Steven C Hardiman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2304853/publications.pdf

Version: 2024-02-01

62 papers 7,284 citations

39 h-index 63 g-index

80 all docs 80 docs citations

80 times ranked 7675 citing authors

#	Article	IF	CITATIONS
1	The Life Cycle and Variability of Antarctic Weak Polar Vortex Events. Journal of Climate, 2022, 35, 2075-2092.	3.2	4
2	Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nature Communications, 2022, 13, 727.	12.8	67
3	Long-range prediction and the stratosphere. Atmospheric Chemistry and Physics, 2022, 22, 2601-2623.	4.9	24
4	Predictability of European Winters 2017/2018 and 2018/2019: Contrasting influences from the Tropics and stratosphere. Atmospheric Science Letters, 2021, 22, e1009.	1.9	14
5	The Brewer–Dobson circulation in CMIP6. Atmospheric Chemistry and Physics, 2021, 21, 13571-13591.	4.9	25
6	Predictability of European winter 2019/20: Indian Ocean dipole impacts on the <scp>NAO</scp> . Atmospheric Science Letters, 2020, 21, e1005.	1.9	40
7	Historical Simulations With HadGEM3â€GC3.1 for CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001995.	3.8	84
8	Implementation of U.K. Earth System Models for CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001946.	3.8	83
9	Subseasonal Vacillations in the Winter Stratosphere. Geophysical Research Letters, 2020, 47, e2020GL087766.	4.0	8
10	What chance of a sudden stratospheric warming in the southern hemisphere?. Environmental Research Letters, 2020, 15, 104038.	5 . 2	18
11	Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geoscientific Model Development, 2020, 13, 3383-3438.	3.6	69
12	The Impact of Prescribed Ozone in Climate Projections Run With HadGEM3â€GC3.1. Journal of Advances in Modeling Earth Systems, 2019, 11, 3443-3453.	3.8	20
13	Skilful Realâ€Time Seasonal Forecasts of the Dry Northern European Summer 2018. Geophysical Research Letters, 2019, 46, 12368-12376.	4.0	16
14	The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development, 2019, 12, 1909-1963.	3 . 6	372
15	The Impact of Strong El Niñ0 and La Niña Events on the North Atlantic. Geophysical Research Letters, 2019, 46, 2874-2883.	4.0	56
16	Predictability of European winter 2016/2017. Atmospheric Science Letters, 2018, 19, e868.	1.9	10
17	Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nature Communications, 2018, 9, 3625.	12.8	109
18	No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI. Atmospheric Chemistry and Physics, 2018, 18, 11277-11287.	4.9	41

#	Article	IF	CITATIONS
19	Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models. Environmental Research Letters, 2018, 13, 054024.	5.2	38
20	The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña. Environmental Research Letters, 2018, 13, 024015.	5.2	27
21	Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 2018, 18, 8409-8438.	4.9	128
22	The influence of dynamical variability on the observed Brewerâ€Dobson circulation trend. Geophysical Research Letters, 2017, 44, 2885-2892.	4.0	16
23	Atmospheric Response to Arctic and Antarctic Sea Ice: The Importance of Ocean–Atmosphere Coupling and the Background State. Journal of Climate, 2017, 30, 4547-4565.	3.2	110
24	Deriving Global OH Abundance and Atmospheric Lifetimes for Longâ€Lived Gases: A Search for CH ₃ CCl ₃ Alternatives. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,914.	3.3	26
25	The Met Office HadGEM3-ES chemistry–climate model: evaluation of stratospheric dynamics and its impact on ozone. Geoscientific Model Development, 2017, 10, 1209-1232.	3.6	34
26	Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geoscientific Model Development, 2017, 10, 639-671.	3.6	277
27	The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geoscientific Model Development, 2017, 10, 1487-1520.	3.6	401
28	Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geoscience, 2015, 8, 433-440.	12.9	515
29	Defining Sudden Stratospheric Warmings. Bulletin of the American Meteorological Society, 2015, 96, 1913-1928.	3.3	327
30	Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models. Journal of Climate, 2015, 28, 6516-6535.	3.2	47
31	Possible impacts of a future grand solar minimum on climate: Stratospheric and global circulation changes. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9043-9058.	3.3	41
32	The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations. Geoscientific Model Development, 2014, 7, 361-386.	3.6	154
33	Skillful Seasonal Prediction of the Southern Annular Mode and Antarctic Ozone. Journal of Climate, 2014, 27, 7462-7474.	3.2	53
34	The morphology of the Brewer-Dobson circulation and its response to climate change in CMIP5 simulations. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 1958-1965.	2.7	57
35	Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7979-7998.	3.3	131
36	Multimodel estimates of atmospheric lifetimes of longâ€lived ozoneâ€depleting substances: Present and future. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2555-2573.	3.3	42

#	Article	IF	CITATIONS
37	On the lack of stratospheric dynamical variability in lowâ€top versions of the CMIP5 models. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2494-2505.	3.3	268
38	Stratospheric Variability in Twentieth-Century CMIP5 Simulations of the Met Office Climate Model: High Top versus Low Top. Journal of Climate, 2013, 26, 1595-1606.	3.2	54
39	Impacts of climate change, ozone recovery, and increasing methane on surface ozone and the tropospheric oxidizing capacity. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1028-1041.	3.3	55
40	A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,405.	3.3	154
41	The Effect of Climate Change on the Variability of the Northern Hemisphere Stratospheric Polar Vortex. Journals of the Atmospheric Sciences, 2012, 69, 2608-2618.	1.7	43
42	The nature of Arctic polar vortices in chemistry–climate models. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1681-1691.	2.7	14
43	The Brewer–Dobson circulation inferred from ERAâ€Interim. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 878-888.	2.7	98
44	Climate change projections and stratosphere–troposphere interaction. Climate Dynamics, 2012, 38, 2089-2097.	3.8	137
45	Multimodel climate and variability of the stratosphere. Journal of Geophysical Research, 2011, 116 , .	3.3	139
46	Improved predictability of the troposphere using stratospheric final warmings. Journal of Geophysical Research, 2011, 116, .	3.3	70
47	The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development, 2011, 4, 543-570.	3.6	803
48	The HadGEM2 family of Met Office Unified Model climate configurations. Geoscientific Model Development, 2011, 4, 723-757.	3.6	765
49	Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmospheric Chemistry and Physics, 2010, 10, 9451-9472.	4.9	215
50	Decline and recovery of total column ozone using a multimodel time series analysis. Journal of Geophysical Research, 2010, 115, .	3.3	74
51	The Climatology of the Middle Atmosphere in a Vertically Extended Version of the Met Office's Climate Model. Part I: Mean State. Journals of the Atmospheric Sciences, 2010, 67, 1509-1525.	1.7	34
52	Using Different Formulations of the Transformed Eulerian Mean Equations and Eliassen–Palm Diagnostics in General Circulation Models. Journals of the Atmospheric Sciences, 2010, 67, 1983-1995.	1.7	19
53	Sensitivity of GCM tropical middle atmosphere variability and climate to ozone and parameterized gravity wave changes. Journal of Geophysical Research, 2010, 115, .	3.3	16
54	Chemistryâ€climate model simulations of spring Antarctic ozone. Journal of Geophysical Research, 2010, 115, .	3.3	51

#	Article	IF	CITATION
55	Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends. Journal of Geophysical Research, 2010, 115, .	3.3	171
56	Review of the formulation of presentâ€generation stratospheric chemistry limate models and associated external forcings. Journal of Geophysical Research, 2010, 115, .	3.3	150
57	Stratosphereâ€troposphere coupling and annular mode variability in chemistryâ€climate models. Journal of Geophysical Research, 2010, 115, .	3.3	107
58	Multimodel assessment of the factors driving stratospheric ozone evolution over the 21st century. Journal of Geophysical Research, 2010, 115 , .	3.3	66
59	The Dynamical Response to Snow Cover Perturbations in a Large Ensemble of Atmospheric GCM Integrations. Journal of Climate, 2009, 22, 1208-1222.	3.2	113
60	Dynamical sensitivity of the stratospheric circulation and downward influence of upper level perturbations. Journal of Geophysical Research, 2008, 113, .	3.3	21
61	Investigating the ability of general circulation models to capture the effects of Eurasian snow cover on winter climate. Journal of Geophysical Research, 2008, 113 , .	3.3	80
62	A note on forced versus internal variability of the stratosphere. Geophysical Research Letters, 2007, 34, .	4.0	19