

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2298638/publications.pdf Version: 2024-02-01

LIE SU

#	Article	IF	CITATIONS
1	Single-crystal x-ray diffraction structures of covalent organic frameworks. Science, 2018, 361, 48-52.	12.6	868
2	Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications, 2015, 6, 5979.	12.8	540
3	Single-Crystal Structure of a Covalent Organic Framework. Journal of the American Chemical Society, 2013, 135, 16336-16339.	13.7	392
4	A Series of Highly Stable Mesoporous Metalloporphyrin Fe-MOFs. Journal of the American Chemical Society, 2014, 136, 13983-13986.	13.7	363
5	Three-dimensional rotation electron diffraction: software <i>RED</i> for automated data collection and data processing. Journal of Applied Crystallography, 2013, 46, 1863-1873.	4.5	264
6	A Highly Stable Zeotype Mesoporous Zirconium Metal–Organic Framework with Ultralarge Pores. Angewandte Chemie - International Edition, 2015, 54, 149-154.	13.8	258
7	A Base-Resistant Metalloporphyrin Metal–Organic Framework for C–H Bond Halogenation. Journal of the American Chemical Society, 2017, 139, 211-217.	13.7	250
8	Piezofluorochromic Metal–Organic Framework: A Microscissor Lift. Journal of the American Chemical Society, 2015, 137, 10064-10067.	13.7	218
9	[Ti ₈ Zr ₂ O ₁₂ (COO) ₁₆] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 2018, 4, 105-111.	11.3	204
10	A zeolite family with expanding structural complexity and embedded isoreticular structures. Nature, 2015, 524, 74-78.	27.8	167
11	Stable Alkali Metal Ion Intercalation Compounds as Optimized Metal Oxide Nanowire Cathodes for Lithium Batteries. Nano Letters, 2015, 15, 2180-2185.	9.1	160
12	Unprecedented Topological Complexity in a Metal–Organic Framework Constructed from Simple Building Units. Journal of the American Chemical Society, 2016, 138, 1970-1976.	13.7	155
13	Series of Highly Stable Isoreticular Lanthanide Metal–Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties. Chemistry of Materials, 2015, 27, 5332-5339.	6.7	146
14	A series of isostructural mesoporous metal–organic frameworks obtained by ion-exchange induced single-crystal to single-crystal transformation. Dalton Transactions, 2012, 41, 3953.	3.3	127
15	Framework Isomerism in Vanadium Metal–Organic Frameworks: MIL-88B(V) and MIL-101(V). Crystal Growth and Design, 2013, 13, 5036-5044.	3.0	100
16	Endohedral Metallofullerene as Molecular High Spin Qubit: Diverse Rabi Cycles in Gd ₂ @C ₇₉ N. Journal of the American Chemical Society, 2018, 140, 1123-1130.	13.7	100
17	Interpenetrated metal–organic frameworks and their uptake of CO2 at relatively low pressures. Journal of Materials Chemistry, 2012, 22, 10345.	6.7	73
18	Selective Heterogeneous Câ^'H Activation/Halogenation Reactions Catalyzed by Pd@MOF Nanocomposites. Chemistry - A European Journal, 2016, 22, 3729-3737.	3.3	71

Jie Su

#	Article	IF	CITATIONS
19	Double-Supported Silica-Metal–Organic Framework Palladium Nanocatalyst for the Aerobic Oxidation of Alcohols under Batch and Continuous Flow Regimes. ACS Catalysis, 2015, 5, 472-479.	11.2	67
20	Highly efficient phenothiazine 5,5-dioxide-based hole transport materials for planar perovskite solar cells with a PCE exceeding 20%. Journal of Materials Chemistry A, 2019, 7, 9510-9516.	10.3	60
21	Structure analysis of zeolites by rotation electron diffraction (RED). Microporous and Mesoporous Materials, 2014, 189, 115-125.	4.4	57
22	Carbonate-Based Zeolitic Imidazolate Framework for Highly Selective CO ₂ Capture. Inorganic Chemistry, 2015, 54, 1816-1821.	4.0	52
23	Superconductivity in the half-Heusler compound TbPdBi. Physical Review B, 2018, 97, .	3.2	50
24	PKU-9: An Aluminogermanate with a New Three-Dimensional Zeolite Framework Constructed from CGS Layers and Spiro-5 Units. Journal of the American Chemical Society, 2009, 131, 6080-6081.	13.7	47
25	Syntheses, structures and magnetic properties of Mn(II), Co(II) and Ni(II) metal–organic frameworks constructed from 1,3,5-benzenetricarboxylate and formate ligands. Inorganica Chimica Acta, 2010, 363, 645-652.	2.4	46
26	Synergistic Lewis acid-base sites of ultrathin porous Co3O4 nanosheets with enhanced peroxidase-like activity. Nano Research, 2021, 14, 3514-3522.	10.4	45
27	Suppressed Dissolution and Enhanced Desolvation in Core–Shell MoO ₃ @TiO ₂ Nanorods as a Highâ€Rate and Longâ€Life Anode Material for Proton Batteries. Advanced Energy Materials, 2022, 12, .	19.5	44
28	A Family of Flexible Lanthanide Bipyridinedicarboxylate Metal–Organic Frameworks Showing Reversible Single-Crystal to Single-Crystal Transformations. Crystal Growth and Design, 2012, 12, 3243-3249.	3.0	42
29	PKU-3: An HCl-Inclusive Aluminoborate for Strecker Reaction Solved by Combining RED and PXRD. Journal of the American Chemical Society, 2015, 137, 7047-7050.	13.7	33
30	A highly porous metal–organic framework for large organic molecule capture and chromatographic separation. Chemical Communications, 2017, 53, 3434-3437.	4.1	31
31	Concise Synthesis of Openâ€Cage Fullerenes for Oxygen Delivery. Angewandte Chemie - International Edition, 2019, 58, 17690-17694.	13.8	31
32	On the Structure of α-BiFeO ₃ . Inorganic Chemistry, 2013, 52, 2388-2392.	4.0	30
33	Multidimensional Disorder in Zeolite IM-18 Revealed by Combining Transmission Electron Microscopy and X-ray Powder Diffraction Analyses. Crystal Growth and Design, 2018, 18, 2441-2451.	3.0	30
34	Facile one-step solvothermal synthesis of a luminescent europium metal-organic framework for rapid and selective sensing of uranyl ions. Analytical and Bioanalytical Chemistry, 2019, 411, 4213-4220.	3.7	30
35	Transmission electron microscopy as an important tool for characterization of zeolite structures. Inorganic Chemistry Frontiers, 2018, 5, 2836-2855.	6.0	29
36	Dy ₂ @C ₇₉ N: a new member of dimetalloazafullerenes with strong single molecular magnetism. Nanoscale, 2020, 12, 11130-11135.	5.6	28

JIE SU

#	Article	IF	CITATIONS
37	Syntheses, Structures, and Gas Adsorption Properties of Two Novel Cadmium–Sodium Organic Frameworks with 1,3,5-Benzenetricarboxylate Ligands. Crystal Growth and Design, 2011, 11, 3529-3535.	3.0	27
38	A silicogermanate with 20-ring channels directed by a simple quaternary ammonium cation. Dalton Transactions, 2013, 42, 1360-1363.	3.3	27
39	Ultra-small mesoporous silica nanoparticles as efficient carriers for pH responsive releases of anti-cancer drugs. Dalton Transactions, 2015, 44, 20186-20192.	3.3	27
40	A Crystalline Mesoporous Germanate with 48â€Ring Channels for CO ₂ Separation. Angewandte Chemie - International Edition, 2015, 54, 7290-7294.	13.8	26
41	Phase identification and structure determination from multiphase crystalline powder samples by rotation electron diffraction. Journal of Applied Crystallography, 2014, 47, 2048-2054.	4.5	25
42	Ag@WS2 quantum dots for Surface Enhanced Raman Spectroscopy: Enhanced charge transfer induced highly sensitive detection of thiram from honey and beverages. Food Chemistry, 2021, 344, 128570.	8.2	25
43	A strategy of utilizing Cu2+-mediating interaction to prepare magnetic imprinted polymers for the selective detection of celastrol in traditional Chinese medicines. Talanta, 2021, 231, 122339.	5.5	25
44	Controllable self-growth of a hydrogel with multiple membranes. RSC Advances, 2013, 3, 15237.	3.6	24
45	CHA-type zeolites with high boron content: Synthesis, structure and selective adsorption properties. Microporous and Mesoporous Materials, 2014, 194, 97-105.	4.4	24
46	Narrow-band blue emitting nitridomagnesosilicate phosphor Sr ₈ Mg ₇ Si ₉ N ₂₂ :Eu ²⁺ for phosphor-converted LEDs. Chemical Communications, 2018, 54, 11598-11601.	4.1	23
47	New Series of Indium Formates:  Hydrothermal Synthesis, Structure and Coordination Modes. Inorganic Chemistry, 2007, 46, 8403-8409.	4.0	22
48	Al-rich region of Alâ^'Pt. Journal of Alloys and Compounds, 2013, 580, 618-625.	5.5	19
49	Single-Crystal Study of a Low Spin Co(II) Molecular Qubit: Observation of Anisotropic Rabi Cycles. Inorganic Chemistry, 2019, 58, 2330-2335.	4.0	19
50	Highly Effective Photocatalytic Radical Reactions Triggered by a Photoactive Metal–Organic Framework. ACS Applied Materials & Interfaces, 2022, 14, 23518-23526.	8.0	19
51	PKU-10: A New 3D Open-Framework Germanate with 13-Ring Channels. Inorganic Chemistry, 2010, 49, 9765-9769.	4.0	18
52	Syntheses, Structures, and Structural Transformations of Mixed Na(I) and Zn(II) Metal–Organic Frameworks with 1,3,5-Benzenetricarboxylate Ligands. Crystal Growth and Design, 2011, 11, 2243-2249.	3.0	18
53	Synthesis of an open-cage fullerene-based unidirectional H-bonding network and its coordination with titanium. Organic Chemistry Frontiers, 2019, 6, 1397-1402.	4.5	18
54	A 3D 12â€Ring Zeolite with Ordered 4â€Ring Vacancies Occupied by (H ₂ O) ₂ Dimers. Chemistry - A European Journal, 2014, 20, 16097-16101.	3.3	17

Jie Su

#	Article	IF	CITATIONS
55	Effective regioselective protection of amino groups of lysine achieved by a supramolecular enzyme-mimic approach. Organic and Biomolecular Chemistry, 2012, 10, 9319.	2.8	15
56	High-Throughput Synthesis and Structure of Zeolite ZSM-43 with Two-Directional 8-Ring Channels. Inorganic Chemistry, 2017, 56, 8856-8864.	4.0	15
57	Bimetallic Bi–Sn microspheres as high initial coulombic efficiency and long lifespan anodes for sodium-ion batteries. Chemical Communications, 2022, 58, 5140-5143.	4.1	15
58	Hydrophilic molecularly imprinted polymers functionalized magnetic carbon nanotubes for selective extraction of cyclic adenosine monophosphate from winter jujube. Journal of Separation Science, 2021, 44, 2131-2142.	2.5	14
59	Ab initio structure determination of interlayer expanded zeolites by single crystal rotation electron diffraction. Dalton Transactions, 2014, 43, 10593-10601.	3.3	13
60	Highly Efficient Multiphoton Absorption of Zincâ€AlEgen Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
61	A multi-dimensional quasi-zeolite with 12 × 10 × 7-ring channels demonstrates high thermal stability and good gas adsorption selectivity. Chemical Science, 2016, 7, 3025-3030.	7.4	12
62	Concise Synthesis of Open age Fullerenes for Oxygen Delivery. Angewandte Chemie, 2019, 131, 17854-17858.	2.0	12
63	Study on the crystal structure of the rare earth oxyborate Yb26B12O57 from powder X-ray and neutron diffraction. Journal of Alloys and Compounds, 2011, 509, 4707-4713.	5.5	11
64	Lightâ€Ðriven Crawling of Molecular Crystals by Phaseâ€Ðependent Transient Elastic Lattice Deformation. Angewandte Chemie - International Edition, 2020, 59, 10337-10342.	13.8	10
65	SUMOF-5: a mesoporous metal-organic framework with the tbo topology built from the dicopper paddle-wheel cluster and a new tritopic linker. Zeitschrift Fur Kristallographie - Crystalline Materials, 2013, 228, 323-329.	0.8	9
66	Dynamic SPME–SERS Induced by Electric Field: Toward In Situ Monitoring of Pharmaceuticals and Personal Care Products. Analytical Chemistry, 2022, 94, 9270-9277.	6.5	9
67	Selective Addition of Palladium on the Rim of Open-Cage Fullerenes To Form Mononuclear and Dinuclear Complexes. Organometallics, 2019, 38, 3139-3143.	2.3	8
68	CO 2 selective NaMg-CTS-1 and its structural formation from the titanium silicate based molecule sieve NaMg-ETS-4. Microporous and Mesoporous Materials, 2014, 198, 63-73.	4.4	7
69	Synthesis and Structure of a Layered Fluoroaluminophosphate and Its Transformation to a Three-Dimensional Zeotype Framework. Inorganic Chemistry, 2018, 57, 11753-11760.	4.0	7
70	An NHC-CuCl functionalized metal–organic framework for catalyzing β-boration of α,β-unsaturated carbonyl compounds. Dalton Transactions, 2019, 48, 5144-5148.	3.3	7
71	SU-79: a novel germanate with 3D 10- and 11-ring channels templated by a square-planar nickel complex. Inorganic Chemistry Frontiers, 2014, 1, 278-283.	6.0	6
72	A series of microporous and robust Ln-MOFs showing luminescence properties and catalytic performances towards Knoevenagel reactions. Dalton Transactions, 2021, 50, 17785-17791.	3.3	6

JIE SU

#	Article	IF	CITATIONS
73	PKU-20: A new silicogermanate constructed from sti and asv layers. Microporous and Mesoporous Materials, 2016, 224, 384-391.	4.4	5
74	Preparation of ï€-extended fullerene derivatives through addition of phenylenediamine to open-cage fullerene derivatives. Organic Chemistry Frontiers, 2022, 9, 320-328.	4.5	5
75	Cu(II)-triggered release of paclitaxel from a supramolecular complex. Supramolecular Chemistry, 2013, 25, 302-309.	1.2	4
76	Interrupted silicogermanate with 10-ring channels: synthesis and structure determination by combining rotation electron diffraction and powder X-ray diffraction. Inorganic Chemistry Frontiers, 2017, 4, 1654-1659.	6.0	4
77	Light-responsive drug carrier vesicles assembled by cinnamic acid-based peptide. Colloid and Polymer Science, 2013, 291, 2639-2646.	2.1	3
78	Selection of Amino Acids and the Biomimetic Synthesis of Amido Bond in the Presence of β-CD. Synthetic Communications, 2014, 44, 1111-1121.	2.1	3
79	Syntheses, structure solutions, and catalytic performance of two novel layered silicates. Dalton Transactions, 2015, 44, 15567-15575.	3.3	3
80	Synthesis of Openâ€Cage Fullerenes with Pyrrole, Pyrrolone, Pyridinone, Iminofuran, and Pyranone Fragments Embedded on the Rim of the Orifice. European Journal of Organic Chemistry, 0, , .	2.4	3
81	New double formates Na3M(HCOO)6 (M=Ga, In) with diamond-like metal framework: Synthesis, structure and coordination modes. Journal of Molecular Structure, 2009, 937, 39-43.	3.6	1
82	Synthesis, structure and magnetic property of a new nickel (II) 1,4-benzenedicarboxylate. Journal of Molecular Structure, 2012, 1010, 184-189.	3.6	1
83	Synthesis of Openâ€Cage [60]Fullerenes with Five Carbonyl Groups on the Rim of the 15â€Membered Orifice. ChemPlusChem, 2019, 84, 608-612.	2.8	1
84	Lightâ€Driven Crawling of Molecular Crystals by Phaseâ€Dependent Transient Elastic Lattice Deformation. Angewandte Chemie, 2020, 132, 10423-10428.	2.0	1
85	Selective Nitration of Openâ€Cage [60]Fullerene Derivatives by Ponzio Reaction. European Journal of Organic Chemistry, 2021, 2021, 4288-4292.	2.4	1
86	PKUâ€⊋1: A Novel Layered Germanate Built from Ge ₇ and Ge ₁₀ Clusters for CO ₂ Separation. Chemistry - A European Journal, 2017, 23, 17879-17884.	3.3	0
87	Syntheses, Structures and Properties of Hemi-Hydrogarnet Sr ₆ 5b ₄ M ₃ O ₁₄ (O (M=Co,Mn). Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2010, 26, 1823-1831.	H) < gsub8	>p10
88	Synthesis of Open-Cage Fullerenes with a Long Tail. Organic Materials, 2020, 02, 282-287.	2.0	0
89	Titelbild: Highly Efficient Multiphoton Absorption of Zincâ€AlEgen Metal–Organic Frameworks (Angew.) Tj ETC	2q110.78 2.0	34314 rgBT /(
90	Highly Efficient Multiphoton Absorption of Zincâ€AlEgen Metal–Organic Frameworks. Angewandte Chemie, 0, , .	2.0	0