
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/230470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Phosphatidyl Glycerol Containing Unsymmetric Acyl Chains Using H-Phosphonate Methodology. Molecules, 2022, 27, 2199.	3.8	3
2	Gut Microbiota and Phenotypic Changes Induced by Ablation of Liver- and Intestinal-Type Fatty Acid-Binding Proteins. Nutrients, 2022, 14, 1762.	4.1	5
3	Impact of vitamin A transport and storage on intestinal retinoid homeostasis and functions. Journal of Lipid Research, 2021, 62, 100046.	4.2	13
4	Proteins and Disease Structural Insight and Functional Diversity of Mammalian Fatty Acid Binding Proteins in Health and Disease. , 2021, , 63-76.		1
5	Lysobisphosphatidic acid (LBPA) enrichment promotes cholesterol egress via exosomes in Niemann Pick type C1 deficient cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158916.	2.4	11
6	Enrichment of NPC1-deficient cells with the lipid LBPA stimulates autophagy, improves lysosomal function, and reduces cholesterol storage. Journal of Biological Chemistry, 2021, 297, 100813.	3.4	29
7	Mechanisms underlying reduced weight gain in intestinal fatty acid-binding protein (IFABP) null mice. American Journal of Physiology - Renal Physiology, 2020, 318, G518-G530.	3.4	26
8	Stereospecific synthesis of phosphatidylglycerol using a cyanoethyl phosphoramidite precursor. Chemistry and Physics of Lipids, 2020, 231, 104933.	3.2	3
9	Retinol-binding protein 2 (RBP2) binds monoacylglycerols and modulates gut endocrine signaling and body weight. Science Advances, 2020, 6, eaay8937.	10.3	17
10	Two fatty acidâ€binding proteins expressed in the intestine interact differently with endocannabinoids. Protein Science, 2020, 29, 1606-1617.	7.6	8
11	Muscle metabolic reprogramming underlies the resistance of liver fatty acid–binding protein (LFABP)-null mice to high-fat feeding–induced decline in exercise capacity. Journal of Biological Chemistry, 2019, 294, 15358-15372.	3.4	6
12	Fatty acid-binding proteins. Current Opinion in Clinical Nutrition and Metabolic Care, 2019, 22, 407-412.	2.5	28
13	Intracellular cholesterol trafficking is dependent upon NPC2 interaction with lysobisphosphatidic acid. ELife, 2019, 8, .	6.0	44
14	Relative levels of dietary EPA and DHA impact gastric oxidation and essential fatty acid uptake. Journal of Nutritional Biochemistry, 2018, 55, 68-75.	4.2	21
15	Transport Assays for Sterol-Binding Proteins: Stopped-Flow Fluorescence Methods for Investigating Intracellular Cholesterol Transport Mechanisms of NPC2 Protein. Methods in Molecular Biology, 2017, 1583, 97-110.	0.9	0
16	FABP1 knockdown in human enterocytes impairs proliferation and alters lipid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1587-1594.	2.4	33
17	Protocols and pitfalls in obtaining fatty acid-binding proteins for biophysical studies of ligand-protein and protein-protein interactions. Biochemistry and Biophysics Reports, 2017, 10, 318-324.	1.3	4
18	Bacterial communities in the small intestine respond differently to those in the caecum and colon in mice fed low- and high-fat diets. Microbiology (United Kingdom), 2017, 163, 1189-1197.	1.8	35

#	Article	IF	CITATIONS
19	Efficacy and ototoxicity of different cyclodextrins in Niemann–Pick C disease. Annals of Clinical and Translational Neurology, 2016, 3, 366-380.	3.7	78
20	Enterocyte fatty acid-binding proteins (FABPs): Different functions of liver and intestinal FABPs in the intestine. Prostaglandins Leukotrienes and Essential Fatty Acids, 2015, 93, 9-16.	2.2	138
21	Global deletion of MGL in mice delays lipid absorption and alters energy homeostasis and diet-induced obesity. Journal of Lipid Research, 2015, 56, 1153-1171.	4.2	50
22	Multiple Surface Regions on the Niemann-Pick C2 Protein Facilitate Intracellular Cholesterol Transport. Journal of Biological Chemistry, 2015, 290, 27321-27331.	3.4	34
23	Hepatic fatty acid uptake is regulated by the sphingolipid acyl chain length. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1754-1766.	2.4	50
24	Synthesis of 2-Hydroxypropyl-β-cyclodextrin/Pluronic-Based Polyrotaxanes via Heterogeneous Reaction as Potential Niemann-Pick Type C Therapeutics. Biomacromolecules, 2013, 14, 4189-4197.	5.4	49
25	Enteroviruses Harness the Cellular Endocytic Machinery to Remodel the Host Cell Cholesterol Landscape for Effective Viral Replication. Cell Host and Microbe, 2013, 14, 281-293.	11.0	128
26	Synthesis, Characterization, and Evaluation of Pluronic-Based β-Cyclodextrin Polyrotaxanes for Mobilization of Accumulated Cholesterol from Niemann-Pick Type C Fibroblasts. Biochemistry, 2013, 52, 3242-3253.	2.5	32
27	Direct Comparison of Mice Null for Liver or Intestinal Fatty Acid-binding Proteins Reveals Highly Divergent Phenotypic Responses to High Fat Feeding. Journal of Biological Chemistry, 2013, 288, 30330-30344.	3.4	43
28	Accumulation of Ordered Ceramide-Cholesterol Domains in Farber Disease Fibroblasts. JIMD Reports, 2013, 12, 71-77.	1.5	14
29	Alterations in the Intestinal Assimilation of Oxidized PUFAs Are Ameliorated by a Polyphenol-Rich Grape Seed Extract in an In Vitro Model and Caco-2 Cells. Journal of Nutrition, 2013, 143, 295-301.	2.9	41
30	Liver Fatty Acid-binding Protein Binds Monoacylglycerol in Vitro and in Mouse Liver Cytosol. Journal of Biological Chemistry, 2013, 288, 19805-19815.	3.4	33
31	Over-Expression of Monoacylglycerol Lipase (MGL) in Small Intestine Alters Endocannabinoid Levels and Whole Body Energy Balance, Resulting in Obesity. PLoS ONE, 2012, 7, e43962.	2.5	43
32	Intestinal Mucosal Triacylglycerol Accumulation Secondary to Decreased Lipid Secretion in Obese and High Fat Fed Mice. Frontiers in Physiology, 2012, 3, 25.	2.8	42
33	Sterol Transfer between Cyclodextrin and Membranes: Similar but Not Identical Mechanism to NPC2-Mediated Cholesterol Transfer. Biochemistry, 2011, 50, 7341-7349.	2.5	38
34	Interaction of enterocyte FABPs with phospholipid membranes: Clues for specific physiological roles. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 452-459.	2.4	27
35	Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. American Journal of Physiology - Renal Physiology, 2011, 300, G803-G814.	3.4	64
36	CGI-58/ABHD5 is a coenzyme A-dependent lysophosphatidic acid acyltransferase. Journal of Lipid Research, 2010, 51, 709-719.	4.2	80

#	Article	IF	CITATIONS
37	A novel multiprotein complex is required to generate the prechylomicron transport vesicle from intestinal ER. Journal of Lipid Research, 2010, 51, 1918-1928.	4.2	88
38	Tissue-specific Functions in the Fatty Acid-binding Protein Family. Journal of Biological Chemistry, 2010, 285, 32679-32683.	3.4	256
39	Structural and functional analysis of fatty acid-binding proteins. Journal of Lipid Research, 2009, 50, S126-S131.	4.2	226
40	I-FABP expression alters the intracellular distribution of the BODIPY C16 fatty acid analog. Molecular and Cellular Biochemistry, 2009, 326, 97-104.	3.1	10
41	Niemann–Pick C2 (NPC2) and intracellular cholesterol trafficking. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 671-678.	2.4	156
42	Differential enterocyte partitioning of fatty acids in intestinal fatty acidâ€binding proteinâ€null mice (IFABP…â€). FASEB Journal, 2009, 23, 521.6.	0.5	1
43	The Emerging Functions and Mechanisms of Mammalian Fatty Acid–Binding Proteins. Annual Review of Nutrition, 2008, 28, 73-95.	10.1	362
44	Regulation of Sterol Transport between Membranes and NPC2. Biochemistry, 2008, 47, 11134-11143.	2.5	76
45	Metabolism of apical versus basolateral sn-2-monoacylglycerol and fatty acids in rodent small intestine. Journal of Lipid Research, 2008, 49, 1762-1769.	4.2	65
46	Liver Fatty Acid-binding Protein Initiates Budding of Pre-chylomicron Transport Vesicles from Intestinal Endoplasmic Reticulum. Journal of Biological Chemistry, 2007, 282, 17974-17984.	3.4	95
47	Intestinal Monoacylglycerol Metabolism. Journal of Biological Chemistry, 2007, 282, 33346-33357.	3.4	52
48	Solution-State Molecular Structure of Apo and Oleate-Liganded Liver Fatty Acid-Binding Protein. Biochemistry, 2007, 46, 12543-12556.	2.5	66
49	Characterization of a BODIPY-labeled {fl}uorescent fatty acid analogue. Binding to fatty acid-binding proteins, intracellular localization, and metabolism. Molecular and Cellular Biochemistry, 2007, 299, 67-73.	3.1	63
50	Intestinal lipid metabolism is altered in Liver Fatty Acidâ€Binding Proteinâ€null mice (LFABPâ^'/â^'). FASEB Journal, 2007, 21, A109.	0.5	2
51	Role of Membrane and Cytosolic Fatty Acid Binding Proteins in Lipid Processing by the Small Intestine. , 2006, , 1693-1709.		8
52	Mechanism of Cholesterol Transfer from the Niemann-Pick Type C2 Protein to Model Membranes Supports a Role in Lysosomal Cholesterol Transport. Journal of Biological Chemistry, 2006, 281, 31594-31604.	3.4	177
53	Protein-Membrane Interaction and Fatty Acid Transfer from Intestinal Fatty Acid-binding Protein to Membranes. Journal of Biological Chemistry, 2006, 281, 13979-13989.	3.4	41
54	Mechanism of Cholesterol Transfer from the Niemann-Pick Type C2 Protein to Model Membranes Supports a Role in Lysosomal Cholesterol Transport. Journal of Biological Chemistry, 2006, 281, 31594-31604.	3.4	61

JUDITH STORCH

#	Article	IF	CITATIONS
55	Uptake of Micellar Long-Chain Fatty Acid and sn-2-Monoacylglycerol into Human Intestinal Caco-2 Cells Exhibits Characteristics of Protein-Mediated Transport. Journal of Nutrition, 2005, 135, 1626-1630.	2.9	53
56	Fatty acid transfer from intestinal fatty acid binding protein to membranes: electrostatic and hydrophobic interactions. Journal of Lipid Research, 2005, 46, 1765-1772.	4.2	34
57	Cholesterol Transport in Lysosomes. , 2005, , 100-111.		2
58	The α-Helical Domain of Liver Fatty Acid Binding Protein Is Responsible for the Diffusion-Mediated Transfer of Fatty Acids to Phospholipid Membranesâ€. Biochemistry, 2004, 43, 3600-3607.	2.5	74
59	Mechanisms of Inhibition of Triacylglycerol Hydrolysis by Human Gastric Lipase. Journal of Biological Chemistry, 2002, 277, 28070-28079.	3.4	185
60	Role of the Helical Domain in Fatty Acid Transfer from Adipocyte and Heart Fatty Acid-binding Proteins to Membranes. Journal of Biological Chemistry, 2002, 277, 1806-1815.	3.4	27
61	Monoacylglycerol Metabolism in Human Intestinal Caco-2 Cells. Journal of Biological Chemistry, 2002, 277, 1816-1823.	3.4	68
62	Titration and Exchange Studies of Liver Fatty Acid-Binding Protein with 13C-Labeled Long-Chain Fatty Acids. Biochemistry, 2002, 41, 5453-5461.	2.5	25
63	How Helminth Lipid-Binding Proteins Offload Their Ligands to Membranes:Â Differential Mechanisms of Fatty Acid Transfer by the ABA-1 Polyprotein Allergen and Ov-FAR-1 Proteins of Nematodes and Sj-FABPc of Schistosomesâ€. Biochemistry, 2002, 41, 6706-6713.	2.5	26
64	Title is missing!. Molecular and Cellular Biochemistry, 2002, 239, 25-33.	3.1	42
65	Similar mechanisms of fatty acid transfer from human anal rodent fatty acid-binding proteins to membranes: Liver, intestine, heart muscle, and adipose tissue FABPs. , 2002, , 25-33.		9
66	Similar mechanisms of fatty acid transfer from human anal rodent fatty acid-binding proteins to membranes: liver, intestine, heart muscle, and adipose tissue FABPs. Molecular and Cellular Biochemistry, 2002, 239, 25-33.	3.1	17
67	Role of Surface Lysine Residues of Adipocyte Fatty Acid-Binding Protein in Fatty Acid Transfer to Phospholipid Vesiclesâ€. Biochemistry, 2001, 40, 6475-6485.	2.5	44
68	Deletion of the Helical Motif in the Intestinal Fatty Acid-Binding Protein Reduces Its Interactions with Membrane Monolayers:  Brewster Angle Microscopy, IR Reflection-Absorption Spectroscopy, and Surface Pressure Studies. Biochemistry, 2001, 40, 1976-1983.	2.5	41
69	Common mechanisms of monoacylglycerol and fatty acid uptake by human intestinal Caco-2 cells. American Journal of Physiology - Cell Physiology, 2001, 281, C1106-C1117.	4.6	72
70	Unravelling the significance of cellular fatty acid-binding proteins. Current Opinion in Lipidology, 2001, 12, 267-274.	2.7	144
71	Collision-Mediated Transfer of Long-Chain Fatty Acids by Neural Tissue Fatty Acid-Binding Proteins (FABP): Studies with Fluorescent Analogs. Journal of Molecular Neuroscience, 2001, 16, 143-150.	2.3	31
72	Absence of adipocyte fatty acid binding protein prevents the development of accelerated atherosclerosis in hypercholesterolemic mice. FASEB Journal, 2001, 15, 1774-1776.	0.5	41

#	Article	IF	CITATIONS
73	Role of macrophageâ€expressed adipocyte fatty acid binding protein in the development of accelerated atherosclerosis in hypercholesterolemic mice. FASEB Journal, 2001, 15, 1-19.	0.5	75
74	The Role of Fatty Acid Binding Proteins in Enterocyte Fatty Acid Transport. , 2001, , 153-170.		1
75	Nutritional Regulation of Fatty Acid Transport Protein Expression. Modern Nutrition, 2001, , 101-130.	0.1	1
76	The fatty acid transport function of fatty acid-binding proteins. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1486, 28-44.	2.4	440
77	Liver and intestinal fatty acid-binding proteins obtain fatty acids from phospholipid membranes by different mechanisms. Journal of Lipid Research, 2000, 41, 647-656.	4.2	68
78	The Adipocyte Fatty Acid-binding Protein Binds to Membranes by Electrostatic Interactions. Journal of Biological Chemistry, 1999, 274, 35325-35330.	3.4	28
79	Differential Mechanisms of Retinoid Transfer from Cellular Retinol Binding Proteins Types I and II to Phospholipid Membranes. Journal of Biological Chemistry, 1999, 274, 9556-9563.	3.4	30
80	1H, 15N and 13C resonance assignments and secondary structure of apo liver fatty acid-binding protein. Journal of Biomolecular NMR, 1998, 12, 197-199.	2.8	9
81	The helical domain of intestinal fatty acid binding protein is critical for collisional transfer of fatty acids to phospholipid membranes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12174-12178.	7.1	126
82	Flip-Flop Is Slow and Rate Limiting for the Movement of Long Chain Anthroyloxy Fatty Acids across Lipid Vesiclesâ€. Biochemistry, 1997, 36, 5702-5711.	2.5	49
83	Adipocyte Fatty Acid-Binding Protein:  Interaction with Phospholipid Membranes and Thermal Stability Studied by FTIR Spectroscopy. Biochemistry, 1997, 36, 8311-8317.	2.5	48
84	Fatty Acid Transfer in Taurodeoxycholate Mixed Micellesâ€. Biochemistry, 1996, 35, 7466-7473.	2.5	18
85	Role of Portal Region Lysine Residues in Electrostatic Interactions between Heart Fatty Acid Binding Protein and Phospholipid Membranesâ€. Biochemistry, 1996, 35, 1296-1303.	2.5	125
86	The role of membranes and intracellular binding proteins in cytoplasmic transport of hydrophobic molecules: Fatty acid-binding proteins. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1996, 115, 333-339.	1.6	31
87	Fatty Acid Transfer from Liver and Intestinal Fatty Acid-binding Proteins to Membranes Occurs by Different Mechanisms. Journal of Biological Chemistry, 1996, 271, 13317-13323.	3.4	187
88	Binding site polarity and ligand affinity of homologous fatty acid-binding proteins from animals with different body temperatures. Molecular and Cellular Biochemistry, 1996, 159, 39-45.	3.1	2
89	The Role of Intracellular Fatty Acid-Binding Proteins in Cellular Transport of Fatty Acids. , 1996, , 53-59.		0
90	Surface lysine residues modulate the collisional transfer of fatty acid from adipocyte fatty acid binding protein to membranes. Biochemistry, 1995, 34, 11840-11845.	2.5	86

#	Article	IF	CITATIONS
91	Diversity of fatty acid-binding protein structure and function: studies with fluorescent ligands. Molecular and Cellular Biochemistry, 1993, 123, 45-53.	3.1	52
92	Effect of phospholipid headgroup composition on the transfer of fluorescent long-chain free fatty acids between membranes. Lipids and Lipid Metabolism, 1993, 1168, 307-314.	2.6	5
93	Transfer of long-chain fluorescent fatty acids between small and large unilamellar vesicles. Biochemistry, 1993, 32, 2053-2061.	2.5	66
94	Mechanism of fluorescent fatty acid transfer from adipocyte fatty acid binding protein to membranes. Biochemistry, 1993, 32, 8622-8627.	2.5	69
95	Nutritional Control of Fatty Acid Esterification in Differentiating Caco-2 Intestinal Cells Is Mediated by Cellular Diacylglycerol Concentrations. Journal of Nutrition, 1993, 123, 728-736.	2.9	16
96	Diversity of fatty acid-binding protein structure and function: studies with fluorescent ligands. , 1993, , 45-53.		1
97	Mechanism of the spontaneous transfer of unconjugated bilirubin between small unilamellar phosphatidylcholine vesicles. Biochemistry, 1992, 31, 3184-3192.	2.5	48
98	A comparison of heart and liver fatty acid-binding proteins: interactions with fatty acids and possible functional differences studied with fluorescent fatty acid analogues. Molecular and Cellular Biochemistry, 1990, 98, 141-7.	3.1	18
99	Mechanism for binding of fatty acids to hepatocyte plasma membranes: Different interpretation. Hepatology, 1990, 12, 1447-1449.	7.3	13
100	Fatty acid binding sites of rodent adipocyte and heart fatty acid binding proteins: characterization using fluorescent fatty acids. Biochemistry, 1990, 29, 9305-9311.	2.5	43
101	Resistance to the pore-forming protein of cytotoxic T cells: Comparison of target cell membrane rigidity. Molecular Immunology, 1990, 27, 839-845.	2.2	8
102	A comparison of heart and liver fatty acid-binding proteins: interactions with fatty acids and possible functional differences studied with fluorescent fatty acid analogues. , 1990, , 141-147.		0
103	3-[p-(6-Phenyl)-1,3,5-hexatrienyl]phenylpropionic acid (PA-DPH): characterization as a fluorescent membrane probe and binding to fatty acid binding proteins. Biochimica Et Biophysica Acta - Biomembranes, 1989, 982, 131-139.	2.6	83
104	Structurally distinct plasma membrane regions give rise to extracellular membrane vesicles in normal and transformed lymphocytes. Biochimica Et Biophysica Acta - Biomembranes, 1988, 946, 106-112.	2.6	29
105	Transfer of long-chain fluorescent free fatty acids between unilamellar vesicles. Biochemistry, 1986, 25, 1717-1726.	2.5	172
106	The lipid structure of biological membranes. Trends in Biochemical Sciences, 1985, 10, 418-421.	7.5	47
107	Calcium alters the acyl chain composition and lipid fluidity of rat hepatocyte plasma membranes in vitro. Biochimica Et Biophysica Acta - Biomembranes, 1985, 812, 473-484.	2.6	41
108	A dietary regimen alters hepatocyte plasma membrane lipid fluidity and ameliorates ethinyl estradiol cholestasis in the rat. Biochimica Et Biophysica Acta - General Subjects, 1984, 798, 137-140.	2.4	21

#	Article	IF	CITATIONS
109	Dietary induction of acyl chain desaturases alters the lipid composition and fluidity of rat hepatocyte plasma membranes. Biochemistry, 1984, 23, 1165-1170.	2.5	66
110	Lipid fluidity of hepatocyte plasma membrane subfractions and their differential regulation by calcium. Biochimica Et Biophysica Acta - Biomembranes, 1983, 727, 209-212.	2.6	37
111	Fatty Acid Binding Proteins and Fatty Acid Transport. , 0, , 119-133.		1