Olga Igoucheva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2305144/publications.pdf

Version: 2024-02-01

471509 580821 27 712 17 25 citations h-index g-index papers 29 29 29 1051 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Highly branched poly(\hat{l}^2 -amino ester)s for skin gene therapy. Journal of Controlled Release, 2016, 244, 336-346.	9.9	95
2	Oligonucleotide-Directed Mutagenesis and Targeted Gene Correction: A Mechanistic Point of View. Current Molecular Medicine, 2004, 4, 445-463.	1.3	61
3	Transcription affects formation and processing of intermediates in oligonucleotide-mediated gene alteration. Nucleic Acids Research, 2003, 31, 2659-2670.	14.5	58
4	Misbalanced CXCL12 and CCL5 Chemotactic Signals in Vitiligo Onset andÂProgression. Journal of Investigative Dermatology, 2017, 137, 1126-1134.	0.7	47
5	Human adipose-derived stem cell transplantation as a potential therapy for collagen VI-related congenital muscular dystrophy. Stem Cell Research and Therapy, 2014, 5, 21.	5.5	45
6	Characterization of the CCL21-mediated melanoma-specific immune responses and in situ melanoma eradication. Molecular Cancer Therapeutics, 2007, 6, 1755-1764.	4.1	44
7	Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities. Journal of Biological Chemistry, 2015, 290, 21443-21459.	3.4	42
8	Gene expression signatures of mouse bone marrow-derived mesenchymal stem cells in the cutaneous environment and therapeutic implications for blistering skin disorder. Cytotherapy, 2011, 13, 30-45.	0.7	31
9	Analysis of chemotactic molecules in bone marrow-derived mesenchymal stem cells and the skin: Ccl27-Ccr10 axis as a basis for targeting to cutaneous tissues. Cytotherapy, 2013, 15, 171-184.e1.	0.7	29
10	Intracellular escape strategies of <i>Staphylococcus aureus</i> in persistent cutaneous infections. Experimental Dermatology, 2021, 30, 1428-1439.	2.9	29
11	Pro-Inflammatory Chemokines and Cytokines Dominate the Blister Fluid Molecular Signature in Patients with Epidermolysis Bullosa and Affect Leukocyte and Stem Cell Migration. Journal of Investigative Dermatology, 2017, 137, 2298-2308.	0.7	27
12	Ladarixin, a dual CXCR1/2 inhibitor, attenuates experimental melanomas harboring different molecular defects by affecting malignant cells and tumor microenvironment. Oncotarget, 2017, 8, 14428-14442.	1.8	27
13	Involvement of ERCC1/XPF and XPG in Oligodeoxynucleotide-directed Gene Modification. Oligonucleotides, 2006, 16, 94-104.	2.7	26
14	Targeted Single-Base Correction by RNA–DNA Oligonucleotides. Human Gene Therapy, 2000, 11, 2307-2312.	2.7	25
15	Protein Therapeutics for Junctional Epidermolysis Bullosa: Incorporation of Recombinant \hat{I}^2 3 Chain into Laminin 332 in \hat{I}^2 3- I - Keratinocytes In Vitro. Journal of Investigative Dermatology, 2008, 128, 1476-1486.	0.7	25
16	Expectations and reality in gene repair. Nature Biotechnology, 2002, 20, 1197-1198.	17.5	21
17	Oligonucleotide-Mediated Gene Targeting in Human Hepatocytes: Implications of Mismatch Repair. Oligonucleotides, 2008, 18, 111-122.	2.7	18
18	Mechanism of Gene Repair Open for Discussion. Oligonucleotides, 2004, 14, 311-321.	2.7	16

#	Article	IF	CITATIONS
19	Immunological mechanisms underlying progression of chronic wounds in recessive dystrophic epidermolysis bullosa. Experimental Dermatology, 2021, 30, 1724-1733.	2.9	15
20	Aberrant recruitment of leukocytes defines poor wound healing in patients with recessive dystrophic epidermolysis bullosa. Journal of Dermatological Science, 2020, 100, 209-216.	1.9	9
21	Chemotaxis-driven disease-site targeting of therapeutic adult stem cells in dystrophic epidermolysis bullosa. Stem Cell Research and Therapy, 2016, 7, 124.	5 . 5	8
22	Congenital muscular dystrophy-associated inflammatory chemokines provide axes for effective recruitment of therapeutic adult stem cell into muscles. Stem Cell Research and Therapy, 2020, 11, 463.	5.5	5
23	Chemokine-enhanced DNA vaccination in cancer immunotherapy. Oncolmmunology, 2013, 2, e26092.	4.6	3
24	T ell activation and bacterial infection in skin wounds of recessive dystrophic epidermolysis bullosa patients. Experimental Dermatology, 2022, 31, 1431-1442.	2.9	3
25	Gene Targeting by Oligonucleotides in Keratinocytes. , 2005, 289, 287-302.		2
26	High concordance between clinical diagnosis of epidermolysis bullosa and immunofluorescence with a small, wellâ€matched antibody panel. Australasian Journal of Dermatology, 2018, 59, 73-76.	0.7	1
27	Biased gene repair needs unbiased review. Nature Reviews Genetics, 2003, 4, 752-752.	16.3	0