David Selby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2297651/publications.pdf

Version: 2024-02-01

81900 88630 5,129 96 39 70 citations g-index h-index papers 97 97 97 2890 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced ocean connectivity and volcanism instigated global onset of Cretaceous Oceanic Anoxic Event 2 (OAE2) â^1/494.5 million years ago. Earth and Planetary Science Letters, 2022, 578, 117331.	4.4	12
2	The role of organic matter diversity on the Re-Os systematics of organic-rich sedimentary units: Insights into the controls of isochron age determinations from the lacustrine Green River Formation. Chemical Geology, 2022, 604, 120939.	3.3	1
3	The bitumen formation and Re-Os characteristics of a CO2-rich pre-salt gas reservoir of the Kwanza Basin, offshore Angola. Marine and Petroleum Geology, 2022, 143, 105786.	3.3	3
4	A pre-Sturtian depositional age of the lower Paraguay Belt, Western Brazil, and its relationship to western Gondwana magmatism. Gondwana Research, 2021, 89, 238-246.	6.0	3
5	Regional chronostratigraphic synthesis of the Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE2) interval, Western Interior Basin (USA): New Re-Os chemostratigraphy and 40Ar/39Ar geochronology. Bulletin of the Geological Society of America, 2021, 133, 1090-1104.	3.3	23
6	Genetic relationship between hydrocarbon system evolution and Carlin-type gold mineralization: Insights from ReOs pyrobitumen and pyrite geochronology in the Nanpanjiang Basin, South China. Chemical Geology, 2021, 559, 119953.	3.3	20
7	Osmium isotopic constraints on sulphide formation in the epithermal environment of magmatic-hydrothermal mineral deposits. Chemical Geology, 2021, 564, 120053.	3.3	11
8	Depositional influences on Re-Os systematics of Late Cretaceous–Eocene fluvio-deltaic coals and coaly mudstones, Taranaki Basin, New Zealand. International Journal of Coal Geology, 2021, 236, 103670.	5 . O	6
9	Deep-water osmium-isotope record of the Permian–Triassic interval from Niushan, China reveals potential delayed volcanic signal post the mass extinction. Global and Planetary Change, 2021, 200, 103473.	3.5	4
10	Synsedimentary to Diagenetic Cu±Co Mineralization in Mesoproterozoic Pyritic Shale Driven by Magmatic-Hydrothermal Activity on the Edge of the Great Falls Tectonic Zone–Black Butte, Helena Embayment, Belt-Purcell Basin, USA: Evidence from Sulfide Re-Os Isotope Geochemistry. Lithosphere, 2021, 2021, .	1.4	2
11	Geology, mineralogy, ore paragenesis, and molybdenite Re-Os geochronology of Sn-W (-Mo) mineralization in Padatgyaung and Dawei, Myanmar: Implications for timing of mineralization and tectonic setting. Journal of Asian Earth Sciences, 2021, 212, 104725.	2.3	9
12	Upper Devonian mercury record from North America and its implications for the Frasnian–Famennian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 576, 110502.	2.3	12
13	Melting of the Chhota Shigri Glacier, Western Himalaya, Insensitive to Anthropogenic Emission Residues: Insights From Geochemical Evidence. Geophysical Research Letters, 2021, 48, e2021GL092801.	4.0	5
14	A second type of highly asphaltic crude oil seepage stranded on the South Australian coastline. Marine and Petroleum Geology, 2020, 112, 104062.	3.3	9
15	A review of molybdenite, and fluorite mineralisation in Caledonian granite basement, western Ireland, incorporating new field and fluid inclusion studies, and Re-Os and U-Pb geochronology. Lithos, 2020, 354-355, 105267.	1.4	1
16	The Genesis of the Giant Shuangjianzishan Epithermal Ag-Pb-Zn Deposit, Inner Mongolia, Northeastern China. Economic Geology, 2020, 115, 101-128.	3.8	61
17	Tracking drainage basin evolution, continental tectonics, and climate change: Implications from osmium isotopes of lacustrine systems. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 537, 109471.	2.3	4
18	Hydrocarbon evolution of the over-mature Sinian Dengying reservoir of the Neoproterozoic Sichuan Basin, China: Insights from Re–Os geochronology. Marine and Petroleum Geology, 2020, 122, 104726.	3.3	20

#	Article	IF	CITATIONS
19	Anthropogenic Osmium in Macroalgae from Tokyo Bay Reveals Widespread Contamination from Municipal Solid Waste. Environmental Science & Environmental S	10.0	5
20	Late Barremian / Early Aptian Re–Os age of the Ipubi Formation black shales: Stratigraphic and paleoenvironmental implications for Araripe Basin, northeastern Brazil. Journal of South American Earth Sciences, 2020, 102, 102699.	1.4	29
21	The latest Aptian/earliest Albian age of the Kekura gold deposit, Western Chukotka, Russia: implications for mineralization associated with post-collisional magmatism. Mineralium Deposita, 2020, 55, 1255-1262.	4.1	6
22	The vein-hosted copper deposits of the Allihies mining area, SW Ireland; a new structural and chronological evaluation. Journal of the Geological Society, 2020, 177, 671-685.	2.1	3
23	Biomass-Derived Provenance Dominates Glacial Surface Organic Carbon in the Western Himalaya. Environmental Science & Environmental Science & Environme	10.0	11
24	Evidence of wildfires and elevated atmospheric oxygen at the Frasnian–Famennian boundary in New York (USA): Implications for the Late Devonian mass extinction. Bulletin of the Geological Society of America, 2020, 132, 2043-2054.	3.3	22
25	Re-Os geochronology and isotope systematics, and organic and sulfur geochemistry of the middle–late Paleocene Waipawa Formation, New Zealand: Insights into early Paleogene seawater Os isotope composition. Chemical Geology, 2020, 536, 119473.	3.3	9
26	Evaluating the Use of the Molybdenite Re-Os Chronometer in Dating Gold Mineralization: Evidence from the Haigou Deposit, Northeastern China. Economic Geology, 2019, 114, 897-915.	3.8	25
27	Monte Carlo sampling for error propagation in linear regression and applications in isochron geochronology. Science Bulletin, 2019, 64, 189-197.	9.0	18
28	Influence of the High Arctic Igneous Province on the Cenomanian/Turonian boundary interval, Sverdrup Basin, High Canadian Arctic. Earth and Planetary Science Letters, 2019, 511, 76-88.	4.4	34
29	Tracing the natural and anthropogenic influence on the trace elemental chemistry of estuarine macroalgae and the implications for human consumption. Science of the Total Environment, 2019, 685, 259-272.	8.0	18
30	Further evaluation of the Re-Os systematics of crude oil: Implications for Re-Os geochronology of petroleum systems. Chemical Geology, 2019, 513, 1-22.	3.3	16
31	Remotely constraining the temporal evolution of offshore oil systems. Scientific Reports, 2019, 9, 1327.	3.3	18
32	Multi-isotopic tracing (Mo, S, Pb, Re Os) and genesis of the Mo W Azegour skarn deposit (High-Atlas,) Tj ETQq0 (0 0 rgBT /0	Overlock 10 Ti
33	Evaluating Late Cretaceous OAEs and the influence of marine incursions on organic carbon burial in an expansive East Asian paleo-lake. Earth and Planetary Science Letters, 2018, 484, 41-52.	4.4	50
34	Stable isotope and geochronological study of the Mawchi Sn-W deposit, Myanmar: Implications for timing of mineralization and ore genesis. Ore Geology Reviews, 2018, 95, 663-679.	2.7	25
35	A Matrixâ€Matched Reference Material for Validating Petroleum Reâ€Os Measurements. Geostandards and Geoanalytical Research, 2018, 42, 97-113.	3.1	14
36	Multisourced metals enriched by magmatic-hydrothermal fluids in stratabound deposits of the Middle–Lower Yangtze River metallogenic belt, China. Geology, 2018, 46, 391-394.	4.4	27

#	Article	IF	Citations
37	Coupled Re-Os and U-Pb geochronology of the Tonian Chuar Group, Grand Canyon. Bulletin of the Geological Society of America, 2018, 130, 1085-1098.	3.3	30
38	Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit. Geology, 2018, 46, 7-10.	4.4	69
39	Neoproterozoic–Cambrian petroleum system evolution of the Micang Shan uplift, northern Sichuan Basin, China: Insights from pyrobitumen rhenium–osmium geochronology and apatite fission-track analysis. AAPG Bulletin, 2018, 102, 1429-1453.	1.5	20
40	Middle Eocene greenhouse warming facilitated by diminished weathering feedback. Nature Communications, 2018, 9, 2877.	12.8	43
41	Tracing the Impact of Coastal Water Geochemistry on the Reâ€Os Systematics of Macroalgae: Insights From the Basaltic Terrain of Iceland. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2791-2806.	3.0	6
42	Petroleum-generation timing and source in the northern Longmen Shan thrust belt, Southwest China: Implications for multiple oil-generation episodes and sources. AAPG Bulletin, 2018, 102, 913-938.	1.5	15
43	Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet. Mineralium Deposita, 2017, 52, 137-158.	4.1	34
44	Re-Os systematics and age of pyrite associated with stratiform Zn-Pb mineralization in the Howards Pass district, Yukon and Northwest Territories, Canada. Mineralium Deposita, 2017, 52, 317-335.	4.1	18
45	Distal Pb-Zn-Ag veins associated with the world-class Donggou porphyry Mo deposit, southern North China craton. Ore Geology Reviews, 2017, 82, 232-251.	2.7	31
46	Mountain glaciation drives rapid oxidation of rock-bound organic carbon. Science Advances, 2017, 3, e1701107.	10.3	52
47	Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event. Scientific Reports, 2017, 7, 5003.	3.3	102
48	Geological and Chronological Constraints on the Long-Lived Eocene Yulong Porphyry Cu-Mo Deposit, Eastern Tibet: Implications for the Lifespan of Giant Porphyry Cu Deposits. Economic Geology, 2017, 112, 1719-1746.	3.8	39
49	Cyclic Magmatic-Hydrothermal Evolution in Porphyry Systems: High-Precision U-Pb and Re-Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu-Mo Deposit*. Economic Geology, 2017, 112, 1419-1440.	3.8	89
50	Apatite fission-track and Re-Os geochronology of the Xuefeng uplift, China: Temporal implications for dry gas associated hydrocarbon systems. Geology, 2016, 44, 491-494.	4.4	50
51	Tracking millennial-scale Holocene glacial advance and retreat using osmium isotopes: Insights from the Greenland ice sheet. Quaternary Science Reviews, 2016, 138, 49-61.	3.0	34
52	The Timing of Magmatism and Ore Formation in the El Abra Porphyry Copper Deposit, Northern Chile: Implications for Long-Lived Multiple-Event Magmatic-Hydrothermal Porphyry Systems. Economic Geology, 2016, 111, 1-28.	3.8	27
53	Petrography, mineral chemistry, fluid inclusion microthermometry and Re–Os geochronology of the Küre volcanogenic massive sulfide deposit (Central Pontides, Northern Turkey). Ore Geology Reviews, 2016, 76, 1-18.	2.7	18
54	Lower crustal assimilation in oceanic arcs: Insights from an osmium isotopic study of the Lesser Antilles. Geochimica Et Cosmochimica Acta, 2015, 150, 330-344.	3.9	21

#	Article	IF	CITATIONS
55	Ca isotope stratigraphy across the Cenomanian–Turonian OAE 2: Links between volcanism, seawater geochemistry, and the carbonate fractionation factor. Earth and Planetary Science Letters, 2015, 416, 121-131.	4.4	71
56	Hydrocarbons/Rhenium–Osmium (Re–Os): Organic-Rich Sedimentary Rocks. Encyclopedia of Earth Sciences Series, 2015, , 330-334.	0.1	0
57	Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 51-56.	7.1	219
58	Re–Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrine kerogen: Insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments. Geochimica Et Cosmochimica Acta, 2014, 138, 32-56.	3.9	54
59	Neoproterozoic Re–Os systematics of organic-rich rocks in the São Francisco Basin, Brazil and implications for hydrocarbon exploration. Precambrian Research, 2014, 255, 355-366.	2.7	26
60	Characterising the nickel isotopic composition of organic-rich marine sediments. Chemical Geology, 2014, 387, 12-21.	3.3	35
61	Marine 1870s/1880s isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 2014, 389, 23-33.	4.4	185
62	Longevity of magmaticâ€"hydrothermal systems in the Daye Cuâ€"Feâ€"Au District, eastern China with implications for mineral exploration. Ore Geology Reviews, 2014, 57, 375-392.	2.7	69
63	Rhenium–osmium abundance and isotopic compositions of massive sulfides from modern deep-sea hydrothermal systems: Implications for vent associated ore forming processes. Earth and Planetary Science Letters, 2014, 396, 223-234.	4.4	18
64	Deepâ€sea coral record of human impact on watershed quality in the Mississippi River Basin. Global Biogeochemical Cycles, 2014, 28, 29-43.	4.9	27
65	Minor and trace element and Re–Os chemistry of the Upper Devonian Woodford Shale, Permian Basin, west Texas: Insights into metal abundance and basin processes. Chemical Geology, 2013, 356, 76-93.	3.3	85
66	Evaluation of the rhenium–osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA. Geochimica Et Cosmochimica Acta, 2013, 118, 312-330.	3.9	60
67	Anoxia in the terrestrial environment during the late Mesoproterozoic. Geology, 2013, 41, 583-586.	4.4	75
68	Hydrocarbons/Rhenium–Osmium (Re–Os): Organic-Rich Sedimentary Rocks. , 2013, , 1-7.		1
69	Petroleum source rock identification of United Kingdom Atlantic Margin oil fields and the Western Canadian Oil Sands using Platinum, Palladium, Osmium and Rhenium: Implications for global petroleum systems. Earth and Planetary Science Letters, 2012, 313-314, 95-104.	4.4	34
70	Evaluating Re–Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments. Geochimica Et Cosmochimica Acta, 2012, 77, 275-291.	3.9	67
71	Re–Os geochronology of the lacustrine Green River Formation: Insights into direct depositional dating of lacustrine successions, Re–Os systematics and paleocontinental weathering. Earth and Planetary Science Letters, 2012, 359-360, 194-205.	4.4	55
72	Re-Os geochronology and fingerprinting of United Kingdom Atlantic margin oil: Temporal implications for regional petroleum systems. Geology, 2011, 39, 475-478.	4.4	69

#	Article	IF	CITATIONS
73	Re–Os geochronology of the Neoproterozoic–Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for Neoproterozoic stratigraphy, glaciations and Re–Os systematics. Precambrian Research, 2011, 185, 202-214.	2.7	88
74	Fault-charged mantle-fluid contamination of United Kingdom North Sea oils: Insights from Re-Os isotopes: Figure 1 Geology, 2010, 38, 979-982.	4.4	40
75	Long-lived granite-related molybdenite mineralization at Connemara, western Irish Caledonides. Geological Magazine, 2010, 147, 886-894.	1.5	21
76	Rhenium–Osmium (Re–Os) molybdenite systematics and geochronology of the Cruachan Granite skarn mineralization, Etive Complex: implications for emplacement chronology. Scottish Journal of Geology, 2010, 46, 17-21.	0.1	19
77	Re–Os geochronology of a Mesoproterozoic sedimentary succession, Taoudeni basin, Mauritania: Implications for basin-wide correlations and Re–Os organic-rich sediments systematics. Earth and Planetary Science Letters, 2010, 289, 486-496.	4.4	157
78	Tracking the Hirnantian glaciation using Os isotopes. Earth and Planetary Science Letters, 2010, 293, 339-348.	4.4	67
79	Facebook: An educational support tool for teaching Earth Science. Planet, 2009, 22, 56-60.	0.1	1
80	¹⁸⁷ Re- ¹⁸⁷ Os geochronology of Precambrian organic-rich sedimentary rocks. Geological Society Special Publication, 2009, 326, 85-107.	1.3	65
81	U-Pb zircon geochronology of the Aptian/Albian boundary implies that the GL-O international glauconite standard is anomalously young. Cretaceous Research, 2009, 30, 1263-1267.	1.4	22
82	Uâ€"Pb and Reâ€"Os geochronology of the Aptian/Albian and Cenomanian/Turonian stage boundaries: Implications for timescale calibration, osmium isotope seawater composition and Reâ€"Os systematics in organic-rich sediments. Chemical Geology, 2009, 265, 394-409.	3.3	88
83	Standardizing Re–Os geochronology: A new molybdenite Reference Material (Henderson, USA) and the stoichiometry of Os salts. Chemical Geology, 2007, 244, 74-87.	3.3	116
84	Re–Os elemental and isotopic systematics in crude oils. Geochimica Et Cosmochimica Acta, 2007, 71, 378-386.	3.9	104
85	Assessment of the 187Re decay constant by cross calibration of Re–Os molybdenite and U–Pb zircon chronometers in magmatic ore systems. Geochimica Et Cosmochimica Acta, 2007, 71, 1999-2013.	3.9	153
86	Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of "Sturtian― glaciation. Geology, 2006, 34, 729.	4.4	250
87	Direct radiometric dating of the Devonian-Mississippian time-scale boundary using the Re-Os black shale geochronometer. Geology, 2005, 33, 545.	4.4	103
88	Direct Radiometric Dating of Hydrocarbon Deposits Using Rhenium-Osmium Isotopes. Science, 2005, 308, 1293-1295.	12.6	168
89	Evaluation of bitumen as a Re–Os geochronometer for hydrocarbon maturation and migration: A test case from the Polaris MVT deposit, Canada. Earth and Planetary Science Letters, 2005, 235, 1-15.	4.4	100
90	Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochimica Et Cosmochimica Acta, 2004, 68, 3897-3908.	3.9	234

#	Article	IF	CITATION
91	Constraints on the timing of Marinoan "Snowball Earth―glaciation by 187Re–187Os dating of a Neoproterozoic, post-glacial black shale in Western Canada. Earth and Planetary Science Letters, 2004, 222, 729-740.	4.4	155
92	Re–Os geochronology of organic rich sediments: an evaluation of organic matter analysis methods. Chemical Geology, 2003, 200, 225-240.	3.3	232
93	Absolute timing of sulfide and gold mineralization: A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska. Geology, 2002, 30, 791.	4.4	132
94	Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: a test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin. Geochimica Et Cosmochimica Acta, 2002, 66, 3441-3452.	3.9	140
95	LATE AND MID-CRETACEOUS MINERALIZATION IN THE NORTHERN CANADIAN CORDILLERA: CONSTRAINTS FROM Re-Os MOLYBDENITE DATES. Economic Geology, 2001, 96, 1461-1467.	3.8	57
96	Re-Os Geochronology and Systematics in Molybdenite from the Endako Porphyry Molybdenum Deposit, British Columbia, Canada. Economic Geology, 2001, 96, 197-204.	3.8	223