
Ding Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2301535/publications.pdf Version: 2024-02-01

DINC WANC

#	Article	IF	CITATIONS
1	Simultaneous wavefront sensing of multiple beams using neural networks. Applied Physics B: Lasers and Optics, 2022, 128, 1.	2.2	2
2	A method for aligning a femtosecond multi-petawatt coherent beam combining system. Applied Physics B: Lasers and Optics, 2021, 127, 1.	2.2	2
3	Photoionization-Induced Broadband Dispersive Wave Generated in an Ar-Filled Hollow-Core Photonic Crystal Fiber. Crystals, 2021, 11, 180.	2.2	3
4	Pulse combination and compression in hollow-core fiber for few-cycle intense mid-infrared laser generation. Photonics Research, 2021, 9, 477.	7.0	4
5	Photoionization-assisted, high-efficiency emission of a dispersive wave in gas-filled hollow-core photonic crystal fibers. Optics Express, 2020, 28, 17076.	3.4	11
6	Single-scan, dual-functional interferometer for fast spatio-temporal characterization of few-cycle pulses. Optics Letters, 2020, 45, 5081.	3.3	2
7	Highly-tunable, visible ultrashort pulses generation by soliton-plasma interactions in gas-filled single-ring photonic crystal fibers. Optics Express, 2019, 27, 30798.	3.4	6
8	Simulating a four-channel coherent beam combination system for femtosecond multi-petawatt lasers. Optics Express, 2019, 27, 36137.	3.4	11
9	Continuously wavelength-tunable blueshifting soliton generated in gas-filled photonic crystal fibers. Optics Letters, 2019, 44, 1805.	3.3	11
10	Ionization-induced adiabatic soliton compression in gas-filled hollow-core photonic crystal fibers. Optics Letters, 2019, 44, 5562.	3.3	10
11	Generation of few-cycle radially-polarized infrared pulses in a gas-filled hollow-core fiber. Chinese Physics B, 2018, 27, 104204.	1.4	0
12	Design, fabrication and application of dispersive mirrors with a SiO ₂ sculptured layer. Optical Materials Express, 2018, 8, 836.	3.0	5
13	26  mJ/100  Hz CEP-stable near-single-cycle 4  μm laser based on OPCPA and hollov Optics Letters, 2018, 43, 2197.	v-corg fibe	er compressio
14	Wavelength-tunable few-cycle pulses in visible region generated through soliton-plasma interactions. Optics Express, 2018, 26, 34977.	3.4	15
15	Propagation dynamics of radially polarized pulses in a gas-filled hollow-core fiber. Optics Express, 2017, 25, 3083.	3.4	8
16	Spatiotemporal dynamics of an optical pulse propagating in multimode hollow-core fibers filled with prealigned molecular gases. Physical Review A, 2016, 93, .	2.5	1
17	Design of intense 15-cycle pulses generation at 36 µm through a pressure gradient hollow-core fiber. Optics Express, 2016, 24, 9280.	3.4	8
18	Tuning the central wavelength by hundreds of nanometers using ultrafast molecular phase modulation. Physical Review A, 2015, 91, .	2.5	5

DING WANG

#	Article	IF	CITATIONS
19	Measuring electronic Kerr and rotational parameters of gases with hollow-core fibers. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 2238.	2.1	2
20	Measuring high-order Kerr effects of noble gases based on spectral analysis. Optics Communications, 2014, 328, 41-48.	2.1	4
21	Measurement of nonlinear refractive index coefficient of inert gases with hollow-core fiber. Applied Physics B: Lasers and Optics, 2013, 111, 447-452.	2.2	20