Jie Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2298638/publications.pdf

Version: 2024-02-01

71685 147801 5,892 90 31 76 citations h-index g-index papers 99 99 99 7900 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Preparation of Ï∈-extended fullerene derivatives through addition of phenylenediamine to open-cage fullerene derivatives. Organic Chemistry Frontiers, 2022, 9, 320-328.	4.5	5
2	Titelbild: Highly Efficient Multiphoton Absorption of Zincâ€AlEgen Metal–Organic Frameworks (Angew.) Tj ETC	QqQ <u>.</u> Q0 rg	BT/Overlock I
3	Highly Efficient Multiphoton Absorption of Zincâ€AlEgen Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
4	Bimetallic Bi–Sn microspheres as high initial coulombic efficiency and long lifespan anodes for sodium-ion batteries. Chemical Communications, 2022, 58, 5140-5143.	4.1	15
5	Suppressed Dissolution and Enhanced Desolvation in Core–Shell MoO ₃ @TiO ₂ Nanorods as a Highâ€Rate and Longâ€Life Anode Material for Proton Batteries. Advanced Energy Materials, 2022, 12, .	19.5	44
6	Highly Effective Photocatalytic Radical Reactions Triggered by a Photoactive Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23518-23526.	8.0	19
7	Dynamic SPME–SERS Induced by Electric Field: Toward In Situ Monitoring of Pharmaceuticals and Personal Care Products. Analytical Chemistry, 2022, 94, 9270-9277.	6.5	9
8	Ag@WS2 quantum dots for Surface Enhanced Raman Spectroscopy: Enhanced charge transfer induced highly sensitive detection of thiram from honey and beverages. Food Chemistry, 2021, 344, 128570.	8.2	25
9	Hydrophilic molecularly imprinted polymers functionalized magnetic carbon nanotubes for selective extraction of cyclic adenosine monophosphate from winter jujube. Journal of Separation Science, 2021, 44, 2131-2142.	2.5	14
10	Selective Nitration of Openâ€Cage [60]Fullerene Derivatives by Ponzio Reaction. European Journal of Organic Chemistry, 2021, 2021, 4288-4292.	2.4	1
11	Synergistic Lewis acid-base sites of ultrathin porous Co3O4 nanosheets with enhanced peroxidase-like activity. Nano Research, 2021, 14, 3514-3522.	10.4	45
12	A strategy of utilizing Cu2+-mediating interaction to prepare magnetic imprinted polymers for the selective detection of celastrol in traditional Chinese medicines. Talanta, 2021, 231, 122339.	5 . 5	25
13	A series of microporous and robust Ln-MOFs showing luminescence properties and catalytic performances towards Knoevenagel reactions. Dalton Transactions, 2021, 50, 17785-17791.	3.3	6
14	Dy ₂ @C ₇₉ N: a new member of dimetalloazafullerenes with strong single molecular magnetism. Nanoscale, 2020, 12, 11130-11135.	5 . 6	28
15	Lightâ€Driven Crawling of Molecular Crystals by Phaseâ€Dependent Transient Elastic Lattice Deformation. Angewandte Chemie - International Edition, 2020, 59, 10337-10342.	13.8	10
16	Lightâ€Driven Crawling of Molecular Crystals by Phaseâ€Dependent Transient Elastic Lattice Deformation. Angewandte Chemie, 2020, 132, 10423-10428.	2.0	1
17	Synthesis of Open-Cage Fullerenes with a Long Tail. Organic Materials, 2020, 02, 282-287.	2.0	O
18	Selective Addition of Palladium on the Rim of Open-Cage Fullerenes To Form Mononuclear and Dinuclear Complexes. Organometallics, 2019, 38, 3139-3143.	2.3	8

#	Article	IF	CITATIONS
19	Concise Synthesis of Openâ€Cage Fullerenes for Oxygen Delivery. Angewandte Chemie, 2019, 131, 17854-17858.	2.0	12
20	Concise Synthesis of Openâ€Cage Fullerenes for Oxygen Delivery. Angewandte Chemie - International Edition, 2019, 58, 17690-17694.	13.8	31
21	Synthesis of Open age [60]Fullerenes with Five Carbonyl Groups on the Rim of the 15â€Membered Orifice. ChemPlusChem, 2019, 84, 608-612.	2.8	1
22	Facile one-step solvothermal synthesis of a luminescent europium metal-organic framework for rapid and selective sensing of uranyl ions. Analytical and Bioanalytical Chemistry, 2019, 411, 4213-4220.	3.7	30
23	Highly efficient phenothiazine 5,5-dioxide-based hole transport materials for planar perovskite solar cells with a PCE exceeding 20%. Journal of Materials Chemistry A, 2019, 7, 9510-9516.	10.3	60
24	Synthesis of an open-cage fullerene-based unidirectional H-bonding network and its coordination with titanium. Organic Chemistry Frontiers, 2019, 6, 1397-1402.	4.5	18
25	An NHC-CuCl functionalized metal–organic framework for catalyzing β-boration of α,β-unsaturated carbonyl compounds. Dalton Transactions, 2019, 48, 5144-5148.	3.3	7
26	Single-Crystal Study of a Low Spin Co(II) Molecular Qubit: Observation of Anisotropic Rabi Cycles. Inorganic Chemistry, 2019, 58, 2330-2335.	4.0	19
27	Multidimensional Disorder in Zeolite IM-18 Revealed by Combining Transmission Electron Microscopy and X-ray Powder Diffraction Analyses. Crystal Growth and Design, 2018, 18, 2441-2451.	3.0	30
28	Endohedral Metallofullerene as Molecular High Spin Qubit: Diverse Rabi Cycles in Gd ₂ @C ₇₉ N. Journal of the American Chemical Society, 2018, 140, 1123-1130.	13.7	100
29	[Ti ₈ Zr ₂ O ₁₂ (COO) ₁₆] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 2018, 4, 105-111.	11.3	204
30	Transmission electron microscopy as an important tool for characterization of zeolite structures. Inorganic Chemistry Frontiers, 2018, 5, 2836-2855.	6.0	29
31	Narrow-band blue emitting nitridomagnesosilicate phosphor Sr ₈ Mg ₇ Si ₉ N ₂₂ :Eu ²⁺ for phosphor-converted LEDs. Chemical Communications, 2018, 54, 11598-11601.	4.1	23
32	Synthesis and Structure of a Layered Fluoroaluminophosphate and Its Transformation to a Three-Dimensional Zeotype Framework. Inorganic Chemistry, 2018, 57, 11753-11760.	4.0	7
33	Single-crystal x-ray diffraction structures of covalent organic frameworks. Science, 2018, 361, 48-52.	12.6	868
34	Superconductivity in the half-Heusler compound TbPdBi. Physical Review B, 2018, 97, .	3.2	50
35	A highly porous metal–organic framework for large organic molecule capture and chromatographic separation. Chemical Communications, 2017, 53, 3434-3437.	4.1	31
36	A Base-Resistant Metalloporphyrin Metal–Organic Framework for C–H Bond Halogenation. Journal of the American Chemical Society, 2017, 139, 211-217.	13.7	250

#	Article	IF	CITATIONS
37	High-Throughput Synthesis and Structure of Zeolite ZSM-43 with Two-Directional 8-Ring Channels. Inorganic Chemistry, 2017, 56, 8856-8864.	4.0	15
38	Interrupted silicogermanate with 10-ring channels: synthesis and structure determination by combining rotation electron diffraction and powder X-ray diffraction. Inorganic Chemistry Frontiers, 2017, 4, 1654-1659.	6.0	4
39	PKUâ€21: A Novel Layered Germanate Built from Ge ₇ and Ge ₁₀ Clusters for CO ₂ Separation. Chemistry - A European Journal, 2017, 23, 17879-17884.	3.3	0
40	PKU-20: A new silicogermanate constructed from sti and asv layers. Microporous and Mesoporous Materials, 2016, 224, 384-391.	4.4	5
41	A multi-dimensional quasi-zeolite with 12 \tilde{A} — 10 \tilde{A} — 7-ring channels demonstrates high thermal stability and good gas adsorption selectivity. Chemical Science, 2016, 7, 3025-3030.	7.4	12
42	Unprecedented Topological Complexity in a Metal–Organic Framework Constructed from Simple Building Units. Journal of the American Chemical Society, 2016, 138, 1970-1976.	13.7	155
43	Selective Heterogeneous Câ^'H Activation/Halogenation Reactions Catalyzed by Pd@MOF Nanocomposites. Chemistry - A European Journal, 2016, 22, 3729-3737.	3.3	71
44	PKU-3: An HCl-Inclusive Aluminoborate for Strecker Reaction Solved by Combining RED and PXRD. Journal of the American Chemical Society, 2015, 137, 7047-7050.	13.7	33
45	Stable Alkali Metal Ion Intercalation Compounds as Optimized Metal Oxide Nanowire Cathodes for Lithium Batteries. Nano Letters, 2015, 15, 2180-2185.	9.1	160
46	Carbonate-Based Zeolitic Imidazolate Framework for Highly Selective CO ₂ Capture. Inorganic Chemistry, 2015, 54, 1816-1821.	4.0	52
47	Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications, 2015, 6, 5979.	12.8	540
48	Piezofluorochromic Metal–Organic Framework: A Microscissor Lift. Journal of the American Chemical Society, 2015, 137, 10064-10067.	13.7	218
49	Syntheses, structure solutions, and catalytic performance of two novel layered silicates. Dalton Transactions, 2015, 44, 15567-15575.	3.3	3
50	Series of Highly Stable Isoreticular Lanthanide Metal–Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties. Chemistry of Materials, 2015, 27, 5332-5339.	6.7	146
51	A zeolite family with expanding structural complexity and embedded isoreticular structures. Nature, 2015, 524, 74-78.	27.8	167
52	Ultra-small mesoporous silica nanoparticles as efficient carriers for pH responsive releases of anti-cancer drugs. Dalton Transactions, 2015, 44, 20186-20192.	3.3	27
53	A Crystalline Mesoporous Germanate with 48â€Ring Channels for CO ₂ Separation. Angewandte Chemie - International Edition, 2015, 54, 7290-7294.	13.8	26
54	Double-Supported Silica-Metal–Organic Framework Palladium Nanocatalyst for the Aerobic Oxidation of Alcohols under Batch and Continuous Flow Regimes. ACS Catalysis, 2015, 5, 472-479.	11,2	67

#	Article	IF	CITATIONS
55	A Highly Stable Zeotype Mesoporous Zirconium Metal–Organic Framework with Ultralarge Pores. Angewandte Chemie - International Edition, 2015, 54, 149-154.	13.8	258
56	A 3D 12â€Ring Zeolite with Ordered 4â€Ring Vacancies Occupied by (H ₂ O) ₂ Dimers. Chemistry - A European Journal, 2014, 20, 16097-16101.	3.3	17
57	Phase identification and structure determination from multiphase crystalline powder samples by rotation electron diffraction. Journal of Applied Crystallography, 2014, 47, 2048-2054.	4.5	25
58	Selection of Amino Acids and the Biomimetic Synthesis of Amido Bond in the Presence of \hat{l}^2 -CD. Synthetic Communications, 2014, 44, 1111-1121.	2.1	3
59	CHA-type zeolites with high boron content: Synthesis, structure and selective adsorption properties. Microporous and Mesoporous Materials, 2014, 194, 97-105.	4.4	24
60	SU-79: a novel germanate with 3D 10- and 11-ring channels templated by a square-planar nickel complex. Inorganic Chemistry Frontiers, 2014, 1, 278-283.	6.0	6
61	Ab initio structure determination of interlayer expanded zeolites by single crystal rotation electron diffraction. Dalton Transactions, 2014, 43, 10593-10601.	3.3	13
62	CO 2 selective NaMg-CTS-1 and its structural formation from the titanium silicate based molecule sieve NaMg-ETS-4. Microporous and Mesoporous Materials, 2014, 198, 63-73.	4.4	7
63	A Series of Highly Stable Mesoporous Metalloporphyrin Fe-MOFs. Journal of the American Chemical Society, 2014, 136, 13983-13986.	13.7	363
64	Structure analysis of zeolites by rotation electron diffraction (RED). Microporous and Mesoporous Materials, 2014, 189, 115-125.	4.4	57
65	Al-rich region of Alâ^'Pt. Journal of Alloys and Compounds, 2013, 580, 618-625.	5.5	19
66	Controllable self-growth of a hydrogel with multiple membranes. RSC Advances, 2013, 3, 15237.	3.6	24
67	Light-responsive drug carrier vesicles assembled by cinnamic acid-based peptide. Colloid and Polymer Science, 2013, 291, 2639-2646.	2.1	3
68	Framework Isomerism in Vanadium Metal–Organic Frameworks: MIL-88B(V) and MIL-101(V). Crystal Growth and Design, 2013, 13, 5036-5044.	3.0	100
69	Single-Crystal Structure of a Covalent Organic Framework. Journal of the American Chemical Society, 2013, 135, 16336-16339.	13.7	392
70	A silicogermanate with 20-ring channels directed by a simple quaternary ammonium cation. Dalton Transactions, 2013, 42, 1360-1363.	3.3	27
71	Three-dimensional rotation electron diffraction: software <i>RED</i> for automated data collection and data processing. Journal of Applied Crystallography, 2013, 46, 1863-1873.	4.5	264
72	On the Structure of α-BiFeO ₃ . Inorganic Chemistry, 2013, 52, 2388-2392.	4.0	30

#	Article	IF	CITATIONS
73	SUMOF-5: a mesoporous metal-organic framework with the tbo topology built from the dicopper paddle-wheel cluster and a new tritopic linker. Zeitschrift Fur Kristallographie - Crystalline Materials, 2013, 228, 323-329.	0.8	9
74	Cu(II)-triggered release of paclitaxel from a supramolecular complex. Supramolecular Chemistry, 2013, 25, 302-309.	1.2	4
75	Effective regioselective protection of amino groups of lysine achieved by a supramolecular enzyme-mimic approach. Organic and Biomolecular Chemistry, 2012, 10, 9319.	2.8	15
76	A Family of Flexible Lanthanide Bipyridinedicarboxylate Metal–Organic Frameworks Showing Reversible Single-Crystal to Single-Crystal Transformations. Crystal Growth and Design, 2012, 12, 3243-3249.	3.0	42
77	A series of isostructural mesoporous metal–organic frameworks obtained by ion-exchange induced single-crystal to single-crystal transformation. Dalton Transactions, 2012, 41, 3953.	3.3	127
78	Interpenetrated metal–organic frameworks and their uptake of CO2 at relatively low pressures. Journal of Materials Chemistry, 2012, 22, 10345.	6.7	73
79	Synthesis, structure and magnetic property of a new nickel (II) 1,4-benzenedicarboxylate. Journal of Molecular Structure, 2012, 1010, 184-189.	3.6	1
80	Syntheses, Structures, and Gas Adsorption Properties of Two Novel Cadmium–Sodium Organic Frameworks with 1,3,5-Benzenetricarboxylate Ligands. Crystal Growth and Design, 2011, 11, 3529-3535.	3.0	27
81	Syntheses, Structures, and Structural Transformations of Mixed Na(I) and Zn(II) Metal–Organic Frameworks with 1,3,5-Benzenetricarboxylate Ligands. Crystal Growth and Design, 2011, 11, 2243-2249.	3.0	18
82	Study on the crystal structure of the rare earth oxyborate Yb26B12O57 from powder X-ray and neutron diffraction. Journal of Alloys and Compounds, 2011, 509, 4707-4713.	5 . 5	11
83	Syntheses, structures and magnetic properties of Mn(II), Co(II) and Ni(II) metal–organic frameworks constructed from 1,3,5-benzenetricarboxylate and formate ligands. Inorganica Chimica Acta, 2010, 363, 645-652.	2.4	46
84	PKU-10: A New 3D Open-Framework Germanate with 13-Ring Channels. Inorganic Chemistry, 2010, 49, 9765-9769.	4.0	18
85	Syntheses, Structures and Properties of Hemi-Hydrogarnet Sr ₆ 5& ₄ M ₃ O ₁₄ (OF (M=Co,Mn). Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2010, 26, 1823-1831.	H) < gsub&	.gtŋ10
86	New double formates Na3M(HCOO)6 (M=Ga, In) with diamond-like metal framework: Synthesis, structure and coordination modes. Journal of Molecular Structure, 2009, 937, 39-43.	3.6	1
87	PKU-9: An Aluminogermanate with a New Three-Dimensional Zeolite Framework Constructed from CGS Layers and Spiro-5 Units. Journal of the American Chemical Society, 2009, 131, 6080-6081.	13.7	47
88	New Series of Indium Formates:  Hydrothermal Synthesis, Structure and Coordination Modes. Inorganic Chemistry, 2007, 46, 8403-8409.	4.0	22
89	Synthesis of Openâ€Cage Fullerenes with Pyrrole, Pyrrolone, Pyridinone, Iminofuran, and Pyranone Fragments Embedded on the Rim of the Orifice. European Journal of Organic Chemistry, 0, , .	2.4	3
90	Highly Efficient Multiphoton Absorption of Zincâ€AlEgen Metal–Organic Frameworks. Angewandte Chemie, 0, , .	2.0	0