
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2296698/publications.pdf Version: 2024-02-01

LUANA COZES

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclaseâ€activating polypeptide: IUPHAR Review 1. British Journal of Pharmacology, 2012, 166, 4-17.	5.4	385
3	Complete Sequence of a Novel Protein Containing a Femtomolarâ€Activityâ€Dependent Neuroprotective Peptide. Journal of Neurochemistry, 1999, 72, 1283-1293.	3.9	346
4	Growth factor function of vasoactive intestinal peptide in whole cultured mouse embryos. Nature, 1993, 362, 155-158.	27.8	268
5	Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurology, The, 2014, 13, 676-685.	10.2	245
6	Tubulin microheterogeneity increases with rat brain maturation. Nature, 1978, 276, 411-413.	27.8	242
7	VIP: Molecular biology and neurobiological function. Molecular Neurobiology, 1989, 3, 201-236.	4.0	234
8	Activity-dependent neuroprotective protein: a novel gene essential for brain formation. Developmental Brain Research, 2003, 144, 83-90.	1.7	224
9	A Neuronal Microtubule-Interacting Agent, NAPVSIPQ, Reduces Tau Pathology and Enhances Cognitive Function in a Mouse Model of Alzheimer's Disease. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 146-153.	2.5	214
10	Cloning and Characterization of the Human Activity-dependent Neuroprotective Protein. Journal of Biological Chemistry, 2001, 276, 708-714.	3.4	208
11	Cytokine Regulation of Neuronal Survival. Journal of Neurochemistry, 1992, 58, 454-460.	3.9	204
12	A Glia-Derived Signal Regulating Neuronal Differentiation. Journal of Neuroscience, 2000, 20, 8012-8020.	3.6	200
13	Activity-Dependent Neuroprotective Protein Snippet NAP Reduces Tau Hyperphosphorylation and Enhances Learning in a Novel Transgenic Mouse Model. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 438-449.	2.5	199
14	Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase-activating Polypeptide Inhibit Tumor Necrosis Factor α Transcriptional Activation by Regulating Nuclear Factor-kB and cAMP Response Element-binding Protein/c-Jun. Journal of Biological Chemistry, 1998, 273, 31427-31436.	3.4	165
15	Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate genes essential for embryogenesis. Developmental Biology, 2007, 303, 814-824.	2.0	158
16	Tubulin: An Integral Protein of Mammalian Synaptic Vesicle Membranes. Journal of Neurochemistry, 1980, 34, 26-32.	3.9	155
17	Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson's disease1This manuscript is based on a poster presented at the Brain Research Interactive Symposium on "Neuropeptides at the Millenniumâ€, Miami, October 1999.1. Brain Research, 2000, 854, 257-262.	2.2	147
18	Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer's disease at early pathological stage. Journal of Molecular Neuroscience, 2007, 31, 165-170.	2.3	146

#	Article	IF	CITATIONS
19	Learning impairment following intracerebral administration of the HIV envelope protein gp120 or a VIP antagonist. Brain Research, 1992, 570, 49-53.	2.2	144
20	Multiple tubulin forms are expressed by a single neurone. Nature, 1981, 294, 477-480.	27.8	142
21	Activity-dependent Neuroprotective Protein Constitutes a Novel Element in the SWI/SNF Chromatin Remodeling Complex. Journal of Biological Chemistry, 2007, 282, 34448-34456.	3.4	135
22	A Femtomolar Acting Octapeptide Interacts with Tubulin and Protects Astrocytes against Zinc Intoxication. Journal of Biological Chemistry, 2004, 279, 28531-28538.	3.4	132
23	Vasoactive Intestinal Peptide and Pituitary Adenylyl Cyclase-Activating Polypeptide Inhibit Tumor Necrosis Factor-α Production in Injured Spinal Cord and in Activated Microglia via a cAMP-Dependent Pathway. Journal of Neuroscience, 2000, 20, 3622-3630.	3.6	129
24	NAP: Research and Development of a Peptide Derived from Activity-Dependent Neuroprotective Protein (ADNP). CNS Neuroscience & Therapeutics, 2005, 11, 353-368.	4.0	127
25	NAP protects memory, increases soluble tau and reduces tau hyperphosphorylation in a tauopathy model. Neurobiology of Disease, 2009, 34, 381-388.	4.4	124
26	NAP, a Femtomolar-Acting Peptide, Protects the Brain Against Ischemic Injury by Reducing Apoptotic Death. Stroke, 2002, 33, 1085-1092.	2.0	120
27	Localization of vasopressin-, vasoactive intestinal polypeptide-, peptide histidine isoleucine-and somatostatin-mRNA in rat suprachiasmatic nucleus. Cell and Tissue Research, 1988, 252, 307-315.	2.9	110
28	Experimental intrauterine growth retardation alters renal development. Pediatric Nephrology, 2000, 15, 192-195.	1.7	109
29	Peptide neuroprotection through specific interaction with brain tubulin. Journal of Neurochemistry, 2006, 98, 973-984.	3.9	109
30	Clinical Presentation of a Complex Neurodevelopmental Disorder Caused by Mutations in ADNP. Biological Psychiatry, 2019, 85, 287-297.	1.3	108
31	Cancer-associated stroke: Pathophysiology, detection and management (Review). International Journal of Oncology, 2019, 54, 779-796.	3.3	104
32	Vasoactive Intestinal Peptide Potentiates Sexual Behavior: Inhibition by Novel Antagonist*. Endocrinology, 1989, 125, 2945-2949.	2.8	100
33	NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: Protection against impairments in axonal transport. Neurobiology of Disease, 2013, 56, 79-94.	4.4	98
34	Subcellular localization and secretion of activity-dependent neuroprotective protein in astrocytes. Neuron Glia Biology, 2004, 1, 193-199.	1.6	94
35	PolyADP-Ribosylation Is Involved in Neurotrophic Activity. Journal of Neuroscience, 2005, 25, 7420-7428.	3.6	93
36	From Vasoactive Intestinal Peptide (VIP) Through Activity-Dependent Neuroprotective Protein (ADNP) to NAP: A View of Neuroprotection and Cell Division. Journal of Molecular Neuroscience, 2003, 20, 315-322.	2.3	91

#	Article	IF	CITATIONS
37	Addressing Alzheimers Disease Tangles: From NAP to AL-108. Current Alzheimer Research, 2009, 6, 455-460.	1.4	91
38	The neuroprotective peptide NAP inhibits the aggregation of the beta-amyloid peptide. Peptides, 2003, 24, 1413-1423.	2.4	84
39	A New Concept in the Pharmacology of Neuroprotection. Journal of Molecular Neuroscience, 2000, 14, 061-068.	2.3	83
40	Differential regulation of activity-dependent neuroprotective protein in rat astrocytes by VIP and PACAP. Regulatory Peptides, 2004, 123, 33-41.	1.9	81
41	Neuroprotective peptide drug delivery and development: potential new therapeutics. Trends in Neurosciences, 2001, 24, 700-705.	8.6	79
42	The α-subunit of tubulin is preferentially associated with brain presynaptic membrane. FEBS Letters, 1979, 99, 86-90.	2.8	78
43	Intranasal administration of NAP, a neuroprotective peptide, decreases anxiety-like behavior in aging mice in the elevated plus maze. Neuroscience Letters, 2004, 361, 128-131.	2.1	77
44	Vasoactive intestinal peptide antagonist retards the development of neonatal behaviors in the rat. Peptides, 1991, 12, 187-192.	2.4	76
45	Activity-dependent neuroprotective protein: From gene to drug candidate. , 2007, 114, 146-154.		76
46	ADNP Differential Nucleus/Cytoplasm Localization in Neurons Suggests Multiple Roles in Neuronal Differentiation and Maintenance. Journal of Molecular Neuroscience, 2008, 35, 127-141.	2.3	75
47	The ADNP Derived Peptide, NAP Modulates the Tubulin Pool: Implication for Neurotrophic and Neuroprotective Activities. PLoS ONE, 2012, 7, e51458.	2.5	74
48	PolyADPâ€ribosylation is required for longâ€ŧerm memory formation in mammals. Journal of Neurochemistry, 2009, 111, 72-79.	3.9	72
49	Identification of VIP/PACAP receptors on rat astrocytes using antisense oligodeoxynucleotides. Journal of Molecular Neuroscience, 1997, 9, 211-222.	2.3	71
50	The femtomolar-acting NAP interacts with microtubules: Novel aspects of astrocyte protection. Journal of Alzheimer's Disease, 2005, 6, S37-S41.	2.6	71
51	Activity-dependent neuroprotective protein deficiency models synaptic and developmental phenotypes of autism-like syndrome. Journal of Clinical Investigation, 2018, 128, 4956-4969.	8.2	71
52	Developmental expression of the VIP-gene in brain and intestine. Molecular Brain Research, 1987, 2, 137-148.	2.3	69
53	VIP and Peptides Related to Activity-Dependent Neurotrophic Factor Protect PC12 Cells Against Oxidative Stress. Journal of Molecular Neuroscience, 2001, 15, 137-146.	2.3	69
54	NAP, A Neuroprotective Drug Candidate in Clinical Trials, Stimulates Microtubule Assembly in the Living Cell. Current Alzheimer Research, 2007, 4, 507-509.	1.4	69

#	Article	IF	CITATIONS
55	A pilot trial of the microtubule-interacting peptide (NAP) in mice overexpressing alpha-synuclein shows improvement in motor function and reduction of alpha-synuclein inclusions. Molecular and Cellular Neurosciences, 2011, 46, 597-606.	2.2	68
56	A Novel peptide prevents death in enriched neuronal cultures. Regulatory Peptides, 2000, 96, 39-43.	1.9	65
57	Activity-dependent neurotrophic factor (ADNF). Journal of Molecular Neuroscience, 1996, 7, 235-244.	2.3	64
58	The Peptides ADNF-9 and NAP Increase Survival and Neurite Outgrowth of Rat Retinal Ganglion Cells In Vitro. , 2005, 46, 933.		64
59	New horizons in schizophrenia treatment: autophagy protection is coupled with behavioral improvements in a mouse model of schizophrenia. Autophagy, 2014, 10, 2324-2332.	9.1	64
60	Neuropeptides as growth and differentiation factors in general and VIP in particular. Journal of Molecular Neuroscience, 1993, 4, 1-9.	2.3	63
61	Vasoactive Intestinal Peptide Gene Expression from Embryos to Aging Rats. Neuroendocrinology, 1988, 47, 27-31.	2.5	62
62	Protective Peptides That Are Orally Active and Mechanistically Nonchiral. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1190-1197.	2.5	62
63	Activity-Dependent Neurotrophic Factor-9 and NAP Promote Neurite Outgrowth in Rat Hippocampal and Cortical Cultures. Journal of Molecular Neuroscience, 2005, 25, 225-238.	2.3	62
64	A Novel Signaling Molecule for Neuropeptide Action: Activityâ€dependent Neuroprotective Protein. Annals of the New York Academy of Sciences, 1999, 897, 125-135.	3.8	60
65	Activity-dependent neuroprotective protein (ADNP) expression level is correlated with the expression of the sister protein ADNP2: Deregulation in schizophrenia. European Neuropsychopharmacology, 2011, 21, 355-361.	0.7	60
66	The octapetide NAP alleviates intestinal and extra-intestinal anti-inflammatory sequelae of acute experimental colitis. Peptides, 2018, 101, 1-9.	2.4	60
67	Discovery of autism/intellectual disability somatic mutations in Alzheimer's brains: mutated ADNP cytoskeletal impairments and repair as a case study. Molecular Psychiatry, 2021, 26, 1619-1633.	7.9	60
68	Translation in vitro of Rat Brain mRNA Coding for a Variety of Tubulin Forms. FEBS Journal, 1980, 103, 13-20.	0.2	59
69	A VIP antagonist distinguishes VIP receptors on spinal cord cells and lymphocytes. Brain Research, 1991, 540, 319-321.	2.2	59
70	Protection against developmental retardation in apolipoprotein E-deficient mice by a fatty neuropeptide: Implications for early treatment of Alzheimer's disease. , 1997, 33, 329-342.		59
71	CREB contributes to the increased neurite outgrowth of sensory neurons induced by vasoactive intestinal polypeptide and activity-dependent neurotrophic factor. Brain Research, 2000, 868, 31-38.	2.2	59
72	Complex array of cytokines released by vasoactive intestinal peptide. Neuropeptides, 2003, 37, 111-119.	2.2	57

#	Article	IF	CITATIONS
73	The Expression of Activity-Dependent Neuroprotective Protein (ADNP) is Regulated by Brain Damage and Treatment of Mice with the ADNP Derived Peptide, NAP, Reduces the Severity of Traumatic Head Injury. Current Alzheimer Research, 2005, 2, 149-153.	1.4	57
74	Tauopathy in the young autistic brain: novel biomarker and therapeutic target. Translational Psychiatry, 2020, 10, 228.	4.8	57
75	Activityâ€Dependent Neurotrophic Factor Peptide (ADNF9) Protects Neurons Against Oxidative Stressâ€Induced Death. Journal of Neurochemistry, 1999, 73, 2341-2347.	3.9	56
76	NAP (davunetide) enhances cognitive behavior in the STOP heterozygous mouse—A microtubule-deficient model of schizophrenia. Peptides, 2010, 31, 1368-1373.	2.4	54
77	VIP-Related Protection Against Iodoacetate Toxicity in Pheochromocytoma (PC12) Cells: A Model for Ischemic/Hypoxic Injury. Journal of Molecular Neuroscience, 2001, 15, 147-154.	2.3	53
78	Involvement of Pituitary Adenylate Cyclaseâ€Activating Polypeptide II Vasoactive Intestinal Peptide 2 Receptor in Mouse Neocortical Astrocytogenesis. Journal of Neurochemistry, 1998, 70, 2165-2173.	3.9	53
79	NAP and D-SAL: neuroprotection against the β amyloid peptide (1–42). BMC Neuroscience, 2008, 9, S3.	1.9	53
80	Learning and sexual deficiencies in transgenic mice carrying a chimeric vasoactive intestinal peptide gene. Journal of Molecular Neuroscience, 1993, 4, 185-193.	2.3	52
81	The identification of secreted heat shock 60 -like protein from rat glial cells and a human neuroblastoma cell line. Neuroscience Letters, 1998, 250, 37-40.	2.1	52
82	NAP Mechanisms of Neuroprotection. Journal of Molecular Neuroscience, 2004, 24, 067-072.	2.3	52
83	Davunetide (NAP) as a preventative treatment for central nervous system complications in a diabetes rat model. Neurobiology of Disease, 2011, 44, 327-339.	4.4	51
84	NAP (Davunetide) Provides Functional and Structural Neuroprotection. Current Pharmaceutical Design, 2011, 17, 1040-1044.	1.9	51
85	Novel Marker for the Onset of Frontotemporal Dementia: Early Increase in Activity-Dependent Neuroprotective Protein (ADNP) in the Face of Tau Mutation. PLoS ONE, 2014, 9, e87383.	2.5	51
86	Antiserum to activity-dependent neurotrophic factor produces neuronal cell death in CNS cultures: immunological and biological specificity. Developmental Brain Research, 1997, 99, 167-175.	1.7	50
87	Blood-Borne Activity-Dependent Neuroprotective Protein (ADNP) is Correlated with Premorbid Intelligence, Clinical Stage, and Alzheimer's Disease Biomarkers. Journal of Alzheimer's Disease, 2016, 50, 249-260.	2.6	50
88	High levels of vasoactive intestinal peptide in human milk. Biochemical and Biophysical Research Communications, 1985, 133, 228-232.	2.1	49
89	Neurobehavioral Development of Neonatal Mice Following Blockade of VIP During the Early Embryonic Period. Peptides, 1997, 18, 1131-1137.	2.4	49
90	VIP receptor antagonists and chemotherapeutic drugs inhibit the growth of breast cancer cells. Breast Cancer Research and Treatment, 2001, 68, 55-64.	2.5	47

#	Article	IF	CITATIONS
91	Tubulin microheterogeneity in neuroblastoma and glioma cell lines differs from that of the brain. Brain Research, 1979, 171, 171-175.	2.2	46
92	The complete structure of the rat VIP gene. Molecular Brain Research, 1990, 7, 261-267.	2.3	46
93	A femtomolar-acting neuroprotective peptide induces increased levels of heat shock protein 60 in rat cortical neurons: a potential neuroprotective mechanism. Neuroscience Letters, 1999, 264, 9-12.	2.1	46
94	NAP and ADNF-9 Protect Normal and Downs Syndrome Cortical Neurons from Oxidative Damage and Apoptosis. Current Pharmaceutical Design, 2007, 13, 1091-1098.	1.9	46
95	Detection of Vasoactive Intestinal Peptide-Encoding Messenger Ribonucleic Acid in the Rat Ovaries*. Endocrinology, 1986, 119, 2606-2610.	2.8	45
96	Vasoactive Intestinal Peptide Receptors: A Molecular Target in Breast and Lung Cancer. Current Pharmaceutical Design, 2007, 13, 1099-1104.	1.9	45
97	Brain deficits associated with fetal alcohol exposure may be protected, in part, by peptides derived from activity-dependent neurotrophic factor and activity-dependent neuroprotective protein. Brain Research Reviews, 2006, 52, 107-118.	9.0	44
98	Activity-Dependent Neuroprotective Protein (ADNP): A Case Study for Highly Conserved Chordata-Specific Genes Shaping the Brain and Mutated in Cancer. Journal of Alzheimer's Disease, 2015, 45, 57-73.	2.6	44
99	Sexual dimorphism of activity-dependent neuroprotective protein in the mouse arcuate nucleus. Neuroscience Letters, 2004, 373, 73-78.	2.1	43
100	Novel Evolutionary-conserved Role for the Activity-dependent Neuroprotective Protein (ADNP) Family That Is Important for Erythropoiesis. Journal of Biological Chemistry, 2012, 287, 40173-40185.	3.4	43
101	Lactation Elevates Vasoactive Intestinal Peptide Messenger Ribonucleic Acid in Rat Suprachiasmatic Nucleus*. Endocrinology, 1989, 124, 181-186.	2.8	42
102	Identity of Neurotrophic Molecules Released from Astroglia by Vasoactive Intestinal Peptide. Annals of the New York Academy of Sciences, 1997, 814, 167-173.	3.8	42
103	Microtubules (tau) as an Emerging Therapeutic Target: NAP (Davunetide). Current Pharmaceutical Design, 2011, 17, 3413-3417.	1.9	42
104	Microtubule-stabilizing peptides and small molecules protecting axonal transport and brain function: Focus on davunetide (NAP). Neuropeptides, 2013, 47, 489-495.	2.2	42
105	The autism/neuroprotection-linked ADNP/NAP regulate the excitatory glutamatergic synapse. Translational Psychiatry, 2019, 9, 2.	4.8	42
106	Spontaneous electrical activity regulates vasoactive intestinal peptide expression in dissociated spinal cord cell cultures. Molecular Brain Research, 1991, 10, 235-240.	2.3	41
107	NAP Enhances Neurodevelopment of Newborn Apolipoprotein E-Deficient Mice Subjected to Hypoxia. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 332-339.	2.5	41
108	ADNP Plays a Key Role in Autophagy: From Autism to Schizophrenia and Alzheimer's Disease. BioEssays, 2017, 39, 1700054.	2.5	41

#	Article	IF	CITATIONS
109	The blood–brain barrier and beyond: Nano-based neuropharmacology and the role of extracellular matrix. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 359-379.	3.3	41
110	VIP and Drug Design. Current Pharmaceutical Design, 2003, 9, 483-494.	1.9	41
111	Identification of tubulin associated with rat brain myelin. FEBS Letters, 1978, 95, 169-172.	2.8	40
112	Intranasal <scp>NAP</scp> (davunetide) decreases tau hyperphosphorylation and moderately improves behavioral deficits in mice overexpressing αâ€synuclein. Pharmacology Research and Perspectives, 2014, 2, e00065.	2.4	40
113	Hormonal regulation of somatostatin messenger RNA. Synapse, 1988, 2, 317-325.	1.2	39
114	VIP and the potent analog, stearyl-Nle17 -VIP, induce proliferation of keratinocytes. FEBS Letters, 2000, 475, 78-83.	2.8	39
115	NAP (davunetide) preferential interaction with dynamic 3-repeat Tau explains differential protection in selected tauopathies. PLoS ONE, 2019, 14, e0213666.	2.5	39
116	Davunetide: Peptide Therapeutic in Neurological Disorders. Current Medicinal Chemistry, 2014, 21, 2591-2598.	2.4	39
117	VIP Neurotrophism in the Central Nervous System: Multiple Effectors and Identification of a Femtomolar-Acting Neuroprotective Peptide. Annals of the New York Academy of Sciences, 1998, 865, 207-212.	3.8	38
118	Protection Against Tauopathy by the Drug Candidates NAP (Davunetide) and D-SAL: Biochemical, Cellular and Behavioral Aspects. Current Pharmaceutical Design, 2011, 17, 2603-2612.	1.9	38
119	The Compassionate Side of Neuroscience: Tony Sermone's Undiagnosed Genetic Journey—ADNP Mutation. Journal of Molecular Neuroscience, 2015, 56, 751-757.	2.3	37
120	Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy. Science Translational Medicine, 2016, 8, 370ra181.	12.4	37
121	Hypothalamic Vasoactive Intestinal Peptide Messenger Ribonucleic Acid Is Increased in Lactating Rats*. Endocrinology, 1986, 119, 2497-2501.	2.8	36
122	Vasoactive intestinal peptide and related molecules induce nitrite accumulation in the extracellular milieu of rat cerebral cortical cultures. Neuroscience Letters, 2001, 307, 167-170.	2.1	36
123	NAP, a Peptide Derived from the Activityâ€Dependent Neuroprotective Protein, Modulates Macrophage Function. Annals of the New York Academy of Sciences, 2006, 1070, 500-506.	3.8	36
124	Tau and Caspase 3 as Targets for Neuroprotection. International Journal of Alzheimer's Disease, 2012, 2012, 1-8.	2.0	36
125	VIP-mRNA is increased in hypertensive rats. Brain Research, 1989, 503, 304-307.	2.2	35
126	The Eight and a Half Year Journey of Undiagnosed AD: Gene Sequencing and Funding of Advanced Genetic Testing Has Led to Hope and New Beginnings. Frontiers in Endocrinology, 2017, 8, 107.	3.5	35

#	Article	IF	CITATIONS
127	NAP accelerates the performance of normal rats in the water maze. Journal of Molecular Neuroscience, 2002, 19, 167-170.	2.3	34
128	Activity-Dependent Neuroprotective Protein (ADNP) Expression in the Amyloid Precursor Protein/Presenilin 1 Mouse Model of Alzheimer's Disease. Journal of Molecular Neuroscience, 2010, 41, 114-120.	2.3	34
129	A lipophilic vasoactive intestinal peptide analog enhances the antiproliferative effect of chemotherapeutic agents on cancer cell lines. Cancer, 2001, 92, 2172-2180.	4.1	33
130	VIP, From Gene to Behavior and Back: Summarizing my 25ÂYears of Research. Journal of Molecular Neuroscience, 2008, 36, 115-124.	2.3	33
131	Silencing of the ADNPâ€family member, ADNP2, results in changes in cellular viability under oxidative stress. Journal of Neurochemistry, 2008, 105, 537-545.	3.9	33
132	Estrogen regulation of vasoactive intestinal peptide mRNA in rat hypothalamus. Journal of Molecular Neuroscience, 1989, 1, 55-61.	2.3	32
133	VIP provides cellular protection through a specific splice variant of the PACAP receptor: A new neuroprotection target. Peptides, 2006, 27, 2867-2876.	2.4	32
134	NAP protects hippocampal neurons against multiple toxins. Peptides, 2007, 28, 2004-2008.	2.4	32
135	Anti-inflammatory effects of the octapeptide NAP in human microbiota-associated mice suffering from subacute ileitis. European Journal of Microbiology and Immunology, 2018, 8, 34-40.	2.8	32
136	Novel ADNP Syndrome Mice Reveal Dramatic Sex-Specific Peripheral Gene Expression With Brain Synaptic and Tau Pathologies. Biological Psychiatry, 2022, 92, 81-95.	1.3	32
137	A Single Administration of the Peptide NAP Induces Long-Term Protective Changes Against the Consequences of Head Injury. Journal of Molecular Neuroscience, 2002, 18, 37-46.	2.3	31
138	NAP protects against cytochrome c release: Inhibition of the initiation of apoptosis. European Journal of Pharmacology, 2009, 618, 9-14.	3.5	31
139	Blockade of VIP during Neonatal Development Induces Neuronal Damage and Increases VIP and VIP Receptors in Brain. Annals of the New York Academy of Sciences, 1994, 739, 211-225.	3.8	30
140	Locomotor activity causes a rapid up-regulation of vasoactive intestinal peptide in the rat hippocampus. , 1999, 9, 534-541.		30
141	Brain Injury-Dependent Expression of Activity-Dependent Neuroprotective Protein. Journal of Molecular Neuroscience, 2004, 24, 181-188.	2.3	30
142	Critical appraisal of the role of davunetide in the treatment of progressive supranuclear palsy. Neuropsychiatric Disease and Treatment, 2012, 8, 85.	2.2	30
143	Risperidone and NAP protect cognition and normalize gene expression in a schizophrenia mouse model. Scientific Reports, 2015, 5, 16300.	3.3	30
144	The survival of dentate gyrus neurons in dissociated culture. Developmental Brain Research, 1987, 36, 199-218.	1.7	29

#	Article	IF	CITATIONS
145	Vasoactive intestinal peptide inhibits cytokine production in T lymphocytes through cAMP-dependent and cAMP-independent mechanisms. Regulatory Peptides, 1999, 84, 55-67.	1.9	29
146	The ADNP Syndrome and CP201 (NAP) Potential and Hope. Frontiers in Neurology, 2020, 11, 608444.	2.4	29
147	SH3- and actin-binding domains connect ADNP and SHANK3, revealing a fundamental shared mechanism underlying autism. Molecular Psychiatry, 2022, 27, 3316-3327.	7.9	29
148	IGF-I as a Mediator of VIP/Activity-Dependent Neurotrophic Factor-Stimulated Embryonic Growth. Endocrinology, 2001, 142, 3348-3353.	2.8	28
149	Neurotrophic Effects of the Peptide NAP: A Novel Neuroprotective Drug Candidate. Current Alzheimer Research, 2006, 3, 197-199.	1.4	28
150	Blockage of VIP during mouse embryogenesis modifies adult behavior and results in permanent changes in brain chemistry. Journal of Molecular Neuroscience, 2007, 31, 183-200.	2.3	28
151	Vasoactive Intestinal Peptide: Link between Electrical Activity and Glia-mediated Neurotrophism. Annals of the New York Academy of Sciences, 1999, 897, 17-26.	3.8	27
152	Activity-dependent neurotrophic factor: a potent regulator of embryonic growth and development. Anatomy and Embryology, 1999, 200, 65-71.	1.5	27
153	NAP Alpha-Aminoisobutyric Acid (IsoNAP). Journal of Molecular Neuroscience, 2014, 52, 1-9.	2.3	27
154	The autism-mutated ADNP plays a key role in stress response. Translational Psychiatry, 2019, 9, 235.	4.8	27
155	Cellular and animal models of skin alterations in the autism-related ADNP syndrome. Scientific Reports, 2019, 9, 736.	3.3	27
156	A Vasoactive Intestinal Peptide Antagonist Inhibits the Growth of Glioblastoma Cells. Journal of Molecular Neuroscience, 2001, 17, 331-340.	2.3	26
157	The microtubule interacting drug candidate NAP protects against kainic acid toxicity in a rat model of epilepsy. Journal of Neurochemistry, 2009, 111, 1252-1263.	3.9	26
158	D-NAP Prophylactic Treatment in the SOD Mutant Mouse Model of Amyotrophic Lateral Sclerosis: Review of Discovery and Treatment of Tauopathy. Journal of Molecular Neuroscience, 2012, 48, 597-602.	2.3	26
159	Novel Tubulin and Tau Neuroprotective Fragments Sharing Structural Similarities with the Drug Candidate NAP (Davuentide). Journal of Alzheimer's Disease, 2014, 40, S23-S36.	2.6	26
160	Developmental expression of the VIP-gene in brain and intestine. Brain Research, 1987, 388, 137-148.	2.2	26
161	The influence of the peptide NAP on Mac-1-deficient mice following closed head injury. Peptides, 2005, 26, 1520-1527.	2.4	25
162	Introducing ADNP and SIRT1 as new partners regulating microtubules and histone methylation. Molecular Psychiatry, 2021, 26, 6550-6561.	7.9	25

#	Article	IF	CITATIONS
163	Conditioned media from activated lymphocytes maintain sympathetic neurons in culture. Developmental Brain Research, 1982, 6, 93-97.	1.7	24
164	Detection of mRNAs containing regulatory peptide coding sequences using synthetic oligodeoxynucleotides. Journal of Cellular Biochemistry, 1984, 26, 147-156.	2.6	24
165	Studies toward the biosynthesis of vasoactive intestinal peptide (VIP). Peptides, 1984, 5, 161-166.	2.4	24
166	Vasoactive Intestinal Peptide (VIP) Regulates Activity-Dependent Neuroprotective Protein (ADNP) Expression In Vivo. Journal of Molecular Neuroscience, 2007, 33, 278-283.	2.3	24
167	In vitro and in vivo treatment of colon cancer by VIP antagonists. Regulatory Peptides, 2002, 109, 127-133.	1.9	23
168	(N-stearyl, Norleucine ¹⁷)VIPhybrid is a Broad Spectrum Vasoactive Intestinal Peptide Receptor Antagonist. Journal of Molecular Neuroscience, 2002, 18, 29-36.	2.3	23
169	Tubulin is the Target Binding Site for NAP-Related Peptides: ADNF-9, D-NAP, and D-SAL. Journal of Molecular Neuroscience, 2006, 28, 303-308.	2.3	23
170	Microtubules, schizophrenia and cognitive behavior: Preclinical development of davunetide (NAP) as a peptide-drug candidate. Peptides, 2011, 32, 428-431.	2.4	23
171	The gene encoding vasoactive intestinal peptide is located on human chromosome 6p21→6qter. Human Genetics, 1987, 75, 41-44.	3.8	23
172	Estrogen regulation of vasoactive intestinal peptide mRNA in rat hypothalamus. Journal of Molecular Neuroscience, 1989, 1, 55-61.	2.3	22
173	SNV, a lipophilic superactive VIP analog, acts through cGMP to promote neuronal survival. Peptides, 1999, 20, 629-633.	2.4	22
174	Potential clinical applications of vasoactive intestinal peptide: a selected update. Best Practice and Research in Clinical Endocrinology and Metabolism, 2004, 18, 623-640.	4.7	22
175	The National Autism Database of Israel: a Resource for Studying Autism Risk Factors, Biomarkers, Outcome Measures, and Treatment Efficacy. Journal of Molecular Neuroscience, 2020, 70, 1303-1312.	2.3	22
176	A VIP hybrid antagonist: From developmental neurobiology to clinical applications. Cellular and Molecular Neurobiology, 1995, 15, 675-687.	3.3	21
177	The effects of vascular intrauterine growth retardation on cortical astrocytes. Journal of Maternal-Fetal and Neonatal Medicine, 2010, 23, 595-600.	1.5	21
178	Developmental Phenotype of the Rare Case of DJ Caused by a Unique ADNP Gene De Novo Mutation. Journal of Molecular Neuroscience, 2019, 68, 321-330.	2.3	21
179	Regulation of VIP gene expression in general. Journal of Molecular Neuroscience, 1996, 7, 99-110.	2.3	20
180	Injections of the neuroprotective peptide NAP to newborn mice attenuate head-injury-related dysfunction in adults. NeuroReport, 2003, 14, 481-484.	1.2	20

#	Article	IF	CITATIONS
181	Looking for novel ways to treat the hallmarks of Alzheimer's disease. Expert Opinion on Investigational Drugs, 2007, 16, 1183-1196.	4.1	20
182	Novel glycosylated VIP analogs: synthesis, biological activity, and metabolic stability. Journal of Peptide Science, 2008, 14, 321-328.	1.4	20
183	Ameliorative effect of NAP on laser-induced retinal damage. Acta Ophthalmologica, 2011, 89, e126-e131.	1.1	20
184	The characterization and phosphorylation of an actin-like protein in synaptosomal membranes. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1980, 624, 153-162.	1.7	19
185	Monoclonal Antibodies Against Vasoactive Intestinal Polypeptide: Studies of Structure and Related Antigens. Journal of Neurochemistry, 1983, 41, 549-555.	3.9	19
186	Differential expression of embryonic and maternal activity-dependent neuroprotective protein during mouse development. American Journal of Obstetrics and Gynecology, 2002, 187, 973-976.	1.3	19
187	Atypical Auditory Brainstem Response and Protein Expression Aberrations Related to ASD and Hearing Loss in the Adnp Haploinsufficient Mouse Brain. Neurochemical Research, 2019, 44, 1494-1507.	3.3	19
188	Neuropeptide receptor transcripts are expressed in the rat clitoris and oscillate during the estrus cycle in the rat vagina. Peptides, 2005, 26, 2579-2584.	2.4	18
189	A Novel Method for Analyzing Mitochondrial Movement: Inhibition by Paclitaxel in a Pheochromocytoma Cell Model. Journal of Molecular Neuroscience, 2009, 37, 254-262.	2.3	18
190	Reduction of aluminum ion neurotoxicity through a small peptide application – NAP treatment of Alzheimer's disease. Journal of Food and Drug Analysis, 2019, 27, 551-564.	1.9	18
191	VIP-derived sequences modified by N-terminal stearyl moiety induce cell death: the human keratinocyte as a model. FEBS Letters, 2000, 475, 71-77.	2.8	17
192	Neuroprotective Protein and Carboxypeptidase E. Journal of Molecular Neuroscience, 2009, 39, 1-8.	2.3	17
193	ADNP: in search for molecular mechanisms and innovative therapeutic strategies for frontotemporal degeneration. Frontiers in Aging Neuroscience, 2015, 7, 205.	3.4	17
194	Protein Synthesis in Rat Brain Microvessels Decreases with Aging. Journal of Neurochemistry, 1981, 36, 1311-1315.	3.9	16
195	The cytoskeleton as a drug target for neuroprotection: the case of the autism- mutated ADNP. Biological Chemistry, 2016, 397, 177-184.	2.5	16
196	A possible high molecular weight precursor to vasoactive intestinal polypeptide sequestered into pheochromocytoma chromaffin granules. Regulatory Peptides, 1983, 6, 111-119.	1.9	15
197	Vasoactive Intestinal Peptide Regulates Embryonic Growth Through the Action of Activity-dependent Neurotrophic Factor. Annals of the New York Academy of Sciences, 1999, 897, 92-100.	3.8	15
198	D-SAL and NAP: Two Peptides Sharing a SIP Domain. Journal of Molecular Neuroscience, 2016, 59, 220-231.	2.3	15

#	Article	IF	CITATIONS
199	Activity-dependent neuroprotective protein (ADNP) is an alcohol-responsive gene and negative regulator of alcohol consumption in female mice. Neuropsychopharmacology, 2019, 44, 415-424.	5.4	15
200	Does SCFD1 rs10139154 Polymorphism Decrease Alzheimer's Disease Risk?. Journal of Molecular Neuroscience, 2019, 69, 343-350.	2.3	15
201	Age and Sex-Dependent ADNP Regulation of Muscle Gene Expression Is Correlated with Motor Behavior: Possible Feedback Mechanism with PACAP. International Journal of Molecular Sciences, 2020, 21, 6715.	4.1	15
202	NAP protects against cyanide-related microtubule destruction. Journal of Neural Transmission, 2009, 116, 1411-1416.	2.8	14
203	ADNP, a Microtubule Interacting Protein, Provides Neuroprotection Through End Binding Proteins and Tau: An Amplifier Effect. Frontiers in Molecular Neuroscience, 2018, 11, 151.	2.9	14
204	Immune-modulatory Properties of the Octapeptide NAP in Campylobacter jejuni Infected Mice Suffering from Acute Enterocolitis. Microorganisms, 2020, 8, 802.	3.6	14
205	NAP Protects against Tau Hyperphosphorylation Through GSK3. Current Pharmaceutical Design, 2019, 24, 3868-3877.	1.9	14
206	Sexual divergence in activityâ€dependent neuroprotective protein impacting autism, schizophrenia, and <scp>A</scp> lzheimer's disease. Journal of Neuroscience Research, 2017, 95, 652-660.	2.9	13
207	Protection against developmental deficiencies by a lipophilic VIP analogue. Neurochemical Research, 1998, 23, 689-693.	3.3	12
208	Anti-Inflammatory Properties of NAP in Acute Toxoplasma gondii-Induced Ileitis in Mice. European Journal of Microbiology and Immunology, 2015, 5, 210-220.	2.8	12
209	ADNP/ADNP2 expression in oligodendrocytes: implication for myelin-related neurodevelopment. Journal of Molecular Neuroscience, 2015, 57, 304-313.	2.3	12
210	Analysis of HCRTR2, GNB3, and ADH4 Gene Polymorphisms in a Southeastern European Caucasian Cluster Headache Population. Journal of Molecular Neuroscience, 2020, 70, 467-474.	2.3	12
211	Microbiota changes associated with ADNP deficiencies: rapid indicators for NAP (CP201) treatment of the ADNP syndrome and beyond. Journal of Neural Transmission, 2020, 127, 251-263.	2.8	12
212	A vasoactive intestinal peptide receptor analog alters the expression of homeobox genes. Life Sciences, 2002, 71, 2543-2552.	4.3	11
213	Tau as a Drug Target in Alzheimer's Disease. Journal of Molecular Neuroscience, 2002, 19, 337-338.	2.3	11
214	ADNP: A major autism mutated gene is differentially distributed (age and gender) in the songbird brain. Peptides, 2015, 72, 75-79.	2.4	11
215	Tau Diagnostics and Clinical Studies. Journal of Molecular Neuroscience, 2017, 63, 123-130.	2.3	11
216	ADNP Regulates Cognition: A Multitasking Protein. Frontiers in Neuroscience, 2018, 12, 873.	2.8	11

#	Article	IF	CITATIONS
217	Activity-dependent neuroprotective protein (ADNP)-end-binding protein (EB) interactions regulate microtubule dynamics toward protection against tauopathy. Progress in Molecular Biology and Translational Science, 2021, 177, 65-90.	1.7	11
218	Antagonism of VIP-Stimulated Cyclic AMP Formation in Chick Brain. Journal of Molecular Neuroscience, 2003, 20, 163-172.	2.3	10
219	Microtubule-Tau Interaction as a Therapeutic Target for Alzheimer's Disease. Journal of Molecular Neuroscience, 2016, 58, 145-152.	2.3	10
220	A Novel Microtubule-Tau Association Enhancer and Neuroprotective Drug Candidate: Ac-SKIP. Frontiers in Cellular Neuroscience, 2019, 13, 435.	3.7	10
221	STOP Codon Mutations at Sites of Natural Caspase Cleavage Are Implicated in Autism and Alzheimer's Disease: The Case of ADNP. Frontiers in Endocrinology, 2022, 13, 867442.	3.5	10
222	Neuropeptide Regulation of Mitosis. Annals of the New York Academy of Sciences, 1994, 739, 253-261.	3.8	9
223	Stress Genes in the Nervous System During Development and Aging Diseases. Annals of the New York Academy of Sciences, 1998, 851, 123-128.	3.8	9
224	Multiple Actions of a Hybrid PACAP Antagonist: Neuronal Cell Killing and Inhibition of Sperm Motilitya. Annals of the New York Academy of Sciences, 1998, 865, 266-273.	3.8	9
225	Chapter 20. Davunetide (NAP) Pharmacology: Neuroprotection and Tau. RSC Drug Discovery Series, 2010, , 108-128.	0.3	9
226	Specific protein biomarker patterns for Alzheimer's disease: improved diagnostics in progress. EPMA Journal, 2017, 8, 255-259.	6.1	9
227	ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. GeroScience, 2019, 41, 321-340.	4.6	9
228	Single Cell ADNP Predictive of Human Muscle Disorders: Mouse Knockdown Results in Muscle Wasting. Cells, 2020, 9, 2320.	4.1	9
229	Biosynthesis and Regulation of Expression. The Vasoactive Intestinal Peptide Gene. Annals of the New York Academy of Sciences, 1988, 527, 77-86.	3.8	8
230	The increased proliferation of cultured neuroblastoma cells treated with vasoactive intestinal peptide is enhanced by simultaneous inhibition of neutral endopeptidase. Regulatory Peptides, 2002, 108, 175-177.	1.9	8
231	Novel extended and branched N-terminal analogs of VIP. Regulatory Peptides, 2006, 137, 42-49.	1.9	8
232	3R tau expression modifies behavior in transgenic mice. Journal of Neuroscience Research, 2010, 88, 2727-2735.	2.9	8
233	Editorial [Hot topic:VIP and PACAP: Novel Approaches to Brain Functions and Neuroprotection (Executive Guest Editors: Seiji Shioda and Illana Gozes)]. Current Pharmaceutical Design, 2011, 17, 961-961.	1.9	8
234	Putative Blood Somatic Mutations in Post-Traumatic Stress Disorder-Symptomatic Soldiers: High Impact of Cytoskeletal and Inflammatory Proteins. Journal of Alzheimer's Disease, 2021, 79, 1723-1734.	2.6	8

#	Article	IF	CITATIONS
235	Peptides as drug candidates against Alzheimer's disease. Drug Development Research, 2002, 56, 475-481.	2.9	7
236	A Splice Variant to PACAP Receptor That Is Involved in Spermatogenesis Is Expressed in Astrocytes. Annals of the New York Academy of Sciences, 2006, 1070, 484-490.	3.8	7
237	Tau pathology: predictive diagnostics, targeted preventive and personalized medicine and application of advanced research in medical practice. EPMA Journal, 2010, 1, 305-316.	6.1	7
238	Sex-and Region-Dependent Expression of the Autism-Linked ADNP Correlates with Social- and Speech-Related Genes in the Canary Brain. Journal of Molecular Neuroscience, 2020, 70, 1671-1683.	2.3	7
239	Deciphering the Enigma: NAP (CP201) the Active ADNP Drug Candidate Enters Cells by Dynamin-Associated Endocytosis. Journal of Molecular Neuroscience, 2020, 70, 993-998.	2.3	7
240	Therapeutic Potential of Vasoactive Intestinal Peptide and its Derivative Stearyl-Norleucine-VIP in Inflammation-Induced Osteolysis. Frontiers in Pharmacology, 2021, 12, 638128.	3.5	7
241	Receptors for VIP and PACAP in Guinea Pig Cerebral Cortex: Effects on Cyclic AMP Synthesis and Characterization by ¹²⁵ I-VIP Binding. Journal of Molecular Neuroscience, 2005, 25, 215-224.	2.3	6
242	Vasoactive Intestinal Peptide Releases Interleukin-1 from Astrocytes. Annals of the New York Academy of Sciences, 2006, 805, 280-287.	3.8	6
243	Single-cell analysis of cytoskeleton dynamics: From isoelectric focusing to live cell imaging and RNA-seq. Journal of Neuroscience Methods, 2019, 323, 119-124.	2.5	6
244	Neurotrophic Action of VIP. , 2020, , 383-408.		6
245	Novel analogs of VIP with multiple C-terminal domains. Peptides, 2007, 28, 1622-1630.	2.4	5
246	VIP–PACAP 2010: My Own Perspective on Modulation of Cognitive and Emotional Behavior. Journal of Molecular Neuroscience, 2010, 42, 261-263.	2.3	5
247	Activity-dependent neuroprotective protein (ADNP): from autism to Alzheimer's disease. SpringerPlus, 2015, 4, L37.	1.2	5
248	Outdoor PM2.5 concentration and rate of change in COVID-19 infection in provincial capital cities in China. Scientific Reports, 2021, 11, 23206.	3.3	5
249	Parkinson's and Alzheimer's Diseases: Protein Aggregations and Neuroprotection. Journal of Molecular Neuroscience, 2004, 24, 333-336.	2.3	4
250	Study of NAP adsorption and assembly on the surface of HOPG. Peptides, 2014, 62, 55-58.	2.4	4
251	Introduction to the Special Issue on Spinal and Bulbar Muscular Atrophy. Journal of Molecular Neuroscience, 2016, 58, 313-316.	2.3	4
252	VIP/PACAP-Based Drug Development: The ADNP/NAP-Derived Mirror Peptides SKIP and D-SKIP Exhibit Distinctive in vivo and in silico Effects. Frontiers in Cellular Neuroscience, 2019, 13, 589.	3.7	4

#	Article	IF	CITATIONS
253	Editorial: Designing a Protocol Adopting an Artificial Intelligence (AI)–Driven Approach for Early Diagnosis of Late-Onset Alzheimer's Disease. Journal of Molecular Neuroscience, 2021, 71, 1329-1337.	2.3	4
254	Parkinson Disease-Modification Encompassing Rotenone and 6-Hydroxydopamine Neurotoxicity by the Microtubule-Protecting Drug Candidate SKIP. Journal of Molecular Neuroscience, 2021, 71, 1515-1524.	2.3	4
255	A Different Outlook at Psychiatric and Neurological Diseases: Brain Somatic Mutations Are Implicated in Schizophrenia. Biological Psychiatry, 2021, 90, 6-8.	1.3	4
256	Apolipoprotein E Knockout Mice as a Model of Behavioral Dysfunction. Journal of Molecular Neuroscience, 2004, 23, 149-150.	2.3	3
257	Neuroendocrine Aspects of the Molecular Chaperones ADNF and ADNP. , 2005, , 251-262.		3
258	Neuropeptide GPCRs in neuroendocrinology: the case of activity-dependent neuroprotective protein (ADNP). Frontiers in Endocrinology, 2012, 3, 134.	3.5	3
259	PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE (PACAP)/VASOACTIVE INTESTINAL PEPTIDE (VIP) RECEPTOR SUBTYPES IN RAT TISSUES: INVESTIGATION OF RECEPTOR BINDING, A NOVEL VIP RECEPTOR ANTAGONIST AND CHEMICAL CROSS-LINKING . Biomedical Research, 1994, 15, 145-153.	0.9	3
260	Protein Synthesis in Nuclei. Journal of Molecular Neuroscience, 2002, 18, 167-168.	2.3	2
261	Activity-dependent neuroprotective protein (ADNP)/NAP (CP201): Autism, schizophrenia, and Alzheimer's disease. , 2020, , 3-20.		2
262	Higher <i>ATM</i> expression in lymphoblastoid cell lines from centenarian compared with younger women. Drug Development Research, 0, , .	2.9	2
263	In Memory of Victor Mutt: Discoveries of Biologically Important Peptides. Journal of Molecular Neuroscience, 1998, 11, 105-108.	2.3	1
264	Alzheimer's Disease: My Point of View (Editor's Note). Journal of Molecular Neuroscience, 2001, 17, 269-270.	2.3	1
265	Neuropeptides in the New Millennium. Journal of Molecular Neuroscience, 2002, 18, 1-4.	2.3	1
266	International Meeting Molecular Neurodegeneration: News and Views in Molecular Neuroscience in Health and Disease. Delmenhorst, Germany, July 20–22, 2015. Journal of Molecular Neuroscience, 2015, 57, 153-159.	2.3	1
267	Methods for single-cells. Journal of Neuroscience Methods, 2019, 328, 108413.	2.5	1
268	Molecular Mechanisms of Cognitive Impairment and Intellectual Disability—Virtual ESN Mini-Conference in Conjunction with the FENS Forum, July 11–15, 2020. Journal of Molecular Neuroscience, 2020, 70, 1927-1933.	2.3	1
269	Intranasal Delivery of Bioactive Peptides or Peptide Analogues Enhances Spatial Memory and Protects Against Cholinergic Deficits. , 2001, , 363-370.		1

Primary Cell Cultures and Cell Lines. Neuromethods, 2008, , 21-26.

0.3 1

#	Article	IF	CITATIONS
271	Neuropeptides 2003. Journal of Molecular Neuroscience, 2004, 22, 1-2.	2.3	ο
272	Summer Neuropeptide Conference: The 14th Annual Meeting of the Summer Neuropeptide Conference, Miami Beach, Florida, USA, July 5–9, 2004. Neuropeptides, 2005, 39, 29-33.	2.2	0
273	In Memory of Our Teacher, Dr. Akira Arimura. Journal of Molecular Neuroscience, 2008, 36, 3-7.	2.3	0
274	Young Investigator Award: Derek B. Oien (Supervisor: Jackob Moskovitz), University of Kansas. Journal of Molecular Neuroscience, 2009, 39, 321-322.	2.3	0
275	Tau Pathology: A Selected View on the Current Status. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 69-92.	0.6	0
276	P4-274: ACTIVITY-DEPENDENT NEUROPROTECTIVE PROTEIN (ADNP): MARKING ALZHEIMER'S DISEASE AND SCHIZOPHRENIA. , 2014, 10, P884-P885.		0
277	The Future for Dementia Research: a Perspective from the Journal of Molecular Neuroscience. Journal of Molecular Neuroscience, 2016, 60, 410-411.	2.3	0
278	Neuropeptides: From Bench to Bedside. Current Pharmaceutical Design, 2019, 24, 3867-3867.	1.9	0
279	VIP-and PACAP-Related Neuroprotection. , 2006, , 1379-1384.		Ο
280	The Design, Synthesis, and Biological Evaluation of VIP and VIP Analogs. Neuromethods, 2008, , 1-9.	0.3	0
281	PACAP, VIP, and ADNP: Autism and Schizophrenia. Current Topics in Neurotoxicity, 2016, , 781-792.	0.4	Ο
282	From the Desk of the Editorâ€ʻinâ€ʻChief: Excerpts from the Society for Neurochemistry (ESN) Future Perspectives for European Neurochemistry Highlighting the Symposium Asking "Autism, Epilepsy, Intellectual Disability Where Do These All Meet?― Journal of Molecular Neuroscience, 2022, 72, 1527-1529.	2.3	0