
Konstantinos Simeonidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2300651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Airborne magnetic nanoparticles may contribute to COVID-19 outbreak: Relationships in Greece and Iran. Environmental Research, 2022, 204, 112054.	7.5	7
2	Biomass-derived nanocomposites: A critical evaluation of their performance toward the capture of inorganic pollutants. , 2022, , 569-603.		0
3	Tuning the Fe(II)/hydroxide Ratio during Synthesis of Magnetite Nanoparticles to Maximize Cr(VI) Uptake Capacity. Water (Switzerland), 2022, 14, 1335.	2.7	1
4	Optimization of tin oxyhydroxide-decorated biochar for improved hexavalent chromium uptake from drinking water. Journal of Environmental Chemical Engineering, 2022, 10, 108051.	6.7	5
5	Addressing the Effect of Magnetic Particle Hyperthermia Application on the Composition and Spatial Distribution of Iron Oxide Nanoparticles Using X-ray Spectroscopic Techniques. Journal of Physical Chemistry C, 2022, 126, 10101-10109.	3.1	4
6	Magnetic nanoparticles: An indicator of health risks related to anthropogenic airborne particulate matter. Environmental Pollution, 2021, 271, 116309.	7.5	9
7	How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios. Nanoscale, 2021, 13, 15631-15646.	5.6	53
8	Dimpled SiO2@γ-Fe2O3 nanocomposites – fabrication and use for arsenic adsorption in aqueous medium. RSC Advances, 2021, 11, 1343-1353.	3.6	3
9	Technologies Developing in Heavy Metals' Removal from Water. Water (Switzerland), 2021, 13, 860.	2.7	2
10	Finding the Limits of Magnetic Hyperthermia on Core-Shell Nanoparticles Fabricated by Physical Vapor Methods. Magnetochemistry, 2021, 7, 49.	2.4	9
11	Toxic and Microbiological Effects of Iron Oxide and Silver Nanoparticles as Additives on Extended Ram Semen. Animals, 2021, 11, 1011.	2.3	8
12	Hydrotalcite-Embedded Magnetite Nanoparticles for Hyperthermia-Triggered Chemotherapy. Nanomaterials, 2021, 11, 1796.	4.1	4
13	Influence of the Pt thickness on the structural and magnetic properties of epitaxial Fe/Pt bilayers. Thin Solid Films, 2020, 694, 137716.	1.8	5
14	Magnetically recoverable nanoparticles for the simultaneous removal of Sb and As from water. Environmental Advances, 2020, 2, 100013.	4.8	8
15	lron Oxide Nanoparticles as an Alternative to Antibiotics Additive on Extended Boar Semen. Nanomaterials, 2020, 10, 1568.	4.1	14
16	Study of Corrosion Protection of Concrete in Sewage Systems with Magnesium Hydroxide Coatings. Environmental Sciences Proceedings, 2020, 2, 27.	0.3	6
17	Mineralogy and Geochemistry of Ultramafic Rocks from Rachoni Magnesite Mine, Gerakini (Chalkidiki,) Tj ETQq1 🕻	1 0.78431 2.0	4 jgBT /Ovei
18	Continuous production of magnetic iron oxide nanocrystals by oxidative precipitation. Chemical	19 7	29

Engineering Journal, 2020, 393, 124593.

#	Article	IF	CITATIONS
19	Improvement of Manganese Feroxyhyte's Surface Charge with Exchangeable Ca lons to Maximize Cd and Pb Uptake from Water. Materials, 2020, 13, 1762.	2.9	9
20	Controlling Magnetization Reversal and Hyperthermia Efficiency in Core–Shell Iron–Iron Oxide Magnetic Nanoparticles by Tuning the Interphase Coupling. ACS Applied Nano Materials, 2020, 3, 4465-4476.	5.0	42
21	Uptake of Sb(V) by Nano Fe3O4-Decorated Iron Oxy-Hydroxides. Water (Switzerland), 2019, 11, 181.	2.7	11
22	An Optimized Cr(VI)-Removal System Using Sn-based Reducing Adsorbents. Water (Switzerland), 2019, 11, 2477.	2.7	5
23	Magnetic Nanoparticles for Water Purification. , 2019, , 521-552.		23
24	Implementing nanoparticles for competitive drinking water purification. Environmental Chemistry Letters, 2019, 17, 705-719.	16.2	28
25	One step preparation of ZnFe2O4/Zn5(OH)6(CO3)2 nanocomposite with improved As(V) removal capacity. Separation Science and Technology, 2018, 53, 1457-1464.	2.5	1
26	Reductive precipitation and removal of Cr(VI) from groundwaters by pipe flocculation-microfiltration. Environmental Science and Pollution Research, 2018, 25, 12256-12262.	5.3	35
27	Evaluation of boron uptake by anion exchange resins in tap and geothermal water matrix. Materials Today: Proceedings, 2018, 5, 27599-27606.	1.8	8
28	Nanoparticles for Heavy Metal Removal from Drinking Water. Environmental Chemistry for A Sustainable World, 2018, , 75-124.	0.5	5
29	Optimization of tetravalent manganese feroxyhyte's negative charge density: A high-performing mercury adsorbent from drinking water. Science of the Total Environment, 2017, 574, 482-489.	8.0	20
30	Characterization and geochemistry of technogenic magnetic particles (TMPs) in contaminated industrial soils: Assessing health risk via ingestion. Geoderma, 2017, 295, 86-97.	5.1	28
31	Regeneration of arsenic spent adsorbents by Fe/ <scp>MgO</scp> nanoparticles. Journal of Chemical Technology and Biotechnology, 2017, 92, 1876-1883.	3.2	19
32	Spin-pumping through a varying-thickness MgO interlayer in Fe/Pt system. Applied Physics Letters, 2017, 110, .	3.3	23
33	The use of Sn(II) oxy-hydroxides for the effective removal of Cr(VI) from water: Optimization of synthesis parameters. Science of the Total Environment, 2017, 605-606, 190-198.	8.0	25
34	Enrichment and oral bioaccessibility of selected trace elements in fly ash-derived magnetic components. Environmental Science and Pollution Research, 2017, 24, 2337-2349.	5.3	8
35	Efficiency of Iron-Based Oxy-Hydroxides in Removing Antimony from Groundwater to Levels below the Drinking Water Regulation Limits. Sustainability, 2017, 9, 238.	3.2	20
36	Rapid small-scale column tests for Cr(VI) removal by granular magnetite. Water Science and Technology: Water Supply, 2016, 16, 525-532.	2.1	12

#	Article	IF	CITATIONS
37	Arrangement at the nanoscale: Effect on magnetic particle hyperthermia. Scientific Reports, 2016, 6, 37934.	3.3	131
38	In-situ particles reorientation during magnetic hyperthermia application: Shape matters twice. Scientific Reports, 2016, 6, 38382.	3.3	92
39	A versatile large-scale and green process for synthesizing magnetic nanoparticles with tunable magnetic hyperthermia features. RSC Advances, 2016, 6, 53107-53117.	3.6	33
40	Fe ₃ O ₄ @NiFe _{<i>x</i>} O _{<i>y</i>} Nanoparticles with Enhanced Electrocatalytic Properties for Oxygen Evolution in Carbonate Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 29461-29469.	8.0	34
41	One-Step Route to Iron Oxide Hollow Nanocuboids by Cluster Condensation: Implementation in Water Remediation Technology. ACS Applied Materials & Interfaces, 2016, 8, 28599-28606.	8.0	17
42	Optimum nanoscale design in ferrite based nanoparticles for magnetic particle hyperthermia. RSC Advances, 2016, 6, 72918-72925.	3.6	17
43	Metal (Hydr)oxides for the removal of Cr(VI) from drinking water: a XAFS study. Journal of Physics: Conference Series, 2016, 712, 012082.	0.4	1
44	Monitoring the role of Mn and Fe in the As-removal efficiency of tetravalent manganese feroxyhyte nanoparticles from drinking water: An X-ray absorption spectroscopy study. Journal of Colloid and Interface Science, 2016, 477, 148-155.	9.4	19
45	On the passivation mechanism of Fe3O4 nanoparticles during Cr(VI) removal from water: A XAFS study. Applied Surface Science, 2016, 360, 1080-1086.	6.1	37
46	Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study. Science of the Total Environment, 2016, 551-552, 246-253.	8.0	23
47	Tuning the magnetism of ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2016, 415, 20-23.	2.3	30
48	Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environmental Science: Water Research and Technology, 2016, 2, 43-70.	2.4	187
49	Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators. Materials Science and Engineering C, 2016, 58, 187-193.	7.3	68
50	Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles. Journal of Magnetism and Magnetic Materials, 2015, 381, 179-187.	2.3	46
51	Potential application of inorganic sulfur reductants for Cr(VI) removal at sub-ppb level. Desalination and Water Treatment, 2015, 54, 2067-2074.	1.0	11
52	Copper foams in water treatment technology: Removal of hexavalent chromium. Materials and Design, 2015, 87, 287-294.	7.0	15
53	An X-ray absorption study of synthesis- and As adsorption-induced microstructural modifications in Fe oxy-hydroxides. Journal of Hazardous Materials, 2015, 298, 203-209.	12.4	22
54	Enhanced U(VI) removal from drinking water by nanostructured binary Fe/Mn oxy-hydroxides. Journal of Water Process Engineering, 2015, 7, 227-236.	5.6	22

#	Article	IF	CITATIONS
55	Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI). Science of the Total Environment, 2015, 535, 61-68.	8.0	61
56	Kinetic modeling of AS(III) and AS(V) adsorption by a novel tetravalent manganese feroxyhyte. Journal of Colloid and Interface Science, 2015, 460, 1-7.	9.4	11
57	Mercury removal from drinking water by single iron and binary iron-manganese oxyhydroxides. Desalination and Water Treatment, 2015, 54, 2082-2090.	1.0	16
58	Exploring multifunctional potential of commercial ferrofluids by magnetic particle hyperthermia. Journal of Magnetism and Magnetic Materials, 2015, 380, 360-364.	2.3	11
59	Occurrence of Cr(VI) in drinking water of Greece and relation to the geological background. Journal of Hazardous Materials, 2015, 281, 2-11.	12.4	104
60	Can commercial ferrofluids be exploited in AC magnetic hyperthermia treatment to address diverse biomedical aspects?. EPJ Web of Conferences, 2014, 75, 08002.	0.3	8
61	Evaluation of nickel ferrite nanoparticles coated with oleylamine by NMR relaxation measurements and magnetic hyperthermia. Dalton Transactions, 2014, 43, 3626.	3.3	68
62	Scaling up the production of magnetic nanoparticles for biomedical applications: cost-effective fabrication from basalts. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1053-1058.	0.8	2
63	Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. Journal of Physical Chemistry C, 2014, 118, 5927-5934.	3.1	230
64	Tunable AC Magnetic Hyperthermia Efficiency of Ni Ferrite Nanoparticles. IEEE Transactions on Magnetics, 2014, 50, 1-7.	2.1	21
65	The role of <mmi:math altimg="si0006.gif<br" xmins:mmi="http://www.w3.org/1998/Wath/Wath/WathWill">overflow="scroll"><mmi:msubsup><mmi:mrow><mmi:mi mathvariant="normal">SO</mmi:mi </mmi:mrow><mmi:mrow><mmi:mn>4</mmi:mn></mmi:mrow><mmi:mro surface distribution in arsenic removal by iron oxy-hydroxides. Journal of Solid State Chemistry, 2014,</mmi:mro </mmi:msubsup></mmi:math>	w2@mml:n	n 15522 < /mml ar
66	213, 145-151. In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents. Journal of Materials Chemistry B, 2014, 2, 8390-8398.	5.8	66
67	A novel approach for arsenic adsorbents regeneration using MgO. Journal of Hazardous Materials, 2014, 265, 217-225.	12.4	77
68	Mn-feroxyhyte: The role of synthesis conditions on As(III) and As(V) removal capacity. Chemical Engineering Journal, 2014, 251, 192-198.	12.7	36
69	Adapting the use of Fe3O4 nanoparticles in large-scale water treatment facilities. Materials Research Society Symposia Proceedings, 2014, 1708, 13.	0.1	0
70	Comparative study of As(V) removal by ferric coagulation and oxy-hydroxides adsorption: laboratory and full-scale case studies. Desalination and Water Treatment, 2013, 51, 2872-2880.	1.0	32
71	Tetravalent Manganese Feroxyhyte: A Novel Nanoadsorbent Equally Selective for As(III) and As(V) Removal from Drinking Water. Environmental Science & Technology, 2013, 47, 9699-9705.	10.0	89
72	Cu-Zn powders as potential Cr(VI) adsorbents for drinking water. Journal of Hazardous Materials, 2013, 262, 606-613.	12.4	19

#	Article	IF	CITATIONS
73	Fe-based nanoparticles as tunable magnetic particle hyperthermia agents. Journal of Applied Physics, 2013, 114, .	2.5	52
74	Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications. Scientific Reports, 2013, 3, 1652.	3.3	442
75	Development of iron-based nanoparticles for Cr(VI) removal from drinking water. EPJ Web of Conferences, 2013, 40, 08007.	0.3	10
76	Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: Study of Fe(II) oxidation–precipitation parameters. Water Research, 2012, 46, 5255-5267.	11.3	98
77	Adjustable Hyperthermia Response of Selfâ€Assembled Ferromagnetic Feâ€MgO Core–Shell Nanoparticles by Tuning Dipole–Dipole Interactions. Advanced Functional Materials, 2012, 22, 3737-3744.	14.9	134
78	Size-Dependent Mechanisms in AC Magnetic Hyperthermia Response of Iron-Oxide Nanoparticles. IEEE Transactions on Magnetics, 2012, 48, 1320-1323.	2.1	124
79	Morphology influence on nanoscale magnetism of Co nanoparticles: Experimental and theoretical aspects of exchange bias. Physical Review B, 2011, 84, .	3.2	44
80	Evolution of Nd2Fe14B nanoparticles magnetism during surfactant-assisted ball-milling. Intermetallics, 2011, 19, 589-595.	3.9	37
81	The role of synthetic parameters in the magnetic behavior of relative large hcp Ni nanoparticles. Journal of Nanoparticle Research, 2011, 13, 1897-1908.	1.9	24
82	Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents. Chemical Engineering Journal, 2011, 168, 1008-1015.	12.7	110
83	In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment. Journal of Magnetism and Magnetic Materials, 2011, 323, 775-780.	2.3	98
84	The Effect of Composition and Structural Ordering on the Magnetism of FePt Nanoparticles. Journal of Nanoscience and Nanotechnology, 2010, 10, 6017-6023.	0.9	7
85	Size-Induced Effects in Wet-Chemically Synthesized CoPt ₃ Nanoparticles. Journal of Nanoscience and Nanotechnology, 2010, 10, 6087-6092.	0.9	2
86	Field-assisted organization, substrate effects and magnetic behavior of Ag30Co70 core–shell nanoparticles. Solid State Sciences, 2010, 12, 1907-1911.	3.2	5
87	Self-assembled multifunctional Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 362-370.	3.3	91
88	Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. Journal of Applied Physics, 2010, 108, .	2.5	160
89	Impact of synthesis parameters on structural and magnetic characteristics of Co-based nanoparticles. Journal of Nanoparticle Research, 2009, 11, 1477-1484.	1.9	7
90	Effects of various chemical synthetic routes on structural and magnetic features of Mn–Pt bimetallic nanoparticles. Polyhedron, 2009, 28, 3284-3290.	2.2	5

#	Article	IF	CITATIONS
91	Controlling the crystal structure of Ni nanoparticles by the use of alkylamines. Journal of Magnetism and Magnetic Materials, 2009, 321, 2723-2728.	2.3	55
92	Tailoring the morphology of CoxPt1â^'x magnetic nanostructures. Journal of Magnetism and Magnetic Materials, 2009, 321, 3120-3125.	2.3	11
93	Influence of multilayer modulation on structural and magnetic features in the Pt/Sm–Co system. Journal of Magnetism and Magnetic Materials, 2009, 321, 3155-3158.	2.3	2
94	Structural and magnetic features of heterogeneously nucleated Fe-oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2008, 320, 1631-1638.	2.3	19
95	Thermal treatment effects in the self-assembly of FePt nanoparticle arrays. Journal of Magnetism and Magnetic Materials, 2008, 320, 2665-2671.	2.3	6
96	OXIDATION PROCESS OF Fe NANOPARTICLES. Modern Physics Letters B, 2007, 21, 1143-1151.	1.9	12
97	ANNEALING EFFECT ON THE INDUCED MAGNETISM OF PLATINUM IN FePt NANOPARTICLES. Modern Physics Letters B, 2007, 21, 1189-1196.	1.9	5
98	EFFECT OF AIR EXPOSURE ON STRUCTURAL AND MAGNETIC FEATURES OF FeCo NANOPARTICLES. Modern Physics Letters B, 2007, 21, 1161-1168.	1.9	10
99	Controlled synthesis and phase characterization of Fe-based nanoparticles obtained by thermal decomposition. Journal of Magnetism and Magnetic Materials, 2007, 316, e1-e4.	2.3	64
100	Critical radius for exchange bias in naturally oxidized Fe nanoparticles. Physical Review B, 2006, 74, .	3.2	104
101	Structure effects on the magnetism of AgCo nanoparticles. Acta Materialia, 2006, 54, 5251-5260.	7.9	25
102	Measurements of the magnetoresistance effect in Co/Pt multilayers grown on patterned substrates. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1323-E1325.	2.3	2
103	Conditions Affecting Bromate Formation During Ozonation of Bottled Water. Ozone: Science and Engineering, 2003, 25, 167-175.	2.5	6