David R Mcmullin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2302839/publications.pdf

Version: 2024-02-01

471509 501196 31 820 17 28 citations h-index g-index papers 31 31 31 1076 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phytosterol oxidation products from coffee silverskin. Journal of Food Science, 2022, 87, 728-737.	3.1	2
2	Resorcylic acid lactones from the ginseng pathogen llyonectria mors-panacis. Phytochemistry Letters, 2022, 48, 94-99.	1.2	6
3	Arthropeptide A, an antifungal cyclic tetrapeptide from <i>Arthrobacter psychrophenolicus</i> isolated from disease suppressive compost. Natural Product Research, 2022, 36, 5715-5723.	1.8	3
4	Diagnostic Fragmentation Filtering for Cyanopeptolin Detection. Environmental Toxicology and Chemistry, 2021, 40, 1087-1097.	4.3	5
5	Biological and chemical characterization of antimicrobial activity in <i>Arthrobacter</i> spp. isolated from diseaseâ€suppressive compost. Journal of Basic Microbiology, 2021, 61, 745-756.	3.3	10
6	Antifungal polyketides from the Picea rubens and Vaccinium angustifolium endophyte Lachnellula calyciformis. Mycological Progress, 2020, 19, 1101-1112.	1.4	1
7	Natural Product Discovery with LC-MS/MS Diagnostic Fragmentation Filtering: Application for Microcystin Analysis. Journal of Visualized Experiments, 2019, , .	0.3	5
8	Isolation, chemical characterization and hydrolysis of the trichothecene 7α-hydroxy, 15-deacetylcalonectrin (3ANX) from Fusarium graminearum DAOMC 242077. Tetrahedron Letters, 2019, 60, 852-856.	1.4	12
9	Phthalides produced by Coccomyces strobi (Rhytismataceae, Rhytismatales) isolated from needles of Pinus strobus. Phytochemistry Letters, 2019, 29, 17-24.	1.2	16
10	Diagnostic fragmentation filtering for the discovery of new chaetoglobosins and cytochalasins. Rapid Communications in Mass Spectrometry, 2019, 33, 133-139.	1.5	22
11	Detection of foliar endophytes and their metabolites in Picea and Pinus seedling needles. Fungal Ecology, 2018, 31, 1-8.	1.6	18
12	New 1,3-benzodioxin-4-ones from Synnemapestaloides ericacearum sp. nov., a biosynthetic link to remarkable compounds within the Xylariales. PLoS ONE, 2018, 13, e0198321.	2.5	10
13	Toxigenic Foliar Endophytes from the Acadian Forest. Forestry Sciences, 2018, , 343-381.	0.4	12
14	Natural Products of <i>Picea</i> Endophytes from the Acadian Forest. Journal of Natural Products, 2017, 80, 1475-1483.	3.0	44
15	Application of C8 liquid chromatography-tandem mass spectrometry for the analysis of enniatins and bassianolides. Journal of Chromatography A, 2017, 1508, 65-72.	3.7	16
16	Inflammation-associated gene expression in RAW 264.7 macrophages induced by toxins from fungi common on damp building materials. Toxicology in Vitro, 2017, 43, 16-20.	2.4	9
17	Metabolites of <i>Trichoderma</i> species isolated from damp building materials. Canadian Journal of Microbiology, 2017, 63, 621-632.	1.7	20
18	Ochratoxin A production by Penicillium thymicola. Fungal Biology, 2016, 120, 1041-1049.	2.5	20

#	Article	IF	CITATION
19	A novel chemometric classification for FTIR spectra of mycotoxin-contaminated maize and peanuts at regulatory limits. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1596-1607.	2.3	38
20	Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov Fungal Biology, 2016, 120, 1448-1457.	2.5	62
21	Antimicrobial dihydrobenzofurans and xanthenes from a foliar endophyte of Pinus strobus. Phytochemistry, 2015, 117, 436-443.	2.9	35
22	Antifungal sesquiterpenoids and macrolides from an endophytic Lophodermium species of Pinus strobus. Phytochemistry Letters, 2015, 14, 148-152.	1.2	29
23	Advancements in IR spectroscopic approaches for the determination of fungal derived contaminations in food crops. Analytical and Bioanalytical Chemistry, 2015, 407, 653-660.	3.7	44
24	Fungal secondary metabolites as harmful indoor air contaminants: 10Âyears on. Applied Microbiology and Biotechnology, 2014, 98, 9953-9966.	3.6	71
25	Isochromans and α-Pyrones from Penicillium corylophilum. Journal of Natural Products, 2014, 77, 206-212.	3.0	20
26	Extrolites of <i>Wallemia sebi </i> , a very common fungus in the built environment. Indoor Air, 2014, 24, 533-542.	4.3	19
27	Secondary metabolites from <i>Penicillium corylophilum</i> isolated from damp buildings. Mycologia, 2014, 106, 621-628.	1.9	18
28	New azaphilones from Chaetomium globosum isolated from the built environment. Tetrahedron Letters, 2013, 54, 568-572.	1.4	25
29	Chaetoglobosins and azaphilones produced by Canadian strains of Chaetomium globosum isolated from the indoor environment. Mycotoxin Research, 2013, 29, 47-54.	2.3	30
30	Motility and Flagellar Glycosylation in <i>Clostridium difficile</i> Journal of Bacteriology, 2009, 191, 7050-7062.	2.2	126
31	Flagellar glycosylation in <i>Clostridiumâ€fbotulinum</i> . FEBS Journal, 2008, 275, 4428-4444.	4.7	72