
G R R A Kumara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2300558/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ni/N co-doped P25 TiO2 photoelectrodes for efficient Dye-Sensitized Solar Cells. Materials Science in Semiconductor Processing, 2021, 135, 106062.	4.0	12
2	Graphite-type activated carbon from coconut shell: a natural source for eco-friendly non-volatile storage devices. RSC Advances, 2021, 11, 2854-2865.	3.6	78
3	Activated coconut shell charcoal based counter electrode for dye-sensitized solar cells. Organic Electronics, 2019, 71, 93-97.	2.6	46
4	Investigations on the photo catalytic activity of calcium doped TiO2 photo electrode for enhanced efficiency of anthocyanins based dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 43-57.	3.9	21
5	Donor-Ï€-Conjugated Spacer-Acceptor Dye-Sensitized Solid-State Solar Cell Using CuI as the Hole Collector. International Journal of Photoenergy, 2019, 2019, 1-5.	2.5	5
6	SnO2/ZnO composite dye-sensitized solar cells with graphene-based counter electrodes. Organic Electronics, 2018, 56, 159-162.	2.6	18
7	Hybrid dye-sensitized solar cells with graphene—A convenient method to seal liquid state devices. Journal of Renewable and Sustainable Energy, 2018, 10, .	2.0	1
8	Vein graphite-based counter electrodes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 78-83.	3.9	15
9	A Study of the Efficiency Enhancement of the Gel Electrolyte-based SnO2 Dye-sensitized Solar Cells Through the Use of Thin Insulating Layers. Electrochimica Acta, 2016, 210, 138-146.	5.2	9
10	Use of lithium iodide and tetrapropylammonium iodide in gel electrolytes for improved performance of quasi-solid-state dye-sensitized solar cells: Recording an efficiency of 6.40%. Electrochimica Acta, 2016, 191, 1037-1043.	5.2	22
11	Tin oxide based dye-sensitized solid-state solar cells: surface passivation for suppression of recombination. Materials Science in Semiconductor Processing, 2015, 40, 890-895.	4.0	12
12	Novel Method to Improve Performance of Dye-sensitized Solar Cells Based on Quasi-solid Gel-Polymer Electrolytes. Electrochimica Acta, 2015, 152, 360-367.	5.2	21
13	Development of Dye-Sensitized Solid-State ZnO / D 149/ CuSCN Solar Cell. International Journal of Nanoscience, 2014, 13, 1440007.	0.7	3
14	Highly Efficient SnO ₂ / MgO Composite Film-Based Dye-Sensitized Solar Cells Sensitized with N719 and D358 Dyes. International Journal of Nanoscience, 2014, 13, 1440006.	0.7	3
15	Preparation of Fluoride-Doped Tin Oxide Films on Soda–Lime Glass Substrates by Atomized Spray Pyrolysis Technique and Their Subsequent Use in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16479-16485.	3.1	34
16	An enhancement of efficiency of a solid-state dye-sensitized solar cell due to cocktail effect of N719 and black dye. Optik, 2014, 125, 813-815.	2.9	16
17	A Novel Method to Enhance the Performance of Quasi-solid-state Dye-sensitized Solar Cells Based on Polyacrylonitrile Gel Electrolyte and Nanoparticles of ZnO with Indoline D-358 as the Dye. Chemistry Letters, 2014, 43, 681-683.	1.3	2
18	Efficient solid-state dye-sensitized n-ZnO/D-358 dye/p-CuI solar cell. Electrochimica Acta, 2013, 94, 34-37.	5.2	13

G R R A KUMARA

#	Article	lF	CITATIONS
19	Al-Doped ZnO Film as a Transparent Conductive Substrate in Indoline-Sensitized Nanoporous ZnO Solar Cell Materials Research Society Symposia Proceedings, 2012, 1494, 345-350.	0.1	0
20	TiO ₂ Surface Treatment Effects by Mg ²⁺ , Ba ²⁺ , and Al ³⁺ on Sb ₂ S ₃ Extremely Thin Absorber Solar Cells. Journal of Physical Chemistry C, 2012, 116, 13465-13471.	3.1	103
21	Shorter nanotubes and finer nanoparticles of TiO2 for increased performance in dye-sensitized solar cells. Electrochimica Acta, 2012, 63, 375-380.	5.2	17
22	Highly efficient, optically semi-transparent, ZnO-based dye-sensitized solar cells with Indoline D-358 as the dye. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 229, 29-32.	3.9	28
23	Preparation of structurally modified, conductivity enhanced-p-CuSCN and its application in dye-sensitized solid-state solar cells. Journal of Power Sources, 2012, 203, 288-296.	7.8	51
24	Large area dye-sensitized solar cells with titanium based counter electrode. Thin Solid Films, 2012, 520, 4119-4121.	1.8	16
25	Dye-sensitized solar cell based on optically transparent TiO2 nanocrystalline electrode prepared by atomized spray pyrolysis technique. Electrochimica Acta, 2011, 56, 9159-9161.	5.2	21
26	The interconnected CaCO3 coated SnO2 nanocrystalline dye-sensitized solar cell with superior performance. Electrochimica Acta, 2011, 56, 4135-4138.	5.2	18
27	Quasi-solid electrolyte based on polyacrylonitrile for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 308-312.	3.9	49
28	Electrochemical impedance and X-ray photoelectron spectroscopic analysis of dye-sensitized liquid electrolyte based SnO2/ZnO solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 215, 1-10.	3.9	15
29	Photoelectrochemical solar cells made from SnO2/ZnO films sensitized with an indoline dye. Journal of Materials Research, 2010, 25, 1838-1841.	2.6	6
30	Tuning chemistry of CuSCN to enhance the performance of TiO2/N719/CuSCN all-solid-state dye-sensitized solar cell. Chemical Communications, 2010, 46, 3360.	4.1	50
31	Quasi-solid Polymer Electrolytes Based on Polyacrylonitrile and Plasticizers for Indoline Dye Sensitized Solar Cells of Efficiency 5.3%. Chemistry Letters, 2008, 37, 36-37.	1.3	19
32	Solid-state Solar Cells Sensitized with Indoline Dye. Chemistry Letters, 2007, 36, 716-717.	1.3	35
33	Stability of the SnO2/MgO dye-sensitized photoelectrochemical solar cell. Solar Energy Materials and Solar Cells, 2007, 91, 544-547.	6.2	106
34	Large area dye-sensitized solar cells: material aspects of fabrication. Progress in Photovoltaics: Research and Applications, 2006, 14, 643-651.	8.1	58
35	Shiso leaf pigments for dye-sensitized solid-state solar cell. Solar Energy Materials and Solar Cells, 2006, 90, 1220-1226.	6.2	151
36	Dye-sensitized Solar Cells with an Extremely Thin Liquid Film as the Redox Electron Mediator. Chemistry Letters, 2005, 34, 572-573.	1.3	5

3

G R R A KUMARA

#	Article	IF	CITATIONS
37	The effect of particle size and conductivity of Cul layer on the performance of solid-state dye-sensitized photovoltaic cells. Current Applied Physics, 2005, 5, 149-151.	2.4	37
38	Porous TiO2 thin films prepared by spray pyrolysis deposition (SPD) technique and their application to UV sensors. Solid State Ionics, 2004, 172, 527-531.	2.7	60
39	Fabrication of dye-sensitized solar cells by spray pyrolysis deposition (SPD) technique. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 167-172.	3.9	48
40	Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: enhancement of the efficiency. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 183-185.	3.9	97
41	Efficient dye-sensitized photoelectrochemical cells made from nanocrystalline tin(IV) oxideÂzinc oxide composite films. Semiconductor Science and Technology, 2003, 18, 312-318.	2.0	36
42	Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate as a Cul Crystal Growth Inhibitor. Langmuir, 2002, 18, 10493-10495.	3.5	174
43	Dye-Sensitized Solid-State Solar Cells:Â Use of Crystal Growth Inhibitors for Deposition of the Hole Collector. Chemistry of Materials, 2002, 14, 954-955.	6.7	234
44	Dye-sensitized composite semiconductor nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 190-196.	2.7	73
45	Suppression of recombinations in a dye-sensitized photoelectrochemical cell made from a film of tin IV oxide crystallites coated with a thin layer of aluminium oxide. Journal Physics D: Applied Physics, 2001, 34, 868-873.	2.8	115
46	Dye-sensitized solid-state photovoltaic cells: Suppression of electron-hole recombination by deposition of the dye on a thin insulating film in contact with a semiconductor. Journal of Electronic Materials, 2001, 30, 992-996.	2.2	26
47	Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide. Solar Energy Materials and Solar Cells, 2001, 69, 195-199.	6.2	235
48	Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin (IV) oxide films. Journal Physics D: Applied Physics, 1999, 32, 374-379.	2.8	100
49	An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chemical Communications, 1999, , 15-16.	4.1	288
50	Sensitization of nano-porous films of TiO2 with santalin (red sandalwood pigment) and construction of dye-sensitized solid-state photovoltaic cells. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 117, 137-142.	3.9	77
51	Nanoporous n-/selenium/p-CuCNS photovoltaic cell. Journal Physics D: Applied Physics, 1998, 31, 2326-2330.	2.8	83
52	A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex. Journal Physics D: Applied Physics, 1998, 31, 1492-1496.	2.8	191
53	Nano-porous solid-state photovoltaic cell sensitized with tannin. Semiconductor Science and Technology, 1998, 13, 134-138.	2.0	32
54	The photostability of dye-sensitized solid state photovoltaic cells: factors determining the stability of the pigment in a nanoporous n-/cyanidin/p-CuI cell. Semiconductor Science and Technology, 1997, 12, 128-132.	2.0	44

G R R A KUMARA

#	Article	IF	CITATIONS
55	The suppression of the recombination of photogenerated carriers in a dye-sensitized nano-porous solid-state photovoltaic cell. Semiconductor Science and Technology, 1996, 11, 1737-1739.	2.0	24
56	Chlorophyll-sensitized microporous cuprous iodide photocathode. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 91, 59-61.	3.9	12
57	Deposition of thin polycrystalline films of cuprous thiocyanate on conducting glass and photoelectrochemical dye-sensitization. Thin Solid Films, 1995, 261, 307-310.	1.8	43
58	A dye-sensitized nano-porous solid-state photovoltaic cell. Semiconductor Science and Technology, 1995, 10, 1689-1693.	2.0	419