-Benzyne. Journal of the American Chemical Society, 2003, 125, 131-140.	6.6	16
432	Rapid Quantum Mechanical Models for the Computational Estimation of Câ^'H Bond Dissociation Energies as a Measure of Metabolic Stability. Molecular Pharmaceutics, 2004, 1, 128-135.	2.3	16

#	Article	IF	CITATIONS
433	Mechanisms and Factors Controlling Photoisomerization Equilibria, Ligand Exchange, and Water Oxidation Catalysis Capabilities of Mononuclear RuthenÂɨum(II) Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 3892-3903.	1.0	16
434	Calcium Vapor Adsorption on the Metal–Organic Framework NU-1000: Structure and Energetics. Journal of Physical Chemistry C, 2016, 120, 16850-16862.	1.5	16
435	Modeling Optical Spectra of Large Organic Systems Using Real-Time Propagation of Semiempirical Effective Hamiltonians. Journal of Chemical Theory and Computation, 2017, 13, 4410-4420.	2.3	16
436	Hydrogenative Carbon Dioxide Reduction Catalyzed by Mononuclear Ruthenium Polypyridyl Complexes: Discerning between Electronic and Steric Effects. ACS Catalysis, 2017, 7, 5932-5940.	5.5	16
437	Carboxylate Structural Effects on the Properties and Proton-Coupled Electron Transfer Reactivity of [CuO ₂ CR] ²⁺ Cores. Inorganic Chemistry, 2019, 58, 15872-15879.	1.9	16
438	Intramolecular [4 + 2]-cycloadditions of vinylnitrosonium cations with olefins. Journal of Organic Chemistry, 1987, 52, 877-887.	1.7	15
439	Hyperconjugation vs. apicophilicity in trigonal bipyramidal phosphorus species. Journal of the American Chemical Society, 1993, 115, 9315-9316.	6.6	15
440	Ab initio conformational and stereopermutational analysis of dihydroxyphosphoranyl, H2P(OH)2. Journal of the American Chemical Society, 1994, 116, 723-734.	6.6	15
441	Computational screening of metal–organic frameworks for biogas purification. Molecular Systems Design and Engineering, 2019, 4, 1125-1135.	1.7	15
442	Isomerization and Selective Hydrogenation of Propyne: Screening of Metal–Organic Frameworks Modified by Atomic Layer Deposition. Journal of the American Chemical Society, 2020, 142, 20380-20389.	6.6	15
443	The stereostructures of [1,1′-bicyclohexyl]-2,2′-diones: A reassignment. Tetrahedron Letters, 1986, 27, 3693-3696.	0.7	14
444	Efficient aminoacylation of the tRNAAla acceptor stem: Dependence on the 2:71 base pair. Rna, 2002, 8, 659-670.	1.6	14
445	Quantum Chemical Characterization of Low-Energy States of Calicene in the Gas Phase and in Solution. Journal of Organic Chemistry, 2007, 72, 2823-2831.	1.7	14
446	Experimental and Computational Investigations of Oxygen Reactivity in a Heme and Tyrosyl Radical-Containing Fatty Acid \hat{l} ±-(Di)oxygenase. Biochemistry, 2011, 50, 7375-7389.	1.2	14
447	The Two Faces of Tetramethylcyclam in Iron Chemistry: Distinct Fe–O–M Complexes Derived from [Fe ^{IV} (O _{<i>anti</i>/i>/si>syn/i>})(TMC)] ²⁺ Isomers. Inorganic Chemistry, 2017, 56, 518-527.	1.9	14
448	Accurate Ionization Energies for Mononuclear Copper Complexes Remain a Challenge for Density Functional Theory. ChemPhysChem, 2018, 19, 959-966.	1.0	14
449	Structure and Reactivity of Single-Site Vanadium Catalysts Supported on Metal–Organic Frameworks. ACS Catalysis, 2020, 10, 10051-10059.	5.5	14
450	Monoaza-analogs †of trimethylenemethane. Isoelectronic similarities and differences. Journal of the Chemical Society Perkin Transactions II, 1998, , 1045-1052.	0.9	13

#	Article	IF	CITATIONS
451	Factors Controlling Selectivity in the Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes by Monoaryloxide Pyrrolide Imido Alkylidene (MAP) Catalysts. Journal of Organic Chemistry, 2014, 79, 11940-11948.	1.7	13
452	Organic Linker Effect on the Growth and Diffusion of Cu Clusters in a Metal–Organic Framework. Journal of Physical Chemistry C, 2018, 122, 26987-26997.	1.5	13
453	Mechanism of Initiation Stereocontrol in Polymerization of <i>rac</i> -Lactide by Aluminum Complexes Supported by Indolide–Imine Ligands. Macromolecules, 2020, 53, 1809-1818.	2.2	13
454	Stereoregular functionalized polysaccharides <i>via</i> cationic ring-opening polymerization of biomass-derived levoglucosan. Chemical Science, 2022, 13, 4512-4522.	3.7	13
455	Dependence of isotropic hyperfine coupling in the fluoromethyl radical series on inversion angle. Journal of Organic Chemistry, 1991, 56, 5229-5232.	1.7	12
456	Ab Initio Conformational and Stereopermutational Analyses of Phosphoranyl Radicals HP(OR)3 and P(OR)4 [R = H or CH3]. The Journal of Physical Chemistry, 1995 , 99 , 2267 - 2277 .	2.9	12
457	Can an ancillary ligand lead to a thermodynamically stable end-on 1 : 1 Cu–O2adduct supported by a β-diketiminate ligand?. Dalton Transactions, 2006, , 4773-4782.	1.6	12
458	Atomic layer deposition of zinc oxide: Understanding the reactions of ozone with diethylzinc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	12
459	Prediction of Mass Spectral Response Factors from Predicted Chemometric Data for Druglike Molecules. Journal of the American Society for Mass Spectrometry, 2017, 28, 278-285.	1.2	12
460	Modeling Free Energies of Solvation and Transfer. ACS Symposium Series, 1998, , 285-300.	0.5	11
461	Modified Carbon Pseudopotential for Use in ONIOM Calculations of Alkyl-Substituted Metallocenes. Journal of Physical Chemistry A, 2008, 112, 12754-12760.	1.1	11
462	Carbon Dioxide Reduction Catalyzed by Dinuclear Ruthenium Polypyridyl Complexes. ChemCatChem, 2013, 5, 3897-3903.	1.8	11
463	On the Lewis Acidity of the Oxoiron(IV) Unit in a Tetramethylcyclam Complex. Chemistry - A European Journal, 2018, 24, 5373-5378.	1.7	11
464	Spin-State Ordering in Metal-Based Compounds Using the Localized Active Space Self-Consistent Field Method. Journal of Physical Chemistry Letters, 2019, 10, 5507-5513.	2.1	11
465	Quantum Chemical Characterization of Factors Affecting the Neutral and Radical-Cation Newman–Kwart Reactions. Journal of Organic Chemistry, 2019, 84, 2148-2157.	1.7	11
466	Quantum Chemical Characterization of the Vertical Electron Affinities of Didehydroquinolinium and Didehydroisoquinolinium Cations. Journal of Physical Chemistry A, 2006, 110, 10309-10315.	1.1	10
467	Characterization of High Explosives and Other Energetic Compounds by Computational Chemistry and Molecular Modeling. Journal of Chemical Education, 2007, 84, 329.	1.1	10
468	Synthesis and Characterization of Electron-Deficient Asymmetrically Substituted Diarylindenotetracenes. Journal of Organic Chemistry, 2018, 83, 1828-1841.	1.7	10

#	Article	IF	Citations
469	A semiempirical effective Hamiltonian based approach for analyzing excited state wave functions and computing excited state absorption spectra using real-time dynamics. Journal of Chemical Physics, 2019, 150, 104103.	1.2	10
470	Modeling The Effect of Solvation on Structure, Reactivity, and Partitioning of Organic Solutes: Utility in Drug Design. The IMA Volumes in Mathematics and Its Applications, 1999, , 51-72.	0.5	10
471	Ab initio calculations on P?C bond cleavage in phosphoranyl radicals: implications for the biodegradation of organophosphonate derivatives. Journal of Physical Organic Chemistry, 1998, 11, 149-154.	0.9	9
472	Effect of G-1 on histidine tRNA microhelix conformation. Nucleic Acids Research, 2003, 31, 7311-7321.	6.5	9
473	Molecular quantum mechanics to biodynamics: Essential connections. Computational and Theoretical Chemistry, 2006, 764, 1-8.	1.5	9
474	Quantum Chemical Characterization of the Structures, Thermochemical Properties, and Doubletâ^'Quartet Splittings of Tridehydropyridinium Cations. Journal of Physical Chemistry A, 2008, 112, 5542-5553.	1.1	9
475	A Thermal Decarbonylation of Penam \hat{I}^2 -Lactams. Journal of Organic Chemistry, 2008, 73, 3024-3031.	1.7	9
476	Solvent Dependence of ^{14 < /sup>N Nuclear Magnetic Resonance Chemical Shielding Constants as a Test of the Accuracy of the Computed Polarization of Solute Electron Densities by the Solvent. Journal of Chemical Theory and Computation, 2009, 5, 2284-2300.}	2.3	9
477	Metal ion size and coordination mode in complexes of a \hat{l}^2 -diketiminate ligand with pendant quinoline arms. Inorganica Chimica Acta, 2011, 369, 173-179.	1.2	9
478	AMOEBA force field parameterization of the azabenzenes. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	9
479	Facile Conversion of syn â€{Fe IV (O)(TMC)] 2+ into the anti Isomer via Meunier's Oxo–Hydroxo Tautomerism Mechanism. Angewandte Chemie - International Edition, 2019, 58, 1995-1999.	7.2	9
480	Quantum Chemical Conformational Analysis of Dihydroxysiliconate Ion [H3Si(OH)2-]. An Exceptionally Fluxional Pentacoordinate [10-Si-5] System. Journal of the American Chemical Society, 1995, 117, 9285-9290.	6.6	8
481	Density Functional Modeling of Ligand Effects on Electronic Structure and C–H Bond Activation Activity of Copper(III) Hydroxide Compounds. Inorganic Chemistry, 2018, 57, 9807-9813.	1.9	8
482	Diels–Alder/Ene Reactivities of 2-(1′-Cycloalkenyl)thiophenes and 2-(1′-Cycloalkenyl)benzo[<i>b</i>)thiophenes with <i>N</i> -Phenylmaleimides: Role of Cycloalkene Ring Size on Benzothiophene and Dibenzothiophene Product Distributions. Journal of Organic Chemistry, 2020, 85, 5265-5287.	1.7	8
483	Computational studies of open-shell phosphorus oxyacids. 1. Phosphorus-hydrogen bond homolysis in dehydrodioxophosphoranyl (H2PO2). Journal of the American Chemical Society, 1990, 112, 5460-5464.	6.6	7
484	Internal Loopâ^Helix Coupling in the Dynamics of the RNA Duplex (GC*C*AGUUCGCUGGC)2. Journal of Physical Chemistry B, 2002, 106, 5075-5085.	1.2	7
485	Mechanism and Design Principles for Controlling Stereoselectivity in the Copolymerization of CO ₂ /Cyclohexene Oxide by Indium(III) Phosphasalen Catalysts. ACS Catalysis, 2021, 11, 15244-15251.	5.5	7
486	Quantum chemical conformational analysis and X-ray structure of 4-methyl-3-thiosemicarbazide. Computational and Theoretical Chemistry, 1996, 388, 161-167.	1.5	6

#	Article	IF	Citations
487	Ethylene Polymerization by Zirconocene Catalysis. ACS Symposium Series, 1999, , 208-224.	0.5	6
488	Localized Active Space Pair-Density Functional Theory. Journal of Chemical Theory and Computation, 2021, 17, 2843-2851.	2.3	6
489	Multireference Methods are Realistic and Useful Tools for Modeling Catalysis. Israel Journal of Chemistry, 2022, 62, .	1.0	6
490	Computational studies of open-shell phosphorus oxyacids. Cheletropic reaction of PO2 with H2. Chemical Physics Letters, 1990, 169, 405-409.	1.2	5
491	Theoretical Characterization of Cycloaddition Reactions of the Cyclopropylcarbinyl Cation. Journal of Organic Chemistry, 1994, 59, 7591-7593.	1.7	5
492	Structural and dynamic variations in DNA hexamers containing T-T and F-F single and tandem internal mispairs. Theoretical Chemistry Accounts, 2004, 111, 311-327.	0.5	5
493	The electronic spectra of 2-(2′-hydroxybenzoyl)pyrrole and 2-(2′-methoxybenzoyl)pyrrole: a theoretical study. Journal of Physical Organic Chemistry, 2005, 18, 1099-1106.	0.9	5
494	Theoretical prediction of linear free energy relationships using proton nucleomers. Journal of Physical Organic Chemistry, 2008, 21, 136-145.	0.9	5
495	Pseudo-Two-Dimensional Structures (HXYH)3n2H6n(XY = GaN, SiC, GeC, SiSi, or GeGe;n= 1â^3): Density Functional Characterization of Structures and Energeticsâ€. Journal of Physical Chemistry A, 2006, 110, 494-502.	1.1	4
496	Facile Conversion of syn â€[Fe IV (O)(TMC)] 2+ into the anti Isomer via Meunier's Oxo–Hydroxo Tautomerism Mechanism. Angewandte Chemie, 2019, 131, 2017-2021.	1.6	4
497	Development of a Highly Responsive Organofluorine Temperature Sensor for ¹⁹ F Magnetic Resonance Applications. Analytical Chemistry, 2022, 94, 3782-3790.	3.2	4
498	Structures of four o-nitrobenzonitriles. Acta Crystallographica Section B: Structural Science, 1996, 52, 344-351.	1.8	3
499	COMPUTATIONAL ANALYSIS:Y2K. Science, 1999, 286, 2281-2281.	6.0	3
500	A Cooperative Molecular Modeling Exerciseâ€"The Hypersurface as Classroom. Journal of Chemical Education, 2001, 78, 1202.	1.1	3
501	Correction to "Tuning Zr ₆ Metal-Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts― ACS Catalysis, 2018, 8, 2364-2364.	5.5	3
502	Sinterâ€Resistant Platinum Catalyst Supported by Metal–Organic Framework. Angewandte Chemie, 2018, 130, 921-925.	1.6	3
503	Factors Affecting the Mechanism of 1,3-Butadiene Polymerization at Open Metal Sites in Co-MFU-4l. Organometallics, 2022, 41, 169-177.	1.1	3
504	Structure and Reactivity in Aqueous Solution. ACS Symposium Series, 1994, , 1-7.	0.5	2

#	Article	IF	Citations
505	A Universal Organic Solvation Model Journal of Organic Chemistry, 2000, 65, 5886-5886.	1.7	2
506	An ab initio electronic structure study of methyl adsorption and reaction on cluster models for the diamond surface. Diamond and Related Materials, 2001, 10, 39-47.	1.8	2
507	Discrimination of C1:G72 MicrohelixAla by AlaRS Is Based on Specific Atomic Groups Rather Than Conformational Effects:  An NMR and MD Analysis. Journal of Physical Chemistry B, 2002, 106, 8878-8884.	1.2	2
508	Correction to "Computationally Guided Discovery of Catalytic Cobalt-Decorated Metal–Organic Framework for Ethylene Dimerization― Journal of Physical Chemistry C, 2017, 121, 11975-11975.	1.5	2
509	Quantum chemical characterization of cycloaddition reactions between 1,3-butadiene and oxyallyl cations of varying electrophilicityâ€. , 2000, 13, 176.		2
510	Molecular orbital theory calculations of aqueous solvation effects on chemical equilibria [Erratum to document cited in CA115(19):207215n]. Journal of the American Chemical Society, 1991, 113, 9901-9901.	6.6	1
511	2-Formylbenzonitrile. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o307-o309.	0.4	1
512	New Perspectives in Theoretical Chemistry. Theoretical Chemistry Accounts, 2006, 116, 1-1.	0.5	1
513	Three polymorphs of 4-4′-diiodobenzalazine, and 4-chloro-4′-iodobenzalazine. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o518-o523.	0.4	1
514	Computational Thermochemistry of Mono- and Dinuclear Tin Alkyls Used in Vapor Deposition Processes. Journal of Physical Chemistry A, 2019, 123, 1451-1460.	1.1	1
515	Two-response-time model based on CM2/INDO/S2 electrostatic potentials for the dielectric polarization component of solvatochromic shifts on vertical excitation energies. International Journal of Quantum Chemistry, 2000, 77, 264.	1.0	1
516	When anomeric effects collide. Journal of Computational Chemistry, 2001, 22, 1194-1204.	1.5	1
517	General parameterized SCF model for free energies of solvation in aqueous solution [Erratum to document cited in CA115(20):216293p]. Journal of the American Chemical Society, 1991, 113, 9901-9901.	6.6	0
518	New Tools for Rational Drug Design. ACS Symposium Series, 1999, , 121-140.	0.5	0
519	Sugar anomerism - a short and sweet digression Perspective on "The application of ab initio molecular orbital theory to the anomeric effect". Theoretical Chemistry Accounts, 2000, 103, 308-310.	0.5	0
520	A Class IV Charge Model for Boron Based on Hybrid Density Functional Theory ChemInform, 2003, 34, no.	0.1	0
521	New MP2 Database of Nucleic Acid Base Trimers: How Well Reproduce DFT Methods Structure and Binding Energies?. AIP Conference Proceedings, 2007, , .	0.3	0
522	Fifty years of TCA. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	0

#	Article	IF	CITATIONS
523	Saying farewell and welcoming new leadership. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	O
524	MOF., 2016,,.		0
525	Impact of dihydrogen bonding on lattice energies and sublimation enthalpies of crystalline [H ₂ GaNH ₂] ₃ , [H ₂ BNH ₂] ₃ and [H ₂ GeCH ₂] ₃ . RSC Advances, 2019, 9, 29448-29455.	1.7	0
526	MODELLING METALâ \in ORGANIC FRAMEWORKS AND OTHER FUNCTIONAL MATERIALS WITH ELECTRONIC STRUCTURE THEORIES. , 2021, , .		0
527	Understanding and Estimating Membrane/Water Partition Coefficients: Approaches to Derive Quantitative Structure Property Relationships. , 2000, , 245-248.		0
528	Sugar anomerism $\hat{a}\in$ " a short and sweet digression Perspective on $\hat{a}\in \infty$ The application of ab initio molecular orbital theory to the anomeric effect $\hat{a}\in \{0,1,2,3\}$.		0
529	Trimers of Nucleic Acid Bases. , 2006, , 1493-1496.		O