
Charanjeet Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2298081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of online supervised learning. Evolving Systems, 2023, 14, 343-364.	3.9	1
2	Improvisation of optimization technique and AODV routing protocol in VANET. Materials Today: Proceedings, 2022, 49, 3457-3461.	1.8	15
3	Implementation of K-Means Algorithm and Dynamic Routing Protocol in VANET. Computer Systems Science and Engineering, 2022, 40, 455-467.	2.4	6
4	Multiferroic properties of GdFe0.9M0.1O3 (M = Ag1+, Co2+ and Cr3+) nanoparticles and evaluation of their antibacterial activity. European Physical Journal Plus, 2022, 137, 1.	2.6	10
5	Role of phase, grain morphology and impedance properties in tailoring of Barium Strontium hexaferrites for microwave absorber/attenuator applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 281, 115679.	3.5	5
6	Sol-gel auto-combustion synthesis of double metal-doped barium hexaferrite nanoparticles for permanent magnet applications. Journal of Solid State Chemistry, 2022, 312, 123215.	2.9	19
7	Low sintering temperature, temperature-stable scheelite structured Bi[V1â^x (Fe1/3W 2/3)x]O4 microwave dielectric ceramics. Journal of the European Ceramic Society, 2022, 42, 5731-5737.	5.7	12
8	Crystal Structure, Magnetic Properties and Thermal Behavior of BaFe _{11.9} In _{0.1} O ₁₉ Ferrite. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	4
9	Fabrication of highly sensitive 4-Nitrophenol sensor and photocatalytic performance of multifunctional Ba0.5Sr0.5CoxHfxFe12-2xO19 Ferrite. Materials Chemistry and Physics, 2022, 288, 126396.	4.0	5
10	High thermal stability and colossal permittivity of novel solid solution LaFeO3/CaTiO3. Materials Chemistry and Physics, 2021, 257, 123239.	4.0	10
11	A Heavy Load Optimized Dynamic Bandwidth Allocation Algorithm for Hybrid WDM/TDM VPONs. Journal of Optical Communications, 2021, 42, 159-163.	4.7	2
12	Anomalous dielectric behaviour during the monoclinic to tetragonal phase transition in La(Nb _{0.9} V _{0.1})O ₄ . Inorganic Chemistry Frontiers, 2021, 8, 156-163.	6.0	29
13	Design and development of Ga-substituted Z-type hexaferrites for microwave absorber applications: M¶ssbauer, static and dynamic properties. Ceramics International, 2021, 47, 1145-1162.	4.8	29
14	Development of doped Ba–Sr hexagonal ferrites for microwave absorber applications: Structural characterization, tunable thickness, absorption peaks and electromagnetic parameters. Journal of Alloys and Compounds, 2021, 855, 157242.	5.5	38
15	Investigation on barometric and hydrostatic pressure sensing properties of Pb[(Mg1/3Nb2/3)0.7Ti0.3]O3 electro-ceramics. Ceramics International, 2021, 47, 6982-6987.	4.8	14
16	Development of Co0.7Ca0.3Fe2O4-EPDM nanocomposite for microwave application: Their rheometric behavior, surface topography and electromagnetic parameters. Ceramics International, 2021, 47, 7285-7290.	4.8	4
17	Effect of titanium substitution and temperature variation on structure and magnetic state of barium hexaferrites. Journal of Alloys and Compounds, 2021, 859, 158365.	5.5	61
18	Changes in the Structure, Magnetization, and Resistivity of BaFe _{12–<i>x</i>} Ti <i>_x</i> O ₁₉ . ACS Applied Electronic Materials, 2021, 3, 1583-1593.	4.3	51

#	Article	IF	CITATIONS
19	Active control scattering manipulation for realization of switchable EIT-like response metamaterial. Optics Communications, 2021, 483, 126664.	2.1	16
20	Temperature-Stable <i>x</i> (Na _{0.5} Bi _{0.5})MoO ₄ –(1– <i>x</i>)MoO ₃ Composite Ceramics with Ultralow Sintering Temperatures and Low Dielectric Loss for Dielectric Resonator Antenna Applications. ACS Applied Electronic Materials, 2021, 3, 2286-2296.	4.3	22
21	Structure and magnetodielectric properties of titanium substituted barium hexaferrites. Ceramics International, 2021, 47, 17293-17306.	4.8	64
22	Electromagnetic properties of zinc–nickel ferrites in the frequency range of 0.05–10ÂGHz. Materials Today Chemistry, 2021, 20, 100460.	3.5	43
23	A novel ceramic matrix composite based on YNbO4–TiO2 for microwave applications. Ceramics International, 2021, 47, 15424-15432.	4.8	14
24	Optimization of Performance Parameters of Doped Ferrite-Based Microwave Absorbers: Their Structural, Tunable Reflection Loss, Bandwidth, and Input Impedance Characteristics. IEEE Transactions on Magnetics, 2021, 57, 1-19.	2.1	8
25	Exploration of crystal structure, magnetic and dielectric properties of titanium-barium hexaferrites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115345.	3.5	46
26	Structural, morphological, magnetic hysteresis and dielectric properties of cobalt substituted barium–lead hexagonal ferrites for technological applications. Ceramics International, 2021, 47, 27441-27452.	4.8	13
27	Polarization controlled resistive switching in bulk ferroelectric ceramics: A universal phenomenon. Journal of Alloys and Compounds, 2021, 887, 161345.	5.5	5
28	Controllable morphology, dielectric, magnetic and reflection loss characteristics of ferrite/wax composites for low-loss applications. Journal of Alloys and Compounds, 2021, 888, 161611.	5.5	7
29	High-bandwidth microwave dielectric resonator antennas from BiVO4/ZnO composites. Journal of the Australian Ceramic Society, 2021, 57, 369-377.	1.9	4
30	Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites. Journal of Materials Chemistry C, 2021, 9, 5425-5436.	5.5	101
31	Tailoring of Electromagnetic Absorption in Substituted Hexaferrites from 8.2ÂGHz to 12.4ÂGHz. Journal of Electronic Materials, 2020, 49, 1646-1653.	2.2	15
32	Investigation on structural, hysteresis, Mössbauer properties and electrical parameters of lightly Erbium substituted X-type Ba2Co2Er Fe28-O46 hexaferrites. Ceramics International, 2020, 46, 8209-8226.	4.8	27
33	Effects of Pr-Al co-substitution on the magnetic and structural properties of M-type Ca-Sr hexaferrites. Chinese Journal of Physics, 2020, 63, 337-347.	3.9	16
34	Complex permittivity and complex permeability characteristics of Co–Ti doped barium strontium hexaferrite/paraffin wax composites for application in microwave devices. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	3
35	Significantly enhanced electrostatic energy storage performance of P(VDF-HFP)/BaTiO3-Bi(Li0.5Nb0.5)O3 nanocomposites. Nano Energy, 2020, 78, 105247.	16.0	151
36	Effect of Copper Substitution on the Structural, Magnetic, and Dielectric Properties of M-Type Lead Hexaferrite. Journal of Electronic Materials, 2020, 49, 6024-6039.	2.2	14

#	Article	IF	CITATIONS
37	Modified online Newton step based on elementwise multiplication. Computational Intelligence, 2020, 36, 1010-1025.	3.2	2
38	Effect of heating temperature on structural, magnetic, and dielectric properties of Magnesium ferrites prepared in the presence of Solanum Lycopersicum fruit extract. Journal of Materials Science: Materials in Electronics, 2020, 31, 18445-18463.	2.2	30
39	Enhanced ferroelectric polarization in epitaxial superconducting–ferroelectric heterostructure for non-volatile memory cell. AIP Advances, 2020, 10, .	1.3	3
40	Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core–shell BaTiO ₃ @MgO structures as the filler. Journal of Materials Chemistry A, 2020, 8, 11124-11132.	10.3	178
41	The Effect of Heat Treatment on the Microstructure and Mechanical Properties of 2D Nanostructured Au/NiFe System. Nanomaterials, 2020, 10, 1077.	4.1	72
42	Influence of the dysprosium ions on structure, magnetic characteristics and origin of the reflection losses in the Ni–Co spinels. Journal of Alloys and Compounds, 2020, 841, 155667.	5.5	109
43	Influence of Co4+-Ca2+ substitution on structural, microstructure, magnetic, electrical and impedance characteristics of M-type barium–strontium hexagonal ferrites. Ceramics International, 2020, 46, 24816-24830.	4.8	36
44	Investigation of AC-Measurements of Epoxy/Ferrite Composites. Nanomaterials, 2020, 10, 492.	4.1	110
45	Study of Physical Properties of Co Substituted GdFeO3 Orthoferrites and Evaluation of Their Antibacterial Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4320-4328.	3.7	5
46	High thermal stability of RF dielectric properties of BiVO4 matrix with added ZnO. Journal of Materials Science: Materials in Electronics, 2020, 31, 13078-13087.	2.2	2
47	Online Learning Using Multiple Times Weight Updating. Applied Artificial Intelligence, 2020, 34, 515-536.	3.2	5
48	Temperature stable Li ₂ Ti _{0.75} (Mg _{1/3} Nb _{2/3}) _{0.25} O ₃ -ba microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications. Journal of Materials Chemistry C, 2020, 8, 4690-4700.	sed 5.5	142
49	An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating. Nanoscale, 2020, 12, 9769-9775.	5.6	64
50	Structure, spectral analysis and microwave dielectric properties of novel x(NaBi)0.5MoO4-(1-x)Bi2/3MoO4 (x = 0.2 â^¼ 0.8) ceramics with low sintering temperatures. Journal of the European Ceramic Society, 2020, 40, 3569-3576.	5.7	102
51	Microwave filter characteristics of ferrite and polyaniline composites from 8.2 to 12.4ÂGHz. Journal of Materials Science: Materials in Electronics, 2019, 30, 14923-14927.	2.2	1
52	Bandstop Passive Filter Characteristics of Hexagonal Ferrite Composites at X-Band. Journal of Electronic Materials, 2019, 48, 6189-6193.	2.2	6
53	Effects of CaTiO3 addition on the microwave dielectric properties and antenna properties of BiVO4 ceramics. Composites Part B: Engineering, 2019, 175, 107122.	12.0	25
54	Investigation of structural, hysteresis and electromagnetic parameters for microwave absorption application in doped Ba–Sr hexagonal ferrites at X-band. Journal of Alloys and Compounds, 2019, 806, 1220-1229.	5.5	58

#	Article	IF	CITATIONS
55	Interface magnetoelectric effect in elastically linked Co/PZT/Co layered structures. Journal of Magnetism and Magnetic Materials, 2019, 485, 291-296.	2.3	22
56	Magnetic interactions and dielectric dispersion in Mg substituted M-type Sr-Cu hexaferrite nanoparticles prepared using one step solvent free synthesis technique. Ceramics International, 2018, 44, 4426-4435.	4.8	49
57	The Effects of TiO2 Addition on the Dielectric and Microwave Properties in the Ceramic Matrix BiVO4. , 2018, , .		1
58	Investigation of Microwave Absorption in Co-W Doped Ba-Sr Hexaferrite. , 2018, , .		0
59	Energy Efficient Hybrid Technique Based on Dynamic Clustering in Wireless Sensor Network. , 2018, , .		0
60	Qualitative Analysis of Microwave Absorption for Indium Doped M-Type Hexagonal Ferrite (Ba0.5Sr0.5CoxInxFe12-2xO19) in X-Band. , 2018, , .		0
61	Microwave Attenuation of Cobalt-Tin Substituted Barium-Strontium Hexagonal Ferrite. , 2018, , .		Ο
62	Structural, magnetic and dielectric properties of Co-Zr substituted M-type calcium hexagonal ferrite nanoparticles in the presence of α-Fe2O3 phase. Ceramics International, 2018, 44, 17812-17823.	4.8	131
63	Elucidation of microwave absorption mechanisms in Co–Ga substituted Ba–Sr hexaferrites in X-band. Journal of Materials Science: Materials in Electronics, 2018, 29, 14995-15005.	2.2	31
64	Dielectrical and structural studies of composite matrix BiVO4–CaTiO3 and temperature effects by impedance spectroscopy. Journal of Materials Science: Materials in Electronics, 2018, 29, 16248-16258.	2.2	16
65	Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0.1O19)1 (BaTiO3) bicomponent ceramics. Ceramics International, 2018, 44, 21295-21302.	4.8	130
66	A study of microwave absorbing properties in Co–Gd doped M-type Ba–Sr hexaferrites prepared using ceramic method. Journal of Materials Science: Materials in Electronics, 2017, 28, 11969-11978.	2.2	33
67	Structural phases, magnetic properties and Maxwell–Wagner type relaxation of CoFe ₂ O ₄ /Sr ₂ Co ₂ Fe ₁₂ O ₂₂ ferrite composites. Materials Research Express, 2017, 4, 076105.	1.6	5
68	Structural and magnetic properties of Co2+-W4+ ions doped M-type Ba-Sr hexaferrites synthesized by a ceramic method. Journal of Alloys and Compounds, 2017, 695, 909-914.	5.5	49
69	Wideband and Narrowband Microwave Characteristics of Co/Ti-Substituted M-Type Ca-Hexagonal Ferrite. Journal of Electronic Materials, 2017, 46, 866-871.	2.2	1
70	Thickness and Composition Tailoring of K- and Ka-Band Microwave Absorption of BaCo x Ti x Fe(12â^2x)O19 Ferrites. Journal of Electronic Materials, 2017, 46, 718-728.	2.2	36
71	Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+Al3+ doped M-type Ba Sr hexaferrites synthesized by a ceramic method. Journal of Alloys and Compounds, 2017, 695, 1112-1121.	5.5	86
72	Microwave absorption characteristics of Co2+ and W4+ substituted M-type Ba0.5Sr0.5CoxWxFe12â^'2xO19 hexagonal ferrites. Journal of Materials Science: Materials in Electronics, 2017, 28, 228-235.	2.2	6

#	Article	IF	CITATIONS
73	Investigation on structural and microwave absorption property of Co2+ and Y3+ substituted M-type Ba-Sr hexagonal ferrites prepared by a ceramic method. Journal of Alloys and Compounds, 2017, 695, 792-798.	5.5	54
74	Microwave absorbing characteristics in Co2+ and Al3+ substituted Ba0.5Sr0.5CoxAlxFe12â^2xO19 hexagonal ferrite. Journal of Materials Science: Materials in Electronics, 2017, 28, 2377-2384.	2.2	35
75	Performance Enhancement for Hybrid WDM-TDM Passive Optical Networks. Indian Journal of Science and Technology, 2017, 10, 1-7.	0.7	3
76	Thermoelectric and electrical properties of Ba0.5Sr0.5Co x Ru x Fe(12â^'2x)O19 ferrite*. European Physical Journal B, 2016, 89, 1.	1.5	0
77	Investigation of microwave absorption and DC electrical properties of Mn2+ and Ti4+ substituted SrMnxTixFe(12â^2x)O19 ferrite. Journal of Alloys and Compounds, 2016, 683, 302-307.	5.5	39
78	Tunable microwave absorption in Co Al substituted M-type Ba Sr hexagonal ferrite. Materials and Design, 2016, 110, 749-761.	7.0	88
79	Schottky–Richardson, Poole–Frenkel, and Space Charge Limited Current Mechanisms in Mâ€Type Sr(MnTi) _x Fe _(12â€2x) O ₁₉ Ferrite. Journal of the American Ceramic Society, 2016, 99, 3639-3644.	3.8	16
80	Microwave Characterization of Pb0.45Ca0.55(Fe0.5Nb0.5)1â^'x Sn x O3 Multiferroics at X-Band. Journal of Electronic Materials, 2016, 45, 4908-4912.	2.2	3
81	Microwave characterization of Co–Ti substituted barium hexagonal ferrites in X- band. Journal of Magnetism and Magnetic Materials, 2016, 405, 17-21.	2.3	48
82	Static conduction mechanisms in Co2+ and Ti4+ substituted M-type SrCox Tix Fe(12-2x) O19 ferrite. European Physical Journal B, 2015, 88, 1.	1.5	1
83	Investigation of DC current models in Co2+ and Ti4+ substituted M-type BaCox Tix Fe(12-2x) O19 ferrite. European Physical Journal B, 2015, 88, 1.	1.5	0
84	Static current models in Co2+ and Ti4+ substituted M-type CaCoxTixFe(12â^'2x)O19 ferrite. European Physical Journal B, 2015, 88, 1.	1.5	1
85	AC and DC properties of M-type SrCoxTixFe(12â~'2x)O19 hexagonal ferrite. European Physical Journal B, 2015, 88, 1.	1.5	0
86	Microwave and electrical properties of Co-Ti substituted M-type Ba hexagonal ferrite. European Physical Journal B, 2015, 88, 1.	1.5	6
87	Microwave characterization of Pb1â^'xCaxFe0.5Nb0.5O3 multiferroics at X-band. European Physical Journal B, 2015, 88, 1.	1.5	0
88	Investigation of microwave and electrical characteristics of Co–Zr substituted M-type Ba–Sr hexagonal ferrite. Materials Science-Poland, 2015, 33, 335-339.	1.0	4
89	Investigation of microwave characteristics of Ca-Co-Ti ferrite for electromagnetic applications. , 2015, , .		1
90	Synthesis, characterization, crystal structures and in vitro antimicrobial activities of triorganotin(IV) complexes of azo-dicarboxylates. Inorganica Chimica Acta, 2015, 426, 89-98.	2.4	40

#	Article	IF	CITATIONS
91	Microwave and electrical characterization of M-type Ba 0.5 Sr 0.5 Co x Ru x Fe (12â°'2x) O 19 hexaferrite for practical applications. Solid State Communications, 2015, 201, 72-75.	1.9	20
92	Microwave absorption studies of M-type Ba <inf>0.5</inf> Sr <inf>0.5</inf> Co <inf>x</inf> Ti <inf>x</inf> Fe <inf ferrite and its dependence on static properties. , 2012, , .</inf 	>(12&a	amp;#x2212;
93	Microwave absorption characteristics of substituted Ba _{0.5} Sr _{0.5} M _{<i>x</i>} Fe _(12â^2<i>x</i>) O ₁₉ (M = Co ²⁺ Zr ⁴⁺ AND Co ²⁺ Ti ⁴⁺) sintered ferrite at Xâ€band. Microwave and Optical Technology Letters. 2012. 54. 1661-1665.	1.4	18
94	Microwave and electrical behavior of Co2+ and Ru4+ ions substituted Ba-Sr sintered ferrite. Journal of Electroceramics, 2011, 27, 120-125.	2.0	25
95	Electromagnetic properties of Co-Zr substituted Ba-Sr ferrite-paraffin wax composite for EMC/EMI applications. , 2011, , .		6
96	Hysteresis analysis of Co–Ti substituted M-type Ba–Sr hexagonal ferrite. Materials Letters, 2009, 63, 1921-1924.	2.6	93
97	Complex permittivity and complex permeability of Sr ions substituted Ba ferrite at X-band. Journal of Magnetism and Magnetic Materials, 2008, 320, 1657-1665.	2.3	38
98	Microstructure, hysteresis and microwave absorption analysis of Ba(1â^'x)SrxFe12O19 ferrite. Materials Chemistry and Physics, 2008, 111, 225-231.	4.0	36
99	Static magnetic properties of Co and Ru substituted Ba–Sr ferrite. Materials Research Bulletin, 2008, 43, 176-184.	5.2	95
100	The effect of Co and Zr substitution on dc magnetic properties of Ba–Sr ferrite. Journal of Alloys and Compounds, 2008, 464, 429-433.	5.5	55
101	Investigation of Shielding Effectiveness of M-Type Ba-Co-Ti Hexagonal Ferrite and Composite Materials in Microwave X-Band Systems. , 0, , .		0

102	Method of Surface Energy Investigation for Nanostructured Materials: Application to Control NiFe Films Growth Mechanism. SSRN Electronic Journal, 0, , .	0.4	C
-----	---	-----	---