
Serge Maurice Mbadinga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2299682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dominant and Active Methanogens in the Production Waters From a High-Temperature Petroleum Reservoir by DNA- and RNA-Based Analysis. Geomicrobiology Journal, 2021, 38, 191-198.	2.0	4
2	Synthesis and mass spectra of rearrangement bio-signature metabolites of anaerobic alkane degradation via fumarate addition. Analytical Biochemistry, 2020, 600, 113746.	2.4	2
3	Genomic and Transcriptomic Evidence Supports Methane Metabolism in <i>Archaeoglobi</i> . MSystems, 2020, 5, .	3.8	33
4	Methanogenic biodegradation of C13 and C14 n-alkanes activated by addition to fumarate. International Biodeterioration and Biodegradation, 2020, 153, 104994.	3.9	6
5	Long-chain n-alkane biodegradation coupling to methane production in an enriched culture from production water of a high-temperature oil reservoir. AMB Express, 2020, 10, 63.	3.0	13
6	Methanogenic biodegradation of C9 to C12n-alkanes initiated by Smithella via fumarate addition mechanism. AMB Express, 2020, 10, 23.	3.0	22
7	The newly proposed TACK and DPANN archaea detected in the production waters from a high-temperature petroleum reservoir. International Biodeterioration and Biodegradation, 2019, 143, 104729.	3.9	11
8	Methanogenic Degradation of Long <i>n</i> -Alkanes Requires Fumarate-Dependent Activation. Applied and Environmental Microbiology, 2019, 85, .	3.1	22
9	High microbial diversity of the nitric oxide dismutation reaction revealed by PCR amplification and analysis of the nod gene. International Biodeterioration and Biodegradation, 2019, 143, 104708.	3.9	10
10	Bioconversion Pathway of CO2 in the Presence of Ethanol by Methanogenic Enrichments from Production Water of a High-Temperature Petroleum Reservoir. Energies, 2019, 12, 918.	3.1	2
11	Direct microbial transformation of carbon dioxide to value-added chemicals: A comprehensive analysis and application potentials. Bioresource Technology, 2019, 288, 121401.	9.6	40
12	Simulation of in situ oil reservoir conditions in a laboratory bioreactor testing for methanogenic conversion of crude oil and analysis of the microbial community. International Biodeterioration and Biodegradation, 2019, 136, 24-33.	3.9	14
13	Methanogenic degradation of branched alkanes in enrichment cultures of production water from a high-temperature petroleum reservoir. Applied Microbiology and Biotechnology, 2019, 103, 2391-2401.	3.6	21
14	Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters. Energy, 2018, 147, 663-671.	8.8	27
15	Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium. World Journal of Microbiology and Biotechnology, 2018, 34, 34.	3.6	48
16	Microbial reduction of CO2 from injected NaH13CO3 with degradation of n-hexadecane in the enrichment culture derived from a petroleum reservoir. International Biodeterioration and Biodegradation, 2018, 127, 192-200.	3.9	12
17	Metabolic capability and in situ activity of microorganisms in an oil reservoir. Microbiome, 2018, 6, 5.	11.1	70
18	Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: Central composite design approach. Renewable Energy, 2017, 109, 93-100.	8.9	60

#	Article	IF	CITATIONS
19	Microbiota and their affiliation with physiochemical characteristics of different subsurface petroleum reservoirs. International Biodeterioration and Biodegradation, 2017, 120, 170-185.	3.9	63
20	Propionate metabolism and diversity of relevant functional genes by in silico analysis and detection in subsurface petroleum reservoirs. World Journal of Microbiology and Biotechnology, 2017, 33, 182.	3.6	6
21	Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir. Applied Microbiology and Biotechnology, 2017, 101, 7053-7063.	3.6	16
22	Type II chaperonin gene as a complementary barcode for 16S rRNA gene in study of Archaea diversity of petroleum reservoirs. International Biodeterioration and Biodegradation, 2017, 123, 113-120.	3.9	8
23	Synthesis and Characterization of Anaerobic Degradation Biomarkers of n-Alkanes via Hydroxylation/Carboxylation Pathways. European Journal of Mass Spectrometry, 2016, 22, 31-37.	1.0	7
24	Microbial communities responsible for fixation of CO2 revealed by using mcrA, cbbM, cbbL, fthfs, fefe-hydrogenase genes as molecular biomarkers in petroleum reservoirs of different temperatures. International Biodeterioration and Biodegradation, 2016, 114, 164-175.	3.9	14
25	Activation of CO2-reducing methanogens in oil reservoir after addition of nutrient. Journal of Bioscience and Bioengineering, 2016, 122, 740-747.	2.2	12
26	Molecular diversity of bacterial bamA gene involved in anaerobic degradation of aromatic hydrocarbons in mesophilic petroleum reservoirs. International Biodeterioration and Biodegradation, 2016, 114, 122-128.	3.9	36
27	Diversity and abundance of ammonia-oxidizing bacteria (AOB) revealed by PCR amplification of amoA gene in a polyacrylamide transportation system of an oilfield. International Biodeterioration and Biodegradation, 2016, 115, 110-118.	3.9	3
28	Dominance of Desulfotignum in sulfate-reducing community in high sulfate production-water of high temperature and corrosive petroleum reservoirs. International Biodeterioration and Biodegradation, 2016, 114, 45-56.	3.9	59
29	The biofilm property and its correlationship with high-molecular-weight polyacrylamide degradation in a water injection pipeline of Daqing oilfield. Journal of Hazardous Materials, 2016, 304, 388-399.	12.4	45
30	Non-destructive characterization using MCT reveals the composition and distribution of impurities in solar carnallite. RSC Advances, 2015, 5, 16230-16233.	3.6	2
31	Efficiently Applicability of Synthetic Cu-TiO2 in Tetrachloroethene, Trichloroethene and 1,1,1-Trichloroethane Removal in Aqueous Phase under VUV Irradiation. Asian Journal of Chemistry, 2015, 27, 60-66.	0.3	0
32	Insights into the Anaerobic Biodegradation Pathway of n-Alkanes in Oil Reservoirs by Detection of Signature Metabolites. Scientific Reports, 2015, 5, 9801.	3.3	78
33	Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express, 2015, 5, 117.	3.0	244
34	Synthesis of 2-[2H]-2-(1-methylalkyl)succinic acids. Chinese Chemical Letters, 2015, 26, 619-622.	9.0	3
35	Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation. International Journal of Molecular Sciences, 2015, 16, 4814-4837.	4.1	119
36	Analysis of Bacterial and Archaeal Communities along a High-Molecular-Weight Polyacrylamide Transportation Pipeline System in an Oil Field. International Journal of Molecular Sciences, 2015, 16, 7445-7461.	4.1	15

#	Article	IF	CITATIONS
37	Acetoclastic methanogenesis is likely the dominant biochemical pathway of palmitate degradation in the presence of sulfate. Applied Microbiology and Biotechnology, 2015, 99, 7757-7769.	3.6	12
38	Role of reactive oxygen species in the dechlorination of trichloroethene and 1.1.1-trichloroethane in aqueous phase in UV/TiO 2 systems. Chemical Engineering Science, 2015, 123, 367-375.	3.8	21
39	Functional genes (dsr) approach reveals similar sulphidogenic prokaryotes diversity but different structure in saline waters from corroding high temperature petroleum reservoirs. Applied Microbiology and Biotechnology, 2014, 98, 1871-1882.	3.6	45
40	Enhanced Photocatalytic Activity of TiO ₂ Nanosheets by Doping with Cu for Chlorinated Solvent Pollutants Degradation. Industrial & Engineering Chemistry Research, 2014, 53, 1368-1376.	3.7	45
41	Efficiently Synthetic TiO2 Nano-sheets for PCE, TCE, and TCA Degradations in Aqueous Phase Under VUV Irradiation. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	5
42	Efficient dechlorination of chlorinated solvent pollutants under UV irradiation by using the synthesized TiO2 nano-sheets in aqueous phase. Journal of Environmental Sciences, 2014, 26, 1188-1194.	6.1	11
43	Synthesis of Anaerobic Degradation Biomarkers Alkyl-, Aryl- and Cycloalkylsuccinic Acids and Their Mass Spectral Characteristics. European Journal of Mass Spectrometry, 2014, 20, 287-297.	1.0	14
44	Optimization of Surfactin Production by Bacillus subtilis HSO121 through Plackett-Burman and Response Surface Method. Protein and Peptide Letters, 2014, 21, 885-893.	0.9	12
45	Evaluation of microbial community composition in thermophilic methane-producing incubation of production water from a high-temperature oil reservoir. Environmental Technology (United) Tj ETQq1 1 0.784314	l r g∄⊺ /Ονα	erlæck 10 Tf
46	Methanogenic Microbial Community Composition of Oily Sludge and Its Enrichment Amended with Alkanes Incubated for Over 500 Days. Geomicrobiology Journal, 2012, 29, 716-726.	2.0	27
47	Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques. Ecotoxicology, 2012, 21, 1680-1691.	2.4	67
48	Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir. Applied Microbiology and Biotechnology, 2012, 96, 531-542.	3.6	102
49	Microbial communities involved in anaerobic degradation of alkanes. International Biodeterioration and Biodegradation, 2011, 65, 1-13.	3.9	175
50	Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation. International Biodeterioration and Biodegradation, 2011, 65, 444-450.	3.9	93